1
|
Essig YJ, Leszczyszyn OI, Almutairi N, Harrison-Smith A, Blease A, Zeitoun-Ghandour S, Webb SM, Blindauer CA, Stürzenbaum SR. Juggling cadmium detoxification and zinc homeostasis: A division of labour between the two C. elegans metallothioneins. CHEMOSPHERE 2024; 350:141021. [PMID: 38151062 PMCID: PMC11134313 DOI: 10.1016/j.chemosphere.2023.141021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The chemical properties of toxic cadmium and essential zinc are very similar, and organisms require intricate mechanisms that drive selective handling of metals. Previously regarded as unspecific "metal sponges", metallothioneins (MTLs) are emerging as metal selectivity filters. By utilizing C. elegans mtl-1 and mtl-2 knockout strains, metal accumulation in single worms, single copy fluorescent-tagged transgenes, isoform specific qPCR and lifespan studies it was possible to demonstrate that the handling of cadmium and zinc by the two C. elegans metallothioneins differs fundamentally: the MTL-2 protein can handle both zinc and cadmium, but when it becomes unavailable, either via a knockout or by elevated cadmium exposure, MTL-1 takes over zinc handling, leaving MTL-2 to sequester cadmium. This division of labour is reflected in the folding behaviour of the proteins: MTL-1 folded well in presence of zinc but not cadmium, the reverse was the case for MTL-2. These differences are in part mediated by a zinc-specific mononuclear His3Cys site in the C-terminal insertion of MTL-1; its removal affected the entire C-terminal domain and may shift its metal selectivity towards zinc. Overall, we uncover how metallothionein isoform-specific responses and protein properties allow C. elegans to differentiate between toxic cadmium and essential zinc.
Collapse
Affiliation(s)
- Yona J Essig
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Oksana I Leszczyszyn
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Norah Almutairi
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Alix Blease
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Sam M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Stephen R Stürzenbaum
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK.
| |
Collapse
|
2
|
Chaudhuri P, Imam HT, Essig Y, Krasauskas J, Webb SM, Blindauer CA, Stürzenbaum SR. Molecular genetic and biochemical characterization of a putative family of zinc metalloproteins in Caenorhabditis elegans. Metallomics 2019; 10:1814-1823. [PMID: 30444224 PMCID: PMC6336089 DOI: 10.1039/c8mt00169c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
The first characterization of W08E12.2, W08E12.3, W08E12.4 and W08E12.5, four putative metalloproteins in C. elegans. (A) phase contrast microscopy, (B) fluorescence microscopy of PW08E12.3;W08E12.4::GFP.
Four highly similar genes (W08E12.2, W08E12.3, W08E12.4 and W08E12.5) which are consecutively aligned on chromosome IV of the C. elegans genome are predicted to code for small (120–141aa) yet cysteine rich (18–19 cysteines) proteins. Cloning and sequencing of the genomic regions of the isoforms confirmed the presence and order of all genes. The generation of transgenic worms strains with an integrated single copy or extrachromosomal multi-copy PW08E12.3;W08E12.4::GFP uncovered that W08E12.3 and W08E12.4 are constitutively expressed in the pharynx and significantly induced in worms exposed to 100 μM Zn. Knockdown by RNAi did not have a marked consequence on reproductive performance nor was a Zn-dependent effect on nematode growth observed. However, RNAi of these genes led to an accumulation of Zn in the intestinal cells. W08E12.3 was recombinantly expressed in E. coli and the purified protein was shown to be able to bind up to 6.5 Zn molecules at neutral pH. Zn-binding was acid-labile and the apo protein was observed at pH < 4.3. This characterization suggests W08E12.2, W08E12.3, W08E12.4 and W08E12.5 belong to a family of putative Metalloproteins which, akin to metallothioneins, may play an important role in Zn-sensing, homeostasis and/or detoxification.
