1
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
2
|
Mittal R, Gupta N. Towards Green Synthesis of Fluorescent Metal Nanoclusters. J Fluoresc 2023; 33:2161-2180. [PMID: 37103674 DOI: 10.1007/s10895-023-03229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
In the modern development of nanoscience and nanotechnology, metal nanoclusters have emerged as a foremost category of nanomaterials exhibiting remarkable biocompatibility and photo-stability having dramatically distinctive optical, electronic, and chemical properties. This review focuses on synthesizing fluorescent metal nanoclusters in a greener way to make them suitable for biological imaging and drug delivery application. The green methodology is the desired route for sustainable chemical production and should be utilized for any form of chemical synthesis including nanomaterials. It aims to eliminate harmful waste, uses non-toxic solvents, and employs energy-efficient processes for the synthesis. This article provides an overview of conventional synthesis methods, including stabilizing nanoclusters by small organic molecules in organic solvents. Then we focus on the improvement of properties, applications of green synthesized metal nanoclusters, challenges involved, and further advancement required in the direction of green synthesis of MNCs. There are plenty of problems for scientists to solve to make nanoclusters suitable for bio-applications, chemical sensing, and catalysis synthesized by green methods. Using bio-compatible and electron-rich ligands, understanding ligand-metal interfacial interactions, employing more energy-efficient processes, and utilizing bio-inspired templates for synthesis are some immediate problems worth solving in this field that requires continued efforts and interdisciplinary knowledge and collaboration.
Collapse
Affiliation(s)
- Ritika Mittal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Nancy Gupta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
| |
Collapse
|
3
|
Mastracco P, Copp SM. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10360-10375. [PMID: 37575075 DOI: 10.1039/d3cc02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-encoded biomolecules such as DNA and peptides are powerful programmable building blocks for nanomaterials. This paradigm is enabled by decades of prior research into how nucleic acid and amino acid sequences dictate biomolecular interactions. The properties of biomolecular materials can be significantly expanded with non-natural interactions, including metal ion coordination of nucleic acids and amino acids. However, these approaches present design challenges because it is often not well-understood how biomolecular sequence dictates such non-natural interactions. This Feature Article presents a case study in overcoming challenges in biomolecular materials with emerging approaches in data mining and machine learning for chemical design. We review progress in this area for a specific class of DNA-templated metal nanomaterials with complex sequence-to-property relationships: DNA-stabilized silver nanoclusters (AgN-DNAs) with bright, sequence-tuned fluorescence colors and promise for biophotonics applications. A brief overview of machine learning concepts is presented, and high-throughput experimental synthesis and characterization of AgN-DNAs are discussed. Then, recent progress in machine learning-guided design of DNA sequences that select for specific AgN-DNA fluorescence properties is reviewed. We conclude with emerging opportunities in machine learning-guided design and discovery of AgN-DNAs and other sequence-encoded biomolecular nanomaterials.
Collapse
Affiliation(s)
- Peter Mastracco
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
4
|
Fredrick D, Yourston L, Krasnoslobodtsev AV. Detection of cancer-associated miRNA using a fluorescence switch of AgNC@NA and guanine-rich overhang sequences. LUMINESCENCE 2023; 38:1385-1392. [PMID: 36843363 DOI: 10.1002/bio.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
DNA-templated silver nanoclusters (AgNC@DNA) are a novel type of nanomaterial with advantageous optical properties. Only a few atoms in size, the fluorescence of nanoclusters can be tuned using DNA overhangs. In this study, we explored the properties of AgNCs manufactured on a short single-stranded (dC)12 when adjacent G-rich sequences (dGN , with N = 3-15) were added. The 'red' emission of AgNC@dC12 with λMAX = 660 nm dramatically changed upon the addition of a G-rich overhang with NG = 15. The pattern of the emission-excitation matrix (EEM) suggested the emergence of two new emissive states at λMAX = 575 nm and λMAX = 710 nm. The appearance of these peaks provides an effective way to design biosensors capable of detecting specific nucleic acid sequences with low fluorescence backgrounds. We used this property to construct an NA-based switch that brings AgNC and the G overhang near one another, turning 'ON' the new fluorescence peaks only when a specific miRNA sequence is present. Next, we tested this detection switch on miR-371, which is overexpressed in prostate cancer. The results presented provide evidence that this novel fluorescent switch is both sensitive and specific with a limit of detection close to 22 picomoles of the target miR-371 molecule.
