1
|
Kriebisch CME, Burger L, Zozulia O, Stasi M, Floroni A, Braun D, Gerland U, Boekhoven J. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat Chem 2024; 16:1240-1249. [PMID: 39014158 PMCID: PMC11321992 DOI: 10.1038/s41557-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024]
Abstract
One of science's greatest challenges is determining how life can spontaneously emerge from a mixture of molecules. A complicating factor is that life and its molecules are inherently unstable-RNA and proteins are prone to hydrolysis and denaturation. For the de novo synthesis of life or to better understand its emergence at its origin, selection mechanisms are needed for unstable molecules. Here we present a chemically fuelled dynamic combinatorial library to model RNA oligomerization and deoligomerization and shine new light on selection and purification mechanisms under kinetic control. In the experiments, oligomers can only be sustained by continuous production. Hybridization is a powerful tool for selecting unstable molecules, offering feedback on oligomerization and deoligomerization rates. Moreover, we find that templation can be used to purify libraries of oligomers. In addition, template-assisted formation of oligomers within coacervate-based protocells changes its compartment's physical properties, such as their ability to fuse. Such reciprocal coupling between oligomer production and physical properties is a key step towards synthetic life.
Collapse
Affiliation(s)
- Christine M E Kriebisch
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Ludwig Burger
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Oleksii Zozulia
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Alexander Floroni
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Braun
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gerland
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Job Boekhoven
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Rivero DS, Pérez-Pérez Y, Perretti MD, Santos T, Scoccia J, Tejedor D, Carrillo R. Kinetic Control of Complexity in Multiple Dynamic Libraries. Angew Chem Int Ed Engl 2024; 63:e202406654. [PMID: 38660925 DOI: 10.1002/anie.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.
Collapse
Affiliation(s)
- David S Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Tanausú Santos
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Jimena Scoccia
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| |
Collapse
|
3
|
A Novel Biomimetic Network Amplification Strategy Designed Fluorescent Aptasensor Based on Yolk-Shell Fe3O4 Nanomaterials for Aflatoxin B1 Detection. Food Chem 2022; 398:133761. [DOI: 10.1016/j.foodchem.2022.133761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
|
4
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
5
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Kriebisch CME, Bergmann AM, Boekhoven J. Fuel-Driven Dynamic Combinatorial Libraries. J Am Chem Soc 2021; 143:7719-7725. [PMID: 33978418 DOI: 10.1021/jacs.1c01616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In dynamic combinatorial libraries, molecules react with each other reversibly to form intricate networks under thermodynamic control. In biological systems, chemical reaction networks operate under kinetic control by the transduction of chemical energy. We thus introduced the notion of energy transduction, via chemical reaction cycles, to a dynamic combinatorial library. In the library, monomers can be oligomerized, oligomers can be deoligomerized, and oligomers can recombine. Interestingly, we found that the dynamics of the library's components were dominated by transacylation, which is an equilibrium reaction. In contrast, the library's dynamics were dictated by fuel-driven activation, which is a nonequilibrium reaction. Finally, we found that self-assembly can play a large role in affecting the reaction's kinetics via feedback mechanisms. The interplay of the simultaneously operating reactions and feedback mechanisms can result in hysteresis effects in which the outcome of the competition for fuel depends on events that occurred in the past. In future work, we envision diversifying the library by modifying building blocks with catalytically active motifs and information-containing monomers.
Collapse
Affiliation(s)
- Christine M E Kriebisch
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Garching, Germany
| |
Collapse
|
7
|
Tsuge A, Suehara S, Takemori Y, Nakano M, Araki K. Formation of Organogel In Situ Based on a Dynamic Imine Bond. CHEM LETT 2021. [DOI: 10.1246/cl.210062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiko Tsuge
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Shunpei Suehara
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Yuki Takemori
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Masaki Nakano
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Koji Araki
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|
8
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary-Bobo M, Bettache N, Ulrich S. Cell-Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self-Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021; 60:5783-5787. [PMID: 33289957 DOI: 10.1002/anie.202014066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.