Collapse
Affiliation(s)
- Poulami Chaudhuri
- King's College London, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Imam HT, Blindauer CA. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana. J Biol Inorg Chem 2018; 23:137-154. [PMID: 29218630 PMCID: PMC5756572 DOI: 10.1007/s00775-017-1516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 12/04/2022]
Abstract
The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues. Yet, differences in their spatial and temporal expression patterns suggested divergence in their biological roles. To investigate whether biological functions are reflected in molecular properties, we compare aspects of zinc(II)-binding dynamics of full-length MT4a and MT4b, namely the pH dependence of zinc(II) binding and protein folding, and zinc(II) transfer to the chelator EDTA. UV-Vis and NMR spectroscopies as well as native electrospray ionisation mass spectrometry consistently showed that transfer from Zn6MT4a is considerably faster than from Zn6MT4b, with pseudo-first-order rate constants for the fastest observed step of k obs = 2.8 × 10-4 s-1 (MT4b) and k obs = 7.5 × 10-4 s-1 (MT4a) (5 µM protein, 500 µM EDTA, 25 mM Tris buffer, pH 7.33, 298 K). 2D heteronuclear NMR experiments allowed locating the most labile zinc(II) ions in domain II for both proteins. 3D homology models suggest that reactivity of this domain is governed by the local environment around the mononuclear Cys2His2 site that is unique to type 4 MTs. Non-conservative amino acid substitutions in this region affect local electrostatics as well as whole-domain dynamics, with both effects rendering zinc(II) ions bound to MT4a more reactive in metal transfer reactions. Therefore, domain II of MT4a is well suited to rapidly release its bound zinc(II) ions, in broad agreement with a previously suggested role of MT4a in zinc(II) transport and delivery to other proteins.
Collapse
Affiliation(s)
- Hasan T Imam
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | | |
Collapse
|
4
|
Habjanič J, Zerbe O, Freisinger E. A histidine-rich Pseudomonas metallothionein with a disordered tail displays higher binding capacity for cadmium than zinc. Metallomics 2018; 10:1415-1429. [DOI: 10.1039/c8mt00193f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The NMR solution structure of a Pseudomonas metallothionein reveals a different binding capacity for ZnII and CdII ions that results in two novel metal-cluster topologies. Replacement of a non-coordinating residue by histidine decreases the kinetic lability of the cluster. All three structures reported show an identical protein fold.
Collapse
Affiliation(s)
- Jelena Habjanič
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| | - Oliver Zerbe
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| | - Eva Freisinger
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| |
Collapse
|
5
|
Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT. Int J Mol Sci 2016; 17:ijms17010065. [PMID: 26742040 PMCID: PMC4730310 DOI: 10.3390/ijms17010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/24/2015] [Indexed: 01/03/2023] Open
Abstract
Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.
Collapse
|
6
|
Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase. Biochem J 2015; 471:347-56. [DOI: 10.1042/bj20150676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Competitive metallation reactions between the isolated domain fragments and apo-carbonic anhydrase [CA; metal-free CA (apo-CA)] provided the binding affinities for each of the eight sites and showed that CA competed more efficiently for added zinc with the β-domain fragment. The combined effects of the number of sites, chain length and cysteine accessibility modulate the zinc-binding properties of mammalian metallothionein (MT).
Collapse
|
7
|
Abstract
Recognition of the importance of zinc homeostasis for health has driven a surge in structural data on major zinc-transporting proteins.
Collapse
|
8
|
Chaturvedi KS, Henderson JP. Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 2014; 4:3. [PMID: 24551598 PMCID: PMC3909829 DOI: 10.3389/fcimb.2014.00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu(+)) in its reduced form and copper (II) (Cu(2+)) in its oxidized form under physiologic conditions. Cu(+) is significantly more bactericidal than Cu(2+) due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it.