Collapse
Affiliation(s)
- Dylan Fredrick
- Department of Physics, University of Nebraska Omaha, 6001 Dodge Street, Omaha, Nebraska, USA
| | - Liam Yourston
- Department of Physics, University of Nebraska Omaha, 6001 Dodge Street, Omaha, Nebraska, USA
| | | |
Collapse
|
5
|
Lewis D, Setzler C, Goodwin PM, Thomas K, Branham M, Arrington CA, Petty JT. Interrupted DNA and Slow Silver Cluster Luminescence. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10574-10584. [PMID: 37313118 PMCID: PMC10258842 DOI: 10.1021/acs.jpcc.3c01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/15/2023]
Abstract
A DNA-silver cluster conjugate is a hierarchical chromophore with a partly reduced silver core embedded within the DNA nucleobases that are covalently linked by the phosphodiester backbone. Specific sites within a polymeric DNA can be targeted to spectrally tune the silver cluster. Here, the repeated (C2A)6 strand is interrupted with a thymine, and the resulting (C2A)2-T-(C2A)4 forms only Ag106+, a chromophore with both prompt (∼1 ns) green and sustained (∼102 μs) red luminescence. Thymine is an inert placeholder that can be removed, and the two fragments (C2A)2 and (C2A)4 also produce the same Ag106+ adduct. In relation to (C2A)2T(C2A)4, the (C2A)2 + (C2A)4 pair is distinguished because the red Ag106+ luminescence is ∼6× lower, relaxes ∼30% faster, and is quenched ∼2× faster with O2. These differences suggest that a specific break in the phosphodiester backbone can regulate how a contiguous vs broken scaffold wraps and better protects its cluster adduct.
Collapse
Affiliation(s)
- David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Peter M. Goodwin
- Center
for Integrated Nanotechnologies, Mail Stop K771, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kirsten Thomas
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Makayla Branham
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
6
|
Yan C, Mu L, Mei M, Wang Y, She G, Shi W. Fluorescence Enhancement Method for Aptamer-Templated Silver Nanoclusters and Its Application in the Construction of a β-Amyloid Oligomer Sensor. Anal Chem 2023; 95:6915-6922. [PMID: 37079771 DOI: 10.1021/acs.analchem.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) have attracted significant attention due to their unique fluorescence properties. However, so far, the relatively low quantum yields of the DNA-AgNCs and the complex design of DNA-AgNC-based sensors have limited their application in biosensing or bioimaging. Herein, we report a novel fluorescence enhancement method. The β-Amyloid Oligomer (AβO) aptamer (AptAβO) with A10/T10 at its 3' end can be directly used as the template to fabricate the AgNCs. When the AgNCs were hybridized with the complementary strand that has 12 bases suspended at its 3' terminal, being the same or complementary to the A/T at the 3' end of the AptAβO, and two-base mismatches in the complementary region of the aptamer excluded A10/T10, a dramatic fluorescence enhancement (maximum: ∼500-fold; maximum quantum yield: 31.5%) can be realized. The fluorescence enhancement should result from the aggregation-induced emission of the AgNCs, which can be attributed to forming the reticular structure of the hybridized product. To some extent, the method developed in this work is extendable. The fluorescence enhancement was also realized from the thrombin aptamer-templated AgNCs through designing the aptamer and the corresponding complementary strand according to the method. Based on the fluorescence enhancement of the AptAβO-templated AgNCs, an "on-off" fluorescence sensor was constructed for the sensitive and selective detection of AβO. This work provides a rational strategy to realize fluorescence enhancement for the aptamer-templated AgNCs and design an aptamer-based fluorescence sensor.