Collapse
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
9
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary‐Bobo M, Bettache N, Ulrich S. Cell‐Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self‐Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Department of Biochemistry Medical Research Institute University of Alexandria 21561 Alexandria Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Mihail Barboiu
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Magali Gary‐Bobo
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| |
Collapse
|
10
|
Holub J, Santoro A, Stadler MA, Lehn JM. Peripherally multi-functionalised metallosupramolecular grids: assembly, decoration, building blocks for dynamic covalent architectures. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01084k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sequential assembly of first terminally functionalized bishydrazone ligands followed by their coordination with Zn(ii) metal cations yields peripherally multi-functionalized [2 × 2] grid-type complexes.
Collapse
Affiliation(s)
- Jan Holub
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Antonio Santoro
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Mihail-Adrian Stadler
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
11
|
Reynolds E, Wolpert EH, Overy AR, Mizzi L, Simonov A, Grima JN, Kaskel S, Goodwin AL. Function from configurational degeneracy in disordered framework materials. Faraday Discuss 2021; 225:241-254. [PMID: 33089859 DOI: 10.1039/d0fd00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We develop the concepts of combinatorial mechanics, adaptive flexibility, and error-correcting codes as applications of disordered framework materials.
Collapse
Affiliation(s)
- Emily M. Reynolds
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford OX1 3QR
- UK
| | - Emma H. Wolpert
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford OX1 3QR
- UK
| | - Alistair R. Overy
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford OX1 3QR
- UK
| | - Luke Mizzi
- Metamaterials Unit
- Faculty of Science
- University of Malta
- Msida MSD 2080
- Malta
| | - Arkadiy Simonov
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford OX1 3QR
- UK
| | - Joseph N. Grima
- Metamaterials Unit
- Faculty of Science
- University of Malta
- Msida MSD 2080
- Malta
| | - Stefan Kaskel
- Department of Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Andrew L. Goodwin
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford OX1 3QR
- UK
| |
Collapse
|
12
|
Ren Y, Kravchenko O, Ramström O. Configurational and Constitutional Dynamics of Enamine Molecular Switches. Chemistry 2020; 26:15654-15663. [PMID: 33044767 PMCID: PMC7756271 DOI: 10.1002/chem.202003478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Dual configurational and constitutional dynamics in systems based on enamine molecular switches has been systematically studied. pH-responsive moieties, such as 2-pyridyl and 2-quinolinyl units, were required on the "stator" part, also providing enamine stability through intramolecular hydrogen-bonding (IMHB) effects. Upon protonation or deprotonation, forward and backward switching could be rapidly achieved. Extension of the stator π-system in the 2-quinolinyl derivative provided a higher E-isomeric equilibrium ratio under neutral conditions, pointing to a means to achieve quantitative forward/backward isomerization processes. The "rotor" part of the enamine switches exhibited constitutional exchange ability with primary amines. Interestingly, considerably higher exchange rates were observed with amines containing ester groups, indicating potential stabilization of the transition state through IMHB. Acids, particularly BiIII , were found to efficiently catalyze the constitutional dynamic processes. In contrast, the enamine and the formed dynamic enamine system showed excellent stability under basic conditions. This coupled configurational and constitutional dynamics expands the scope of dynamic C-C and C-N bonds and potentiates further studies and applications in the fields of molecular machinery and systems chemistry.
