1
|
Renzi E, Esposito A, Leone L, Chávez M, Pineda T, Lombardi A, Nastri F. Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles. NANOSCALE ADVANCES 2024; 6:3533-3542. [PMID: 38989515 PMCID: PMC11232542 DOI: 10.1039/d4na00344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
The immobilization of biocatalysts on inorganic supports allows the development of bio-nanohybrid materials with defined functional properties. Gold nanomaterials (AuNMs) are the main players in this field, due to their fascinating shape-dependent properties that account for their versatility. Even though incredible progress has been made in the preparation of AuNMs, few studies have been carried out to analyze the impact of particle morphology on the behavior of immobilized biocatalysts. Herein, the artificial peroxidase Fe(iii)-Mimochrome VI*a (FeMC6*a) was conjugated to two different anisotropic gold nanomaterials, nanorods (AuNRs) and triangular nanoprisms (AuNTs), to investigate how the properties of the nanosupport can affect the functional behavior of FeMC6*a. The conjugation of FeMC6*a to AuNMs was performed by a click-chemistry approach, using FeMC6*a modified with pegylated aza-dibenzocyclooctyne (FeMC6*a-PEG4@DBCO), which was allowed to react with azide-functionalized AuNRs and AuNTs, synthesized from citrate-capped AuNMs. To this end, a literature protocol for depleting CTAB from AuNRs was herein reported for the first time to prepare citrate-AuNTs. The overall results suggest that the nanomaterial shape influences the nanoconjugate functional properties. Besides giving new insights into the effect of the surfaces on the artificial peroxidase properties, these results open up the way for creating novel nanostructures with potential applications in the field of sensing devices.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Miriam Chávez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| |
Collapse
|
2
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
3
|
Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023; 253:123945. [PMID: 36191514 DOI: 10.1016/j.talanta.2022.123945] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Biosensors are compact analytical devices capable of transducing a biological interaction event into a measurable signal outcome in real-time. They can provide sensitive and affordable analysis of samples without the need for additional laboratory equipment or complex preparation steps. Biosensors may be beneficial for forensic analysis as they can facilitate large-scale high-throughput, sensitive screening of forensic samples to detect target molecules that are of high evidential value. Nanomaterials are gaining attention as desirable components of biosensors that can enhance detection and signal efficiency. Biosensors that incorporate nanomaterials within their design have been widely reported and developed for medical purposes but are yet to find routine employment within forensic science despite their proven potential. In this article, key examples of the use of nanomaterials within optical biosensors designed for forensic analysis are outlined. Their design and mechanism of detection are both considered throughout, discussing how nanomaterials can enhance the detection of the target analyte. The critical evaluation of the optical biosensors detailed within this review article should help to guide future optical biosensor design via the incorporation of nanomaterials, for not only forensic analysis but alternative analytical fields where such biosensors may prove a valuable addition to current workflows.
Collapse
Affiliation(s)
- Hayley Costanzo
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James Gooch
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
4
|
Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry 2019; 58:2095-2104. [PMID: 30957491 DOI: 10.1021/acs.biochem.8b00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies. While we are currently able to use techniques from synthetic biology to design self-assembling molecules and re-engineer functional cells, we still need to use guided assembly to construct biological assemblies at the macroscale. We review the recent strategies for designing biological systems ranging from molecular assemblies based on self-assembly of (poly)peptides to the guided assembly of patterned bacteria, spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Andreja Majerle
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Dominik T Schmieden
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , 2629 HZ Delft , The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Anne S Meyer
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
5
|
Zambrano G, Ruggiero E, Malafronte A, Chino M, Maglio O, Pavone V, Nastri F, Lombardi A. Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials. Int J Mol Sci 2018; 19:E2896. [PMID: 30250002 PMCID: PMC6213134 DOI: 10.3390/ijms19102896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Many efforts are continuously devoted to the construction of hybrid biomaterials for specific applications, by immobilizing enzymes on different types of surfaces and/or nanomaterials. In addition, advances in computational, molecular and structural biology have led to a variety of strategies for designing and engineering artificial enzymes with defined catalytic properties. Here, we report the conjugation of an artificial heme enzyme (MIMO) with lipoic acid (LA) as a building block for the development of gold-based biomaterials. We show that the artificial MIMO@LA can be successfully conjugated to gold nanoparticles or immobilized onto gold electrode surfaces, displaying quasi-reversible redox properties and peroxidase activity. The results of this work open interesting perspectives toward the development of new totally-synthetic catalytic biomaterials for application in biotechnology and biomedicine, expanding the range of the biomolecular component aside from traditional native enzymes.