Collapse
Affiliation(s)
- Chenyuan Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingliang Mei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Palai BB, Panda SS, Sharma NK. Synthesis of Aminotroponyl-/Difluoroboronyl Aminotroponyl Deoxyuridine Phosphoramidites. Curr Protoc 2022; 2:e609. [PMID: 36541868 DOI: 10.1002/cpz1.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This report describes the chemical synthesis of aminotroponyl-conjugated deoxyuridine analog (at-dU) and its difluoroboron complex (dfbat-dU) and their phosphoramidites by using the versatile phosphorylating reagent 2-Cyanoethyl N,N-diisopropylchlorophosphoramidite. Tropolone is a non-benzenoid aromatic bioactive natural fluorescent molecule, possessing intramolecular charge transfer and metal chelating properties with transition metal ions such as Cu2+/ Zn2+/ Ni2+ . Its synthetic derivatives, 2-aminotropones also exhibit unique bioactivities and are considered potential therapeutic drug candidate. Recently, the fluorescence properties of aminotropone has improved by complexing with difluoroboron residue that generates aminotroponyl-BODIPY analog. These could be employed for the synthesis of at-dU/dfbat-dU containing DNA oligonucleotides for designing the 11 B/19 F-NMR/fluorescence-based DNA probes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of N-propargyl-2-aminotropone (2) and difluoroboronyl N-propargyl-2-aminotropone (3) molecules. Basic Protocol 2: Synthesis of N-propargyl-2-aminotroponyl deoxyuridinyl (at-dU) phosphoramidites (7). Basic Protocol 3: Synthesis of difluoroboronyl N-propargyl-2-aminotroponyl deoxyuridinyl (dfbat-dU) phosphoramidites (10).
Collapse
Affiliation(s)
- Bibhuti Bhusana Palai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Subhashree S Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| |
Collapse
|
8
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
10
|
Theoretical studies on the electronic and optoelectronic properties of DNA/RNA hybrid-metal complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Jabed MA, Dandu N, Tretiak S, Kilina S. Passivating Nucleobases Bring Charge Transfer Character to Optically Active Transitions in Small Silver Nanoclusters. J Phys Chem A 2020; 124:8931-8942. [PMID: 33079551 DOI: 10.1021/acs.jpca.0c06974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-wrapped silver nanoclusters (DNA-AgNCs) are known for their efficient luminescence. However, their emission is highly sensitive to the DNA sequence, the cluster size, and its charge state. To get better insights into photophysics of these hybrid systems, simulations based on density functional theory (DFT) are performed. Our calculations elucidate the effect of the structural conformations, charges, solvent polarity, and passivating bases on optical spectra of DNA-AgNCs containing five and six Ag atoms. It is found that inclusion of water in calculations as a polar solvent media results in stabilization of nonplanar conformations of base-passivated clusters, while their planar conformations are more stable in vacuum, similar to the bare Ag5 and Ag6 clusters. Cytosines and guanines interact with the cluster twice stronger than thymines, due to their larger dipole moments. In addition to the base-cluster interactions, hydrogen bonds between bases notably contribute to the structure stabilization. While the relative intensity, line width, and the energy of absorption peaks are slightly changing depending on the cluster charge, conformations, and base types, the overall spectral shape with five well-resolved bands at 2.5-5.5 eV is consistent for all structures. Independent of the passivating bases and the cluster size and charge, the low energy optical transitions at 2.5-3.5 eV exhibit a metal to ligand charge transfer (MLCT) character with the main contribution emerging from Ag-core to the bases. Cytosines facilitate the MLCT character to a larger degree comparing to the other bases. However, the doublet transitions in clusters with the open shell electronic structure (Ag5 and Ag6+) result in appearance of additional red-shifted (<2.5 eV) and optically weak band with negligible MLCT character. The passivated clusters with the closed shell electronic structure (Ag5+ and Ag6) exhibit higher optical intensity of their lowest transitions with much higher MLCT contribution, thus having better potential for emission, than their open shell counterparts.
Collapse
Affiliation(s)
- Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Naveen Dandu
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, Center for Integrated Nanotechnologies, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
12
|
Yourston L, Rolband L, West C, Lushnikov A, Afonin KA, Krasnoslobodtsev AV. Tuning properties of silver nanoclusters with RNA nanoring assemblies. NANOSCALE 2020; 12:16189-16200. [PMID: 32705105 DOI: 10.1039/d0nr03589k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Combining atomically resolved DNA-templated silver nanoclusters (AgNCs) with nucleic acid nanotechnology opens new exciting possibilities for engineering bioinorganic nanomaterials with uniquely tunable properties. In this unforeseen cooperation, nucleic acids not only drive the formation of AgNCs but also promote their spatial organization in supra-assemblies. In this work, we confirm the feasibility of this approach using programmable RNA rings to control formation and optical properteis of six individual AgNCs. "Red" (λEXC/λEM = 565/623 nm) and "green" (λEXC/λEM = 440/523 nm) emitting AgNCs are templated on cytosine-rich DNA fragments embedded into the RNA rings. Optical properties of the AgNCs formed on the RNA rings are characterized in detail. While all "red" species passively transition to "green" emitters with time, the initial fluorescent properties and relative stabilities of "red" AgNCs can be regulated by altering the relative orientation of AgNCs within the RNA rings. As such, the oxidative stability increases dramatically for AgNC positioned towards the center of the RNA rings rather than facing outward. Overall, our findings expand the existing AgNC fluorescent toolkit while uncovering the complexity of the AgNC electronic structures with the abundance of possibilities for controlling de-excitation processes.