Collapse
Affiliation(s)
- Yansong Ren
- Department of ChemistryKTH—Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH—Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Olof Ramström
- Department of ChemistryKTH—Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA01854USA
- Department of Chemistry and Biomedical SciencesLinnaeus University39182KalmarSweden
| |
Collapse
|
13
|
Santoro A, Holub J, Fik‐Jaskółka MA, Vantomme G, Lehn J. Dynamic Helicates Self‐Assembly from Homo‐ and Heterotopic Dynamic Covalent Ligand Strands. Chemistry 2020; 26:15664-15671. [DOI: 10.1002/chem.202003496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Antonio Santoro
- Laboratoire de Chimie Supramoléculaire, ISIS Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
- Present address: Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Jan Holub
- Laboratoire de Chimie Supramoléculaire, ISIS Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
- Present address: Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Marta A. Fik‐Jaskółka
- Laboratoire de Chimie Supramoléculaire, ISIS Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
- Present address: Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Present address: Centre for Advanced Technology Adam Mickiewicz University Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Ghislaine Vantomme
- Laboratoire de Chimie Supramoléculaire, ISIS Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
- Present address: Institute for Complex Molecular Systems Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Jean‐Marie Lehn
- Laboratoire de Chimie Supramoléculaire, ISIS Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
14
|
Larsen D, Beeren SR. Tuning the Outcome of Enzyme-Mediated Dynamic Cyclodextrin Libraries to Enhance Template Effects. Chemistry 2020; 26:11032-11038. [PMID: 32445426 DOI: 10.1002/chem.202001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Indexed: 12/11/2022]
Abstract
Enzyme-mediated dynamic combinatorial chemistry combines the concept of thermodynamically controlled covalent self-assembly with the inherent biological relevance of enzymatic transformations. A system of interconverting cyclodextrins has been explored, in which the glycosidic linkage is rendered dynamic by the action of cyclodextrin glucanotransferase (CGTase). External factors, such as pH, temperature, solvent, and salinity are reported to modulate the composition of the dynamic cyclodextrin library. Dynamic libraries of cyclodextrins (CDs) could be obtained in wide ranges of pH (5.0-9.0), temperature (5-37 °C), and salinity (up to 7.5 m NaNO3 ), and with high organic solvent content (50 % by volume of ethanol), showing that enzyme-mediated dynamic systems can be robust and not limited to physiological conditions. Furthermore, it is demonstrated how strategic choice of reaction conditions can enhance template effects, in this case, to achieve highly selective production of α-CD, an otherwise challenging target due to competition from the structurally similar β-CD.
Collapse
Affiliation(s)
- Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
|
16
|
Jiao T, Wu G, Zhang Y, Shen L, Lei Y, Wang C, Fahrenbach AC, Li H. Self‐Assembly in Water with N‐Substituted Imines. Angew Chem Int Ed Engl 2020; 59:18350-18367. [DOI: 10.1002/anie.201910739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Libo Shen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | | | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
17
|
Affiliation(s)
- Iuliia Myrgorodska
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Ignacio Colomer
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Stephen P. Fletcher
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
18
|
Da Silva Rodrigues R, Marshall DL, McMurtrie JC, Mullen KM. Dynamic covalent synthesis of [2]- and [3]rotaxanes both in solution and on solid supports. NEW J CHEM 2020. [DOI: 10.1039/d0nj02137g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we demonstrate the application of a dynamic covalent chemistry methodology for the synthesis of [2]- and [3]-rotaxanes not only in solution, but also on solid supports with 65% rotaxane functionalisation of the polymer resins observed.
Collapse
Affiliation(s)
| | - David L. Marshall
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- Central Analytical Research Facility
| | - John C. McMurtrie
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - Kathleen M. Mullen
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
19
|
Solà J, Jimeno C, Alfonso I. Exploiting complexity to implement function in chemical systems. Chem Commun (Camb) 2020; 56:13273-13286. [DOI: 10.1039/d0cc04170j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article reflects a personal overview of the importance of complexity as an additional parameter to be considered in chemical research, being illustrated with selected examples in molecular recognition and catalysis.
Collapse
Affiliation(s)
- Jordi Solà
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Ciril Jimeno
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- 08034 Barcelona
- Spain
| |
Collapse
|
20
|
He M, Lehn JM. Time-Dependent Switching of Constitutional Dynamic Libraries and Networks from Kinetic to Thermodynamic Distributions. J Am Chem Soc 2019; 141:18560-18569. [DOI: 10.1021/jacs.9b09395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Meixia He
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
21
|
Zentner CA, Anson F, Thayumanavan S, Swager TM. Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. J Am Chem Soc 2019; 141:18048-18055. [PMID: 31674769 DOI: 10.1021/jacs.9b06852] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interfacial chemistry provides an opportunity to control dynamic materials. By harnessing the dynamic covalent nature of imine bonds, emulsions are generated in situ, predictably manipulated, and ultimately destroyed along liquid-liquid and emulsion-solid interfaces through simple perturbation of the imine equilibria. We report the rapid production of surfactants and double emulsions through spontaneous in situ imine formation at the liquid-liquid interface of oil/water. Complex double emulsions with imine surfactants are stable to neutral and basic conditions and display dynamic behavior with acid-catalyzed hydrolysis and imine exchange. We demonstrate the potential of in situ imine surfactant formation to generate complex surfactants with biomolecules (i.e., antibodies) for biosensing applications. Furthermore, imine formation at the emulsion-solid interface offers a triggered payload release mechanism. Our results illustrate how simple, dynamic interfacial imine formation can translate changes in bonding to macroscopic outputs.
Collapse
Affiliation(s)
- Cassandra A Zentner
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Francesca Anson
- Department of Chemistry , University of Massachusetts - Amherst , Amherst , Massachusetts 01003 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts - Amherst , Amherst , Massachusetts 01003 , United States
| | - Timothy M Swager
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
22
|
Martinez-Amezaga M, Orrillo AG, Furlan RLE. Engineering multilayer chemical networks. Chem Sci 2019; 10:8338-8347. [PMID: 31803411 PMCID: PMC6844274 DOI: 10.1039/c9sc02166c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dynamic multilevel systems emerged in the last few years as new platforms to study thermodynamic systems. In this work, unprecedented fully communicated three-level systems are studied. First, different conditions were screened to selectively activate thiol/dithioacetal, thiol/thioester, and thiol/disulfide exchanges, individually or in pairs. Some of those conditions were applied, sequentially, to build multilayer dynamic systems wherein information, in the form of relative amounts of building blocks, can be directionally transmitted between different exchange pools. As far as we know, this is the first report of one synthetic dynamic chemical system where relationships between layers can be changed through network operations.
Collapse
Affiliation(s)
- Maitena Martinez-Amezaga
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - A Gastón Orrillo
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - Ricardo L E Furlan
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| |
Collapse
|
23
|
Osypenko A, Dhers S, Lehn JM. Pattern Generation and Information Transfer through a Liquid/Liquid Interface in 3D Constitutional Dynamic Networks of Imine Ligands in Response to Metal Cation Effectors. J Am Chem Soc 2019; 141:12724-12737. [DOI: 10.1021/jacs.9b05438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
24
|
Kosikova T, Philp D. Two Synthetic Replicators Compete To Process a Dynamic Reagent Pool. J Am Chem Soc 2019; 141:3059-3072. [PMID: 30668914 DOI: 10.1021/jacs.8b12077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complementary building blocks, comprising a set of four aromatic aldehydes and a set of four nucleophiles-three anilines and one hydroxylamine-combine through condensation reactions to afford a dynamic covalent library (DCL) consisting of the eight starting materials and 16 condensation products. One of the aldehydes and, consequently, all of the DCL members derived from this compound bear an amidopyridine recognition site. Exposure of this DCL to two maleimides, Mp and Mm, each equipped with a carboxylic acid recognition site, results in the formation of a series of products through irreversible 1,3-dipolar cycloaddition reactions with the four nitrones present in the DCL. However, only the two cycloadducts in the product pool that incorporate both recognition sites, Tp and Tm, are self-replicators that can harness the DCL as feedstock for their own formation, facilitating their own synthesis via autocatalytic and cross-catalytic pathways. The ability of these replicators to direct their own formation from the components present in the dynamic reagent pool in response to the input of instructions in the form of preformed replicators is demonstrated through a series of quantitative 19F{1H} NMR spectroscopy experiments. Simulations establish the critical relationships between the kinetic and thermodynamic parameters of the replicators, the initial reagent concentrations, and the presence or absence of the DCL and their influence on the competition between Tp and Tm. Thus, we establish the rules that govern the behavior of the competing replicators under conditions where their formation is coupled tightly to the processing of a DCL.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , KY16 9ST Fife , United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , KY16 9ST Fife , United Kingdom
| |
Collapse
|
25
|
Ayme JF, Beves JE, Campbell CJ, Leigh DA. Probing the Dynamics of the Imine-Based Pentafoil Knot and Pentameric Circular Helicate Assembly. J Am Chem Soc 2019; 141:3605-3612. [PMID: 30707020 PMCID: PMC6429429 DOI: 10.1021/jacs.8b12800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We investigate the self-assembly
dynamics of an imine-based pentafoil
knot and related pentameric circular helicates, each derived from
a common bis(formylpyridine)bipyridyl building block, iron(II) chloride,
and either monoamines or a diamine. The mixing of circular helicates
derived from different amines led to the complete exchange of the N-alkyl residues on the periphery of the metallo-supramolecular
scaffolds over 4 days in DMSO at 60 °C. Under similar conditions,
deuterium-labeled and nonlabeled building blocks showed full dialdehyde
building block exchange over 13 days for open circular helicates but
was much slower for the analogous closed-loop pentafoil knot (>60
days). Although both knots and open circular helicates self-assemble
under thermodynamic control given sufficiently long reaction times,
this is significantly longer than the time taken to afford the maximum
product yield (2 days). Highly effective error correction occurs during
the synthesis of imine-based pentafoil molecular knots and pentameric
circular helicates despite, in practice, the systems not operating
under full thermodynamic control.
Collapse
Affiliation(s)
- Jean-François Ayme
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom.,School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - Jonathon E Beves
- School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - Christopher J Campbell
- School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| | - David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom.,School of Chemistry , University of Edinburgh , The King's Buildings, West Mains Road , Edinburgh EH9 3JJ , United Kingdom
| |
Collapse
|
26
|
Men G, Lehn JM. Multiple adaptation of constitutional dynamic networks and information storage in constitutional distributions of acylhydrazones. Chem Sci 2019; 10:90-98. [PMID: 30713621 PMCID: PMC6333171 DOI: 10.1039/c8sc03858a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
We report a study of the behavior of four dynamic covalent libraries (DCLs) based on acylhydrazones aAbB and of the corresponding square constitutional dynamic networks (CDNs) NA-ND under the effect of three agents, namely, metal cations, base + metal cations and light irradiation; in particular, the successful switching of the CDN NB between two orthogonal distributions results, respectively, from metallo-selection and photo-selection. The four DCLs undergo triple adaptation when subjected to the three agents with the generation of specific CDN distributions characteristic of each of the four DCLs. The ternary outputs displayed by the DCLs present three states (-1, 0 and 1) related to three different constitutional distributions expressed in response to the triple inputs applied. This latter process amounts to the storage of molecular information in dynamic distributions rather than in selective interactions between complementary entities undergoing molecular recognition.
Collapse
Affiliation(s)
- Guangwen Men
- Laboratoire de Chimie Supramoléculaire , Institut de Science et d'Ingénierie Supramoléculaires , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France . ; ; Tel: +33 3 68 85 51 44
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , 2699 Qianjin Avenue , Changchun , 130012 , P. R. China
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire , Institut de Science et d'Ingénierie Supramoléculaires , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France . ; ; Tel: +33 3 68 85 51 44
| |
Collapse
|
27
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
28
|
Zhou Z, Liu X, Yue L, Willner I. Controlling the Catalytic and Optical Properties of Aggregated Nanoparticles or Semiconductor Quantum Dots Using DNA-Based Constitutional Dynamic Networks. ACS NANO 2018; 12:10725-10735. [PMID: 30256615 DOI: 10.1021/acsnano.8b05452] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nucleic acid-based constitutional dynamic networks (CDNs) attract growing interest as a means to mimic complex biological networks. The triggered stabilization of the CDNs allows the dictated guided reversible reconfiguration and re-equilibration of the CDNs to other CDN configurations, where some of the constituents are up-regulated, while other constituents are down-regulated. Although substantial progress in controlling the adaptive dynamic control of the compositions of networks by means of auxiliary triggers was demonstrated, the use of CDNs as active ensembles for controlling chemical functionalities is still a challenge. We report on the assembly of signal-triggered CDN systems that guide the switchable aggregation of Au nanoparticles (NPs), thereby controlling their plasmonic properties and their catalytic functions (Au NPs-catalyzed oxidation of l-DOPA to dopachrome). In addition, we demonstrate that the triggered and orthogonal up-regulation and down-regulation of the constituents of the CDNs leads to the dictated aggregation of different-sized CdSe/ZnS quantum dots (QDs), cross-linked by K+-ion-stabilized G-quadruplex units. The incorporation of hemin into the G-quadruplex cross-linking units yields horseradish peroxidase-mimicking DNAzyme units that catalyze the generation of chemiluminescence via the oxidation of luminol by H2O2. The resulting chemiluminescence stimulates the chemiluminescence resonance energy transfer (CRET) process to the QDs, resulting in the luminescence of the two-sized QDs. By the application of appropriate triggers, the CDN-dictated up-regulation and down-regulation of the different-sized QDs aggregates are demonstrated, and the control over the photophysical functions of the different-sized QDs, by means of the CDNs, is highlighted.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Xia Liu
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Liang Yue
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
29
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
30
|
Zhou Z, Yue L, Wang S, Lehn JM, Willner I. DNA-Based Multiconstituent Dynamic Networks: Hierarchical Adaptive Control over the Composition and Cooperative Catalytic Functions of the Systems. J Am Chem Soc 2018; 140:12077-12089. [DOI: 10.1021/jacs.8b06546] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), University of Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
31
|
Kovaříček P, Cebecauer M, Neburková J, Bartoň J, Fridrichová M, Drogowska KA, Cigler P, Lehn JM, Kalbac M. Proton-Gradient-Driven Oriented Motion of Nanodiamonds Grafted to Graphene by Dynamic Covalent Bonds. ACS NANO 2018; 12:7141-7147. [PMID: 29889492 DOI: 10.1021/acsnano.8b03015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manipulating nanoscopic objects by external stimuli is the cornerstone of nanoscience. Here, we report the implementation of dynamic covalent chemistry in the reversible binding and directional motion of fluorescent nanodiamond particles at a functionalized graphene surface via imine linkages. The dynamic connections allow for controlling the formation and rupture of these linkages by external stimuli. By introduction of pH gradients, the nanoparticles are driven to move along the gradient due to the different rates of the imine condensation and hydrolysis in the two environments. The multivalent nature of the particle-to-surface connection ensures that particles remain attached to the surface, whereas its dynamic character allows for exchange reaction, thus leading to displacement yet bound behavior in two-dimensional space. These results open a pathway for thermodynamically controlled manipulation of objects on the nanoscale.
Collapse
Affiliation(s)
- Petr Kovaříček
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Marek Cebecauer
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Jitka Neburková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Prague , Czech Republic
- First Faculty of Medicine , Charles University , Kateřinská 32 , 121 08 Prague , Czech Republic
| | - Jan Bartoň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Prague , Czech Republic
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2, Czech Republic
| | - Michaela Fridrichová
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Karolina A Drogowska
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Prague , Czech Republic
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires , Université de Strasbourg , 8 allée Gaspard Monge , 670 00 Strasbourg , France
| | - Martin Kalbac
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| |
Collapse
|
32
|
Yue L, Wang S, Lilienthal S, Wulf V, Remacle F, Levine RD, Willner I. Intercommunication of DNA-Based Constitutional Dynamic Networks. J Am Chem Soc 2018; 140:8721-8731. [DOI: 10.1021/jacs.8b03450] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Yue
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Lilienthal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Verena Wulf
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Françoise Remacle
- Department of Chemistry, University of Liege, B6c, 4000 Liege, Belgium
| | - R. D. Levine
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
34
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018; 57:6256-6260. [DOI: 10.1002/anie.201802994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
35
|
Gu R, Flidrova K, Lehn JM. Dynamic Covalent Metathesis in the C═C/C═N Exchange between Knoevenagel Compounds and Imines. J Am Chem Soc 2018; 140:5560-5568. [DOI: 10.1021/jacs.8b01849] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruirui Gu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Karolina Flidrova
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
36
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
37
|
Affiliation(s)
- Jean-Marie Lehn
- University of Strasbourg Institute of Advanced Study (USIAS) ISIS; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
38
|
|
39
|
Taran O, Chen C, Omosun TO, Hsieh MC, Rha A, Goodwin JT, Mehta AK, Grover MA, Lynn DG. Expanding the informational chemistries of life: peptide/RNA networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0356. [PMID: 29133453 DOI: 10.1098/rsta.2016.0356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Olga Taran
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Chenrui Chen
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Tolulope O Omosun
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ming-Chien Hsieh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Allisandra Rha
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jay T Goodwin
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anil K Mehta
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Martha A Grover
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David G Lynn
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
40
|
Drożdż W, Bouillon C, Kotras C, Richeter S, Barboiu M, Clément S, Stefankiewicz AR, Ulrich S. Generation of Multicomponent Molecular Cages using Simultaneous Dynamic Covalent Reactions. Chemistry 2017; 23:18010-18018. [DOI: 10.1002/chem.201703868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c, 6 1-614 Poznań Poland
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier cedex 5 France
| | - Clément Kotras
- Institut Charles Gerhardt (ICGM), UMR 5253; Université de Montpellier, CNRS, ENSCM; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Sébastien Richeter
- Institut Charles Gerhardt (ICGM), UMR 5253; Université de Montpellier, CNRS, ENSCM; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Mihail Barboiu
- Institut Européen des Membranes (IEM), UMR 5635; Université de Montpellier, ENSCM, CNRS, Adaptive Supramolecular Nanosystems Group; Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Sébastien Clément
- Institut Charles Gerhardt (ICGM), UMR 5253; Université de Montpellier, CNRS, ENSCM; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Artur R. Stefankiewicz
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c, 6 1-614 Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier cedex 5 France
| |
Collapse
|
41
|
Zimbron JM, Caumes X, Li Y, Thomas CM, Raynal M, Bouteiller L. Real-Time Control of the Enantioselectivity of a Supramolecular Catalyst Allows Selecting the Configuration of Consecutively Formed Stereogenic Centers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy M. Zimbron
- Chimie ParisTech, PSL Research University, CNRS; Institut de Recherche de Chimie Paris; 75005 Paris France
| | - Xavier Caumes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| | - Yan Li
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| | - Christophe M. Thomas
- Chimie ParisTech, PSL Research University, CNRS; Institut de Recherche de Chimie Paris; 75005 Paris France
| | - Matthieu Raynal
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| |
Collapse
|
42
|
Zimbron JM, Caumes X, Li Y, Thomas CM, Raynal M, Bouteiller L. Real-Time Control of the Enantioselectivity of a Supramolecular Catalyst Allows Selecting the Configuration of Consecutively Formed Stereogenic Centers. Angew Chem Int Ed Engl 2017; 56:14016-14019. [DOI: 10.1002/anie.201706757] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/28/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Jeremy M. Zimbron
- Chimie ParisTech, PSL Research University, CNRS; Institut de Recherche de Chimie Paris; 75005 Paris France
| | - Xavier Caumes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| | - Yan Li
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| | - Christophe M. Thomas
- Chimie ParisTech, PSL Research University, CNRS; Institut de Recherche de Chimie Paris; 75005 Paris France
| | - Matthieu Raynal
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Universités, UPMC Univ Paris 06, CNRS; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères; 4 Place Jussieu 75005 Paris France
| |
Collapse
|
43
|
Cvrtila I, Fanlo-Virgós H, Schaeffer G, Monreal Santiago G, Otto S. Redox Control over Acyl Hydrazone Photoswitches. J Am Chem Soc 2017; 139:12459-12465. [PMID: 28749147 PMCID: PMC5599877 DOI: 10.1021/jacs.7b03724] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 11/28/2022]
Abstract
Photoisomerization provides a clean and efficient way of reversibly altering physical properties of chemical systems and injecting energy into them. These effects have been applied in development of systems such as photoresponsive materials, molecular motors, and photoactivated drugs. Typically, switching from more to less stable isomer(s) is performed by irradiation with UV or visible light, while the reverse process proceeds thermally or by irradiation using another wavelength. In this work we developed a method of rapid and tunable Z→E isomerization of C═N bond in acyl hydrazones, using aromatic thiols as nucleophilic catalysts. As thiols can be oxidized into catalytically inactive disulfides, the isomerization rates can be controlled via the oxidation state of the catalyst, which, together with the UV irradiation, provides orthogonal means to control the E/Z state of the system. As a proof of this concept, we have applied this method to control the diversity of acyl hydrazone based dynamic combinatorial libraries.
Collapse
Affiliation(s)
- Ivica Cvrtila
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hugo Fanlo-Virgós
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
44
|
Chang X, Wang Z, Qi Y, Kang R, Cui X, Shang C, Liu K, Fang Y. Dynamic Chemistry-Based Sensing: A Molecular System for Detection of Saccharide, Formaldehyde, and the Silver Ion. Anal Chem 2017; 89:9360-9367. [DOI: 10.1021/acs.analchem.7b02170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xingmao Chang
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Zhaolong Wang
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yanyu Qi
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Rui Kang
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Xinwen Cui
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Congdi Shang
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Kaiqiang Liu
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yu Fang
- Key
Laboratory of Applied Surface and Colloid Chemistry (Ministry
of Education), ‡School of Materials Science and Engineering, §School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
45
|
Brégier F, Hudeček O, Chaux F, Penouilh MJ, Chambron JC, Lhoták P, Aubert E, Espinosa E. Generation of Cryptophanes in Water by Disulfide Bridge Formation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Oldřích Hudeček
- ICMUB, UMR6302, CNRS; Univ. Bourgogne Franche-Comté; 21000 Dijon France
- Department of Organic Chemistry; University of Chemistry and Technology Prague; Technicka 6 16628 Prague 6 Czech Republic
| | - Fanny Chaux
- ICMUB, UMR6302, CNRS; Univ. Bourgogne Franche-Comté; 21000 Dijon France
| | | | | | - Pavel Lhoták
- Department of Organic Chemistry; University of Chemistry and Technology Prague; Technicka 6 16628 Prague 6 Czech Republic
| | - Emmanuel Aubert
- CRM2, UMR7036, CNRS; Univ. Lorraine; 54506 Vandœuvre-lès-Nancy France
| | - Enrique Espinosa
- CRM2, UMR7036, CNRS; Univ. Lorraine; 54506 Vandœuvre-lès-Nancy France
| |
Collapse
|
46
|
Valdivielso AM, Puig-Castellví F, Atcher J, Solà J, Tauler R, Alfonso I. Unraveling the Multistimuli Responses of a Complex Dynamic System of Pseudopeptidic Macrocycles. Chemistry 2017; 23:10789-10799. [DOI: 10.1002/chem.201701294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Angel M. Valdivielso
- Department of Biological Chemistry and Molecular Modeling; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | | | - Joan Atcher
- Department of Biological Chemistry and Molecular Modeling; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Solà
- Department of Biological Chemistry and Molecular Modeling; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Romà Tauler
- Department of Environmental Chemistry; IDAEA-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modeling; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
47
|
Matysiak BM, Nowak P, Cvrtila I, Pappas CG, Liu B, Komáromy D, Otto S. Antiparallel Dynamic Covalent Chemistries. J Am Chem Soc 2017; 139:6744-6751. [PMID: 28440073 PMCID: PMC5438195 DOI: 10.1021/jacs.7b02575] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.
Collapse
Affiliation(s)
- Bartosz M Matysiak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Nowak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivica Cvrtila
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Charalampos G Pappas
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bin Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dávid Komáromy
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
48
|
Ruiz de la Oliva A, Sans V, Miras HN, Long DL, Cronin L. Coding the Assembly of Polyoxotungstates with a Programmable Reaction System. Inorg Chem 2017; 56:5089-5095. [PMID: 28414229 PMCID: PMC5423703 DOI: 10.1021/acs.inorgchem.7b00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 12/02/2022]
Abstract
Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W11O38} ≡ {W11} under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W12O42} ≡ {W12}, {W22O74} ≡ {W22} 1a, {W34O116} ≡ {W34} 2a, and {W36O120} ≡ {W36} 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W11}-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to nonspecialists.
Collapse
Affiliation(s)
| | - Victor Sans
- WestCHEM, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - Haralampos N. Miras
- WestCHEM, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - De-Liang Long
- WestCHEM, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - Leroy Cronin
- WestCHEM, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| |
Collapse
|
49
|
Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Men G, Lehn JM. Higher Order Constitutional Dynamic Networks: [2×3] and [3×3] Networks Displaying Multiple, Synergistic and Competitive Hierarchical Adaptation. J Am Chem Soc 2017; 139:2474-2483. [DOI: 10.1021/jacs.6b13072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guangwen Men
- Laboratoire
de Chimie Supramoléculaire, Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
- State
Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China
| | - Jean-Marie Lehn
- Laboratoire
de Chimie Supramoléculaire, Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|