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| | - Emmanuel Ruggiero
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| | - Anna Malafronte
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II" Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
6
|
Egan JG, Drossis N, Ebralidze II, Fruehwald HM, Laschuk NO, Poisson J, de Haan HW, Zenkina OV. Hemoglobin-driven iron-directed assembly of gold nanoparticles. RSC Adv 2018; 8:15675-15686. [PMID: 35539477 PMCID: PMC9080194 DOI: 10.1039/c8ra01996g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
The ability to form complex 3D architectures using nanoparticles (NPs) as the building blocks and complex macromolecules that direct these assemblies remains a challenging objective for nanotechnology. Here we report results in which the partial substitution of classical Turkevich citrate-capped gold NPs by a novel, heteroaromatic ligand (L) results in NPs able to form coordination-driven assemblies mediated by free or protein-bound iron ions. The morphology of these assemblies can be tuned depending on the source of iron. To prove the concept, classical citrate and novel NPs were reacted with iron-containing protein hemoglobin (Hb). To diminish the influence of possible electrostatic interactions of native Hb and gold NPs, the reaction was performed at the isoelectric point of Hb. Moreover, thiol groups of Hb were protected with p-quinone to exclude thiol–gold bond formation. As expected, citrate-capped gold NPs are well dispersed in functionalized Hb, while L-functionalized NPs form assemblies. The blue shift of the Soret band of the functionalized Hb, when reacted with novel NPs, unambiguously confirms the coordination of a NP-anchored heteroaromatic ligand with the heme moiety of Hb. Coarse-grained molecular dynamics of this system were performed to gain information about aggregation dynamics and kinetics of iron- and hemoglobin-templated assemblies of L–NPs. A multi-scale simulation approach was employed to extend this model to longer time scales. The application of this model towards novel coordination-based assemblies can become a powerful tool for the development of new nanomaterials. The ability to form complex 3D architectures using nanoparticles as the building blocks and complex macromolecules that direct these assemblies remains a challenging objective for nanotechnology.![]()
Collapse
Affiliation(s)
- Jacquelyn G. Egan
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Nicole Drossis
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | | | - Holly M. Fruehwald
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Nadia O. Laschuk
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Jade Poisson
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | | | - Olena V. Zenkina
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| |
Collapse
|
7
|
Okesola BO, Mata A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem Soc Rev 2018; 47:3721-3736. [DOI: 10.1039/c8cs00121a] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nature is enriched with a wide variety of complex, synergistic and highly functional protein-based multicomponent assemblies.
Collapse
Affiliation(s)
- Babatunde O. Okesola
- School of Engineering and Materials Science
- Institute of Bioengineering
- Queen Mary University of London
- UK
| | - Alvaro Mata
- School of Engineering and Materials Science
- Institute of Bioengineering
- Queen Mary University of London
- UK
| |
Collapse
|
8
|
Onoda A, Umeda Y, Hayashi T. Cofactor-specific Anchoring of Horseradish Peroxidase onto a Polythiophene-modified Electrode. CHEM LETT 2017. [DOI: 10.1246/cl.170837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
| | - Yasunari Umeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
| |
Collapse
|
9
|
Luo Q, Hou C, Bai Y, Wang R, Liu J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chem Rev 2016; 116:13571-13632. [PMID: 27587089 DOI: 10.1021/acs.chemrev.6b00228] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature endows life with a wide variety of sophisticated, synergistic, and highly functional protein assemblies. Following Nature's inspiration to assemble protein building blocks into exquisite nanostructures is emerging as a fascinating research field. Dictating protein assembly to obtain highly ordered nanostructures and sophisticated functions not only provides a powerful tool to understand the natural protein assembly process but also offers access to advanced biomaterials. Over the past couple of decades, the field of protein assembly has undergone unexpected and rapid developments, and various innovative strategies have been proposed. This Review outlines recent advances in the field of protein assembly and summarizes several strategies, including biotechnological strategies, chemical strategies, and combinations of these approaches, for manipulating proteins to self-assemble into desired nanostructures. The emergent applications of protein assemblies as versatile platforms to design a wide variety of attractive functional materials with improved performances have also been discussed. The goal of this Review is to highlight the importance of this highly interdisciplinary field and to promote its growth in a diverse variety of research fields ranging from nanoscience and material science to synthetic biology.