Collapse
Affiliation(s)
- Liam Yourston
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Lewis Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Caroline West
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Alexander Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Alexey V Krasnoslobodtsev
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA. and Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Shah P, Nagda R, Jung IL, Bhang YJ, Jeon SW, Lee CS, Do C, Nam K, Kim YM, Park S, Roh YH, Thulstrup PW, Bjerrum MJ, Kim TH, Yang SW. Noncanonical Head-to-Head Hairpin DNA Dimerization Is Essential for the Synthesis of Orange Emissive Silver Nanoclusters. ACS NANO 2020; 14:8697-8706. [PMID: 32525298 DOI: 10.1021/acsnano.0c03095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA secondary structures, such as dimers and hairpins, are important for the synthesis of DNA template-embedded silver nanoclusters (DNA/AgNCs). However, the arrangement of AgNCs within a given DNA template and how the AgNC influences the secondary structure of the DNA template are still unclear. Here, we introduce a noncanonical head-to-head hairpin DNA nanostructure that is driven by orange-emissive AgNCs. Through detailed in-gel analysis, sugar backbone switching, inductively coupled plasma mass spectrometry, small-angle X-ray scattering, and small angle neutron scattering, we show that the orange-emissive AgNCs mediate cytosine-Ag-cytosine bridging between two six-cytosine loop (6C-loop) hairpin DNA templates. Unlike green, red, or far-red emissive AgNCs, which are embedded inside a hairpin and duplex DNA template, the orange-emissive AgNCs are localized on the interface between the two 6C-loop hairpin DNA templates, thereby linking them. Moreover, we found that deoxyribose in the backbone of the 6C-loop at the third and fourth cytosines is crucial for the formation of the orange-emissive AgNCs and the head-to-head hairpin DNA structure. Taken together, we suggest that the specific wavelength of AgNCs fluorescence is determined by the mutual interaction between the secondary or tertiary structures of DNA- and AgNC-mediated intermolecular DNA cross-linking.
Collapse
Affiliation(s)
- Pratik Shah
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Yong Joo Bhang
- Seoulin Bioscience Co. Ltd., 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Sang-Woo Jeon
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Chang Seop Lee
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Changwoo Do
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 2000, Denmark
| |
Collapse
|
14
|
Yourston LE, Krasnoslobodtsev AV. Micro RNA Sensing with Green Emitting Silver Nanoclusters. Molecules 2020; 25:E3026. [PMID: 32630693 PMCID: PMC7411700 DOI: 10.3390/molecules25133026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Micro RNA (miR) are regulatory non-coding RNA molecules, which contain a small number of nucleotides ~18-28 nt. There are many various miR sequences found in plants and animals that perform important functions in developmental, metabolic, and disease processes. miRs can bind to complementary sequences within mRNA molecules thus silencing mRNA. Other functions include cardiovascular and neural development, stem cell differentiation, apoptosis, and tumors. In tumors, some miRs can function as oncogenes, others as tumor suppressors. Levels of certain miR molecules reflect cellular events, both normal and pathological. Therefore, miR molecules can be used as biomarkers for disease diagnosis and prognosis. One of these promising molecules is miR-21, which can serve as a biomarker with high potential for early diagnosis of various types of cancer. Here, we present a novel design of miR detection and demonstrate its efficacy on miR-21. The design employs emissive properties of DNA-silver nanoclusters (DNA/AgNC). The detection probe is designed as a hairpin DNA structure with one side of the stem complimentary to miR molecule. The binding of target miR-21 opens the hairpin structure, dramatically modulating emissive properties of AgNC hosted by the C12 loop of the hairpin. "Red" fluorescence of the DNA/AgNC probe is diminished in the presence of the target miR. At the same time, "green" fluorescence is activated and its intensity increases several-fold. The increase in intensity of "green" fluorescence is strong enough to detect the presence of miR-21. The intensity change follows the concentration dependence of the target miR present in a sample, which provides the basis of developing a new, simple probe for miR detection. The detection strategy is specific, as demonstrated using the response of the DNA/AgNC probe towards the scrambled miR-21 sequence and miR-25 molecule. Additionally, the design reported here is very sensitive with an estimated detection limit at ~1 picomole of miR-21.
Collapse
|
15
|
Song C, Xu J, Chen Y, Zhang L, Lu Y, Qing Z. DNA-Templated Fluorescent Nanoclusters for Metal Ions Detection. Molecules 2019; 24:E4189. [PMID: 31752270 PMCID: PMC6891495 DOI: 10.3390/molecules24224189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
DNA-templated fluorescent nanoclusters (NCs) have attracted increasing research interest on account of their prominent features, such as DNA sequence-dependent fluorescence, easy functionalization, wide availability, water solubility, and excellent biocompatibility. Coupling DNA templates with complementary DNA, aptamers, G-quadruplex, and so on has generated a large number of sensors. Additionally, the preparation and applications of DNA-templated fluorescent NCs in these sensing have been widely studied. This review firstly focuses on the properties of DNA-templated fluorescent NCs, and the synthesis of DNA-templated fluorescent NCs with different metals is then discussed. In the third part, we mainly introduce the applications of DNA-templated fluorescent NCs for sensing metal ions. At last, we further discuss the future perspectives of DNA-templated fluorescent NCs in the synthesis and sensing metal ions in the environmental and biological fields.
Collapse
Affiliation(s)
- Chunxia Song
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Jingyuan Xu
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Ying Chen
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Liangliang Zhang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Ying Lu
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China; (C.S.); (Y.C.); (L.Z.); (Y.L.)
| | - Zhihe Qing
- Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| |
Collapse
|
16
|
Sych TS, Polyanichko AM, Ramazanov RR, Kononov AI. tRNA as a stabilizing matrix for fluorescent silver clusters: photophysical properties and IR study. NANOSCALE ADVANCES 2019; 1:3579-3583. [PMID: 36133554 PMCID: PMC9418588 DOI: 10.1039/c9na00112c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 06/16/2023]
Abstract
In this experimental study fluorescent silver clusters on a tRNA matrix were synthesized for the first time. Two types of fluorescent complexes emitting in the green (550 nm) and red (635 nm) regions of the visible spectrum were obtained. Using FTIR spectroscopy, we identified possible binding sites for the clusters, which appeared to be within the helical regions of tRNA. It was also shown that tRNA retained its double helical structure after the cluster formation, which is essential for its functionality.
Collapse
Affiliation(s)
- Tomash S Sych
- Saint Petersburg State University Saint-Petersburg 199034 Russia
| | | | | | - Alexei I Kononov
- Saint Petersburg State University Saint-Petersburg 199034 Russia
| |
Collapse
|
17
|
Schultz D, Brinson RG, Sari N, Fagan JA, Bergonzo C, Lin NJ, Dunkers JP. Structural insights into DNA-stabilized silver clusters. SOFT MATTER 2019; 15:4284-4293. [PMID: 31094392 PMCID: PMC11204197 DOI: 10.1039/c9sm00198k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their great promise as fluorescent biological probes and sensors, the structure and dynamics of Ag complexes derived from single stranded DNA (ssDNA) are less understood than their double stranded counterparts. In this work, we seek new insights into the structure of single AgNssDNA clusters using analytical ultracentrifugation (AUC), nuclear magnetic resonance spectroscopy, infrared spectroscopy and molecular dynamics simulations (MD) of a fluorescent (AgNssDNA)8+ nanocluster. The results suggest that the purified (AgNssDNA)8+ nanocluster is a mixture of predominantly Ag15 and Ag16 species that prefer two distinct long-lived conformational states: one extended, the other approaching spherical. However, the ssDNA strands within these clusters are highly mobile. Ag(i) interacts preferentially with the nucleobase rather than the phosphate backbone, causing a restructuring of the DNA strand relative to the bare DNA. Infrared spectroscopy and MD simulations of (AgNssDNA)8+ and model nucleic acid homopolymers suggest that Ag(i) has a higher affinity for cytosine over guanine bases, little interaction with adenine, and virtually none with thymine. Ag(i) shows a tendency to interact with cytosine N3 and O2 and guanine N7 and O6, opening the possibility for a Ag(i)-base bifurcated bond to act as a nanocluster nucleation and strand stabilizing site. This work provides valuable insight into nanocluster structure and dynamics which drive stability and optical properties, and additional studies using these types of characterization techniques are important for the rational design of single stranded AgDNA nanocluster sensors.