Collapse
Affiliation(s)
- Kaveri S Chaturvedi
- Division of Infectious Diseases, Department of Internal Medicine, Center for Women's Infectious Diseases Research, Washington University School of Medicine St. Louis, MO, USA
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Internal Medicine, Center for Women's Infectious Diseases Research, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
9
|
Loebus J, Leitenmaier B, Meissner D, Braha B, Krauss GJ, Dobritzsch D, Freisinger E. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inorg Biochem 2013; 127:253-60. [DOI: 10.1016/j.jinorgbio.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
|
10
|
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013; 5:18. [PMID: 23730287 PMCID: PMC3657624 DOI: 10.3389/fnagi.2013.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sudipta Chakraborty
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
11
|
Blindauer CA. Lessons on the critical interplay between zinc binding and protein structure and dynamics. J Inorg Biochem 2013; 121:145-55. [PMID: 23376625 DOI: 10.1016/j.jinorgbio.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 02/05/2023]
Abstract
Zinc is one of the most important micronutrients for virtually all living organisms, and hence, it is important to understand the molecular mechanisms for its homeostasis. Besides proteins involved in transmembrane transport, both extra- and intracellular zinc-binding proteins play important roles in the respective metabolic networks. Important examples for extracellular zinc transporters are mammalian serum albumins, and for intracellular zinc handling, certain metallothioneins are of relevance. The availability of protein structures including relevant metal binding sites is a fundamental prerequisite to decipher the mechanisms that govern zinc binding dynamics in these proteins, but their determination can prove to be surprisingly challenging. Due to the spectroscopic silence of Zn(2+), combinations of biophysical techniques including electrospray ionisation mass spectrometry (ESI-MS) and multinuclear NMR, isothermal titration calorimetry (ITC) and extended X-ray absorption fine structure (EXAFS) spectroscopy, coupled with site-directed mutagenesis and molecular modelling have proven to be valuable approaches to understand not only the zinc-binding properties of metallothioneins and albumins, but also the influence of other physiologically relevant competing agents. These studies have demonstrated why the bacterial metallothionein SmtA contains a site inert towards exchange with Cd(2+), why the plant metallothionein EC from wheat is partially unfolded in the presence of Cd(2+), and how fatty acids impact on the zinc-binding ability of mammalian serum albumins.
Collapse
|
12
|
|
13
|
Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 2013; 5:1146-69. [DOI: 10.1039/c3mt00072a] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
|
14
|
Grasso G, Spoto G. Plasmonics for the study of metal ion–protein interactions. Anal Bioanal Chem 2012; 405:1833-43. [DOI: 10.1007/s00216-012-6421-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 12/19/2022]
|
15
|
Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem 2012; 402:3311-22. [DOI: 10.1007/s00216-012-5743-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
|
16
|
Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms. J Toxicol 2011; 2011:895236. [PMID: 21876692 PMCID: PMC3157827 DOI: 10.1155/2011/895236] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2011] [Accepted: 06/08/2011] [Indexed: 12/22/2022] Open
Abstract
Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans), contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.
Collapse
|
17
|
Höckner M, Dallinger R, Stürzenbaum SR. Nematode and snail metallothioneins. J Biol Inorg Chem 2011; 16:1057-65. [PMID: 21822727 DOI: 10.1007/s00775-011-0826-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2011] [Accepted: 07/25/2011] [Indexed: 01/27/2023]
Abstract
Metallobiologists have, at large, neglected soil dwelling invertebrates; exceptions are the nematode (Caenorhabditis elegans) and snails (Helix pomatia and Cantareus aspersus). This review aims to compare and contrast the molecular, protein and cellular mechanisms of the multifunctional nematode and snail metallothioneins (MTs). The C. elegans genome contains two MT genes, mtl-1, which is constitutively expressed in the pharynx and likely to act as an essential and/or toxic metal sensor, and mtl-2, which plays a negligible role under normal physiological conditions but is strongly induced (as mtl-1) in intestinal cells upon metal exposure. It has been possible to follow the intricate phenotypic responses upon the knockdown/knockout of single and multiple MT isoforms and we have started to decipher the multifunctional role of C. elegans MTs. The snails have contributed to our understanding regarding MT evolution and diversity, structure and metal-specific functionality. The H. pomatia and C. aspersus genomes contain at least three MT isoform genes. CdMT is responsible for cadmium detoxification, CuMT is involved in copper homeostasis and Cd/CuMT is a putative ancestral MT possibly only of minor importance in metal metabolism. Further investigations of nematode, snail and other invertebrate MTs will allow the development of alternative biomarker approaches and lead to an improved understanding of metallobiology, protein evolution and toxicogenomics.
Collapse
Affiliation(s)
- Martina Höckner
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria
| | | | | |
Collapse
|
18
|
Zeitoun-Ghandour S, Leszczyszyn OI, Blindauer CA, Geier FM, Bundy JG, Stürzenbaum SR. C. elegans metallothioneins: response to and defence against ROS toxicity. MOLECULAR BIOSYSTEMS 2011; 7:2397-406. [DOI: 10.1039/c1mb05114h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|