Collapse
Affiliation(s)
- Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yushi Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR 999078, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Onoda A, Taniguchi T, Inoue N, Kamii A, Hayashi T. Anchoring Cytochrome
b
562
on a Gold Nanoparticle by a Heme–Heme Pocket Interaction. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Akira Onoda
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 Yamadaoka565‐0871SuitaJapan
| | - Tomoaki Taniguchi
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 Yamadaoka565‐0871SuitaJapan
| | - Nozomu Inoue
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 Yamadaoka565‐0871SuitaJapan
| | - Ayumi Kamii
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 Yamadaoka565‐0871SuitaJapan
| | - Takashi Hayashi
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 Yamadaoka565‐0871SuitaJapan
| |
Collapse
|
11
|
Harada H, Onoda A, Uematsu T, Kuwabata S, Hayashi T. Photocatalytic Properties of TiO2 Composites Immobilized with Gold Nanoparticle Assemblies Using the Streptavidin-Biotin Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6459-6467. [PMID: 27268721 DOI: 10.1021/acs.langmuir.6b01073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A method using biomolecules to precisely fabricate the morphology of metal nanoparticles immobilized on the surface of a semiconductor using biomolecules is described. A biotin moiety (Biot) is introduced onto the surface of a gold nanoparticle (AuNP) by covalent coupling with α-lipoic acid to assemble AuNPs in the presence of streptavidin (STV). The assembly of Biot-AuNP/STV is immobilized on the surface of TiO2 chemically modified with 1-(3-aminopropyl)silatrane (APS) to provide a positively charged surface. The Au content immobilized on the surface of TiO2 is clearly increased to 9.5 wt % (Au) as a result of the STV-biotin interaction and the electrostatic interaction between negatively charged Biot-AuNPs and the positively charged surface of APS/TiO2. Transmission electron microscopy (TEM) analysis reveals that the composite has an ordered surface geometry in which Biot-AuNPs are spread over the composite surface in two dimensions. The photocatalytic activity toward decomposition of methyl orange dye promoted by this composite is 55%, which is higher than that of the other composites. The Biot-AuNP/STV@APS/TiO2 composite efficiently reduces O2 molecules at Eonset = -0.23 V vs Ag|AgCl, which is more positive than that of other composites (Eonset = -0.40 to -0.32 V). The result suggests that an increased number of AuNPs immobilized in close contact with the TiO2 surface facilitates photoinduced charge transfer. This strategy, which takes advantage of the specific interactions provided by biomolecules and the chemical modification on the surface, has remarkable potential for efficient fabrication of metal nanoparticles on the surface of the semiconductor, which accelerates the reduction of oxygen molecules.
Collapse
Affiliation(s)
- Hirofumi Harada
- Department of Applied Chemistry and ‡Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University , Suita 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry and ‡Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University , Suita 565-0871, Japan
| | - Taro Uematsu
- Department of Applied Chemistry and ‡Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University , Suita 565-0871, Japan
| | - Susumu Kuwabata
- Department of Applied Chemistry and ‡Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University , Suita 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry and ‡Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University , Suita 565-0871, Japan
| |
Collapse
|
12
|
Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon.
| |
Collapse
|
13
|
Ono T, Hisaoka Y, Onoda A, Oohora K, Hayashi T. Oxygen-binding Protein Fiber and Microgel: Supramolecular Myoglobin-Poly(acrylate) Conjugates. Chem Asian J 2016; 11:1036-42. [DOI: 10.1002/asia.201501415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry and Biochemistry, Center for Molecular Systems (CMS); Kyushu University; 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Japan Science and Technology Agency (JST)-PRESTO; 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
| | - Yasushi Hisaoka
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
| | - Akira Onoda
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
| | - Koji Oohora
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
- Frontier Research Base for Global Young Researchers; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takashi Hayashi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
| |
Collapse
|
14
|
Onoda A, Inoue N, Campidelli S, Hayashi T. Cofactor-specific covalent anchoring of cytochrome b562on a single-walled carbon nanotube by click chemistry. RSC Adv 2016. [DOI: 10.1039/c6ra14195a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Redox-active cytochromeb562with a tethered azide group on the heme propionate side chain is covalently linked to an acetylene moiety introduced on the sidewall of a single-walled carbon nanotube by copper-catalyzed click chemistry.
Collapse
Affiliation(s)
- Akira Onoda
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Nozomu Inoue
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | | | - Takashi Hayashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
15
|
Himiyama T, Onoda A, Hayashi T. Photochemical Property of a Myoglobin–CdTe Quantum Dot Conjugate Formed by Supramolecular Host–Guest Interactions. CHEM LETT 2014. [DOI: 10.1246/cl.140321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoki Himiyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| |
Collapse
|
16
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
17
|
Harper MM, McKeating KS, Faulds K. Recent developments and future directions in SERS for bioanalysis. Phys Chem Chem Phys 2013; 15:5312-28. [PMID: 23318580 DOI: 10.1039/c2cp43859c] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability to develop new and sensitive methods of biomolecule detection is crucial to the advancement of pre-clinical disease diagnosis and effective patient specific treatment. Surface enhanced Raman scattering (SERS) is an optical spectroscopy amenable to this goal, as it is capable of extremely sensitive biomolecule detection and multiplexed analysis. This perspective highlights where SERS has been successfully used to detect target biomolecules, specifically DNA and proteins, and where in vivo analysis has been successfully utilised. The future of SERS development is discussed and emphasis is placed on the steps required to transport this novel technique from the research laboratory to a clinical setting for medical diagnostics.