Collapse
Affiliation(s)
- Danielle Schultz
- Biomaterials Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nie F, Ga L, Ai J. One-Pot Synthesis of Nucleoside-Templated Fluorescent Silver Nanoparticles and Gold Nanoparticles. ACS OMEGA 2019; 4:7643-7649. [PMID: 31459856 PMCID: PMC6649123 DOI: 10.1021/acsomega.9b00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, a simple one-pot method was proposed to synthesize water-soluble nucleoside-templated fluorescent silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs). The nucleoside-templated fluorescent Ag NPs and Au NPs were further characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and fluorescence spectroscopy (FLS). The effects of the molar ratio of reactants, reaction environment, and nucleotides on the synthesis of Ag NPs and Au NPs were also discussed. The results showed that nucleoside and ascorbic acid acted as a stabilizer and reductant, respectively, in the synthesis of Ag NPs and Au NPs, while citrate buffer acted as both a pH regulator and reductant. The synthesized nucleoside-templated fluorescent Ag NPs and Au NPs have good fluorescence stability and easy water solubility. In this study, a simple one-pot method was proposed to synthesize water-soluble nucleoside-templated fluorescent silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs).
Collapse
Affiliation(s)
- Furong Nie
- College
of Chemistry and Enviromental Science and Inner Mongolia Key Laboratory for
Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Lu Ga
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Jun Ai
- College
of Chemistry and Enviromental Science and Inner Mongolia Key Laboratory for
Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| |
Collapse
|
19
|
Yourston LE, Lushnikov AY, Shevchenko OA, Afonin KA, Krasnoslobodtsev AV. First Step Towards Larger DNA-Based Assemblies of Fluorescent Silver Nanoclusters: Template Design and Detailed Characterization of Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E613. [PMID: 31013933 PMCID: PMC6523636 DOI: 10.3390/nano9040613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Besides being a passive carrier of genetic information, DNA can also serve as an architecture template for the synthesis of novel fluorescent nanomaterials that are arranged in a highly organized network of functional entities such as fluorescent silver nanoclusters (AgNCs). Only a few atoms in size, the properties of AgNCs can be tuned using a variety of templating DNA sequences, overhangs, and neighboring duplex regions. In this study, we explore the properties of AgNCs manufactured on a short DNA sequence-an individual element designed for a construction of a larger DNA-based functional assembly. The effects of close proximity of the double-stranded DNA, the directionality of templating single-stranded sequence, and conformational heterogeneity of the template are presented. We observe differences between designs containing the same AgNC templating sequence-twelve consecutive cytosines, (dC)12. AgNCs synthesized on a single "basic" templating element, (dC)12, emit in "red". The addition of double-stranded DNA core, required for the larger assemblies, changes optical properties of the silver nanoclusters by adding a new population of clusters emitting in "green". A new population of "blue" emitting clusters forms only when ssDNA templating sequence is placed on the 5' end of the double-stranded core. We also compare properties of silver nanoclusters, which were incorporated into a dimeric structure-a first step towards a larger assembly.
Collapse
Affiliation(s)
- Liam E Yourston
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Alexander Y Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Oleg A Shevchenko
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Alexey V Krasnoslobodtsev
- Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA.
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
20
|
Huard DJE, Demissie A, Kim D, Lewis D, Dickson RM, Petty JT, Lieberman RL. Atomic Structure of a Fluorescent Ag 8 Cluster Templated by a Multistranded DNA Scaffold. J Am Chem Soc 2019; 141:11465-11470. [PMID: 30562465 DOI: 10.1021/jacs.8b12203] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multinuclear silver clusters encapsulated by DNA exhibit size-tunable emission spectra and rich photophysics, but their atomic organization is poorly understood. Herein, we describe the structure of one such hybrid chromophore, a green-emitting Ag8 cluster arranged in a Big Dipper-shape bound to the oligonucleotide A2C4. Three 3' cytosine metallo-base pairs stabilize a parallel A-form-like duplex with a 5' adenine-rich pocket, which binds a metallic, trapezoidal-shaped Ag5 moiety via Ag-N bonds to endo- and exocyclic nitrogens of cytosine and adenine. The unique DNA configuration, constrained coordination environment, and templated Ag8 cluster arrangement highlight the reciprocity between the silvers and DNA in adopting this structure. These first atomic details of a DNA-encapsulated Ag cluster fluorophore illuminate many aspects of biological assembly, nanoscience, and metal cluster photophysics.
Collapse
Affiliation(s)
- Dustin J E Huard
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Aida Demissie
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Dahye Kim
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - David Lewis
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Robert M Dickson
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jeffrey T Petty
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
21
|
Lin YX, Chang CW. Preparation and characterization of solid DNA silver nanoclusters with superior aerobic and thermal stability. RSC Adv 2019; 9:26061-26066. [PMID: 35530986 PMCID: PMC9070125 DOI: 10.1039/c9ra04533c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023] Open
Abstract
In the current study, we present a universal method to preserve DNA-templated silver nanoclusters (DNA AgNCs) in the solid-state. Our results show that DNA AgNCs must be precipitated before drying. By drying the ethanol precipitated DNA AgNCs, we have successfully prepared solid DNA AgNCs with superior stability in aerobic and high-temperature environments. Although the fluorescence lifetime measurements show that the emission of DNA AgNCs is drastically quenched in the solid-state, the emission can be fully recovered in solution. To our knowledge, this is the first attempt to prepare DNA AgNCs in solid-state, and this finding provides an ideal solution for the transportation and long-term preservation of DNA AgNCs. The solid DNA AgNCs exhibit superior stability and the fluorescence can be recovered in solution.![]()
Collapse
Affiliation(s)
- Yang-Xiu Lin
- Department of Chemistry
- National Changhua University of Education
- Taiwan
| | - Chih-Wei Chang
- Department of Chemistry
- National Changhua University of Education
- Taiwan
| |
Collapse
|
22
|
Xu J, Shang L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Copp SM, Gorovits A, Swasey SM, Gudibandi S, Bogdanov P, Gwinn EG. Fluorescence Color by Data-Driven Design of Genomic Silver Clusters. ACS NANO 2018; 12:8240-8247. [PMID: 30059609 DOI: 10.1021/acsnano.8b03404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
DNA nucleobase sequence controls the size of DNA-stabilized silver clusters, leading to their well-known yet little understood sequence-tuned colors. The enormous space of possible DNA sequences for templating clusters has challenged the understanding of how sequence selects cluster properties and has limited the design of applications that employ these clusters. We investigate the genomic role of DNA sequence for fluorescent silver clusters using a data-driven approach. Employing rapid parallel silver cluster synthesis and fluorimetry, we determine the fluorescence spectra of silver cluster products stabilized by 1432 distinct DNA oligomers. By applying pattern recognition algorithms to this large experimental data set, we discover certain DNA base patterns, or "motifs," that correlate to silver clusters with similar fluorescence spectra. These motifs are employed in machine learning classifiers to predictively design DNA template sequences for specific fluorescence color bands. Our method improves selectivity of templates by 330% for silver clusters with peak emission wavelengths beyond 660 nm. The discovered base motifs also provide physical insights into how DNA sequence controls silver cluster size and color. This predictive design approach for color of DNA-stabilized silver clusters exhibits the potential of machine learning and data mining to increase the precision and efficiency of nanomaterials design, even for a soft-matter-inorganic hybrid system characterized by an extremely large parameter space.
Collapse
Affiliation(s)
- Stacy M Copp
- Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander Gorovits
- Department of Computer Science , University at Albany-SUNY , 1400 Washington Ave. , Albany , New York 12222 , United States
| | | | - Sruthi Gudibandi
- Department of Computer Science , University at Albany-SUNY , 1400 Washington Ave. , Albany , New York 12222 , United States
| | - Petko Bogdanov
- Department of Computer Science , University at Albany-SUNY , 1400 Washington Ave. , Albany , New York 12222 , United States
| | | |
Collapse
|
24
|
Lee ST, Beaumont D, Su XD, Muthoosamy K, New SY. Formulation of DNA chimera templates: Effects on emission behavior of silver nanoclusters and sensing. Anal Chim Acta 2018; 1010:62-68. [PMID: 29447672 DOI: 10.1016/j.aca.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/09/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
Single strand DNA (ssDNA) chimeras consisting of a silver nanoclusters-nucleating sequence (NC) and an aptamer are widely employed to synthesize functional silver nanoclusters (AgNCs) for sensing purpose. Despite its simplicity, this chimeric-templated AgNCs often leads to undesirable turn-off effect, which may suffer from false positive signals caused by interference. In our effort to elucidate how the relative position of NC and aptamer affects the fluorescence behavior and sensing performance, we systematically formulated these NC and aptamer regions at different position in a DNA chimera. Using adenosine aptamer as a model, we tested the adenosine-induced optical response of each design. We also investigated the effect of linker region connecting NC and aptamer, as well as different NC sequence on the sensing performance. We concluded that locating NC sequence at 5'-end exhibited the best response, with immediate fluorescence enhancement observed over a wide linear range (1-2500 μM). Our experimental findings help to explain the emission behavior and sensing performance of chimeric conjugates of AgNCs, providing an important means to formulate a better aptasensor.
Collapse
Affiliation(s)
- Shi Ting Lee
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - David Beaumont
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG72RD, United Kingdom
| | - Xiao Di Su
- School of Engineering and Science, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs QLD 4556, Australia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Siu Yee New
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
25
|
Zhang X, Qian Y, Ma X, Xia M, Li S, Zhang Y. Thiolated DNA-templated silver nanoclusters with strong fluorescence emission and a long shelf-life. NANOSCALE 2017; 10:76-81. [PMID: 29210418 DOI: 10.1039/c7nr06358j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thiolated DNA (DNA-SH) was employed as a template in the synthesis and stabilization of AgNCs (DNA-SH-AgNCs). Resulting from the synergistic protective effect of specific Ag+-DNA interactions and Ag-S bonding, DNA-SH-AgNCs exhibited high quantum yields and resistance to oxidation.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | | | | | | | | | | |
Collapse
|
26
|
Ge L, Sun X, Hong Q, Li F. Ratiometric Catalyzed-Assembly of NanoCluster Beacons: A Nonenzymatic Approach for Amplified DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32089-32096. [PMID: 28849916 DOI: 10.1021/acsami.7b09034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a novel fluorescent transformation phenomenon of oligonucleotide-encapsulated silver nanoclusters (AgNCs) was demonstrated, in which green-emissive AgNCs effectively transformed to red-emissive AgNCs when placed in close proximity to a special DNA fragment (denoted as convertor here). Taking advantage of a catalyzed-hairpin-assembly (CHA) amplification strategy, we rationally and compatibly engineered a simple and sensitive AgNC-based fluorescent signal amplification strategy through the ratiometric catalyzed-assembly (RCA) of green-emissive NanoCluster Beacon (NCB) with a convertor modified DNA hairpin to induce the template transformation circularly. The proposed ratiometric fluorescent biosensing platform based on RCA-amplified NCB (RCA-NCB) emits intense green fluorescence in the absence of target DNA and will undergo consecutively fluorescent signal transformation from green emission to red emission upon exposure to its target DNA. The ratiometric adaptation of the NCB to CHA circuit advances their general usability as biosensing platform with great improvements in detection sensitivity. By measuring the fluorescence intensity ratio of the red emission and green emission, the proposed RCA-NCB platform exhibits sensitive and accurate analytical performance toward Werner Syndrome-relevant gene, the proof-of-concept target in this work. A low detection limit down to the pM level was achieved, which is lower than most of the reported AgNC-based fluorescent DNA biosensors, making the proposed RCA-NCB biosensing strategy appealing in amplifying the ratiometric fluorescent signal for sensitive DNA detection. Moreover, our proposed RCA-NCB platform shows good recovery toward the target DNA in real human serum samples, illustrating their potential promise for clinical and imaging applications in the future.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Ximei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Qing Hong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao, 266109, People's Republic of China
| |
Collapse
|
27
|
Sheet SK, Sen B, Thounaojam R, Aguan K, Khatua S. Ruthenium(II) Complex-Based Luminescent Bifunctional Probe for Ag+ and Phosphate Ions: Ag+-Assisted Detection and Imaging of rRNA. Inorg Chem 2017; 56:1249-1263. [DOI: 10.1021/acs.inorgchem.6b02343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced
Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Bhaskar Sen
- Centre for Advanced
Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Romita Thounaojam