Collapse
Affiliation(s)
- Mhairi M Harper
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
18
|
Onoda A, Takahashi A, Oohora K, Onuma Y, Hayashi T. Fibrous supramolecular hemoprotein assemblies connected with synthetic heme dimer and apohemoprotein dimer. Chem Biodivers 2013; 9:1684-92. [PMID: 22976961 DOI: 10.1002/cbdv.201100434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Supramolecular hemoprotein assemblies via heme-heme pocket interaction were prepared by synthetic heme dimers containing a linker with charged amino acids and apohemoprotein disulfide dimers. The mixture of the negatively charged heme dimer and the apomyoglobin dimer provides heterotropic fibrous hemoprotein assemblies, which were characterized by size-exclusion chromatography (SEC) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
19
|
Onoda A, Kakikura Y, Hayashi T. Cathodic photocurrent generation from zinc-substituted cytochrome b562 assemblies immobilized on an apocytochrome b562-modified gold electrode. Dalton Trans 2013; 42:16102-7. [DOI: 10.1039/c3dt51469b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Oohora K, Onoda A, Hayashi T. Supramolecular assembling systems formed by heme-heme pocket interactions in hemoproteins. Chem Commun (Camb) 2012; 48:11714-26. [PMID: 23079761 DOI: 10.1039/c2cc36376c] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A native protein in a biological system spontaneously produces large and elegant assemblies via self-assembly or assembly with various biomolecules which provide non-covalent interactions. In this context, the protein plays a key role in construction of a unique supramolecular structure operating as a functional system. Our group has recently highlighted the structure and function of hemoproteins reconstituted with artificially created heme analogs. The heme molecule is a replaceable cofactor of several hemoproteins. Here, we focus on the successive supramolecular protein assemblies driven by heme-heme pocket interactions to afford various examples of protein fibers, networks and three-dimensional clusters in which an artificial heme moiety is introduced onto the surface of a hemoprotein via covalent linkage and the native heme cofactor is removed from the heme pocket. This strategy is found to be useful for constructing hybrid materials with an electrode or with nanoparticles. The new systems described herein are expected to lead to the generation of various biomaterials with functions and characteristic physicochemical properties similar to those of hemoproteins.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
21
|
Kakikura Y, Onoda A, Kubo E, Kitagishi H, Uematsu T, Kuwabata S, Hayashi T. Supramolecular Linear Assemblies of Cytochrome b 562 Immobilized on a Gold Electrode. J Inorg Organomet Polym Mater 2012. [DOI: 10.1007/s10904-012-9737-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Proc Natl Acad Sci U S A 2012; 109:8073-8. [PMID: 22556265 DOI: 10.1073/pnas.1116637109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The tumor suppressor protein, p53, is either mutated or absent in >50% of cancers and is negatively regulated by the mouse double minute (MDM2) protein. Understanding and inhibition of the MDM2-p53 interaction are, therefore, critical for developing novel chemotherapeutics, which are currently limited because of a lack of appropriate study tools. We present a nanosensing approach to investigate full-length MDM2 interactions with p53, thus providing an allosteric assay for identifying binding ligands. Surface-enhanced Raman scattering (SERS)-active nanoparticles, functionalized with a p53 peptide mimic (peptide 12.1), display biologically specific aggregation following addition of MDM2. Nanoparticle assembly is competitively inhibited by the N-terminal MDM2-binding ligands peptide 12.1 and Nutlin-3. This study reports nanoparticle assembly through specific protein-peptide interactions that can be followed by SERS. We demonstrate solution-based MDM2 allosteric interaction studies that use the full-length protein.
Collapse
|
23
|
Onoda A, Himiyama T, Ohkubo K, Fukuzumi S, Hayashi T. Photochemical properties of a myoglobin–CdTe quantum dot conjugate. Chem Commun (Camb) 2012; 48:8054-6. [DOI: 10.1039/c2cc33046f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Onoda A, Kakikura Y, Uematsu T, Kuwabata S, Hayashi T. Photocurrent Generation from Hierarchical Zinc-Substituted Hemoprotein Assemblies Immobilized on a Gold Electrode. Angew Chem Int Ed Engl 2011; 51:2628-31. [DOI: 10.1002/anie.201105186] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Onoda A, Kakikura Y, Uematsu T, Kuwabata S, Hayashi T. Photocurrent Generation from Hierarchical Zinc-Substituted Hemoprotein Assemblies Immobilized on a Gold Electrode. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Kitagishi H, Kashiwa K, Kano K. Functionalization of a protein surface with per-O-methylated β-cyclodextrin. Biopolymers 2011; 97:11-20. [DOI: 10.1002/bip.21695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 01/30/2023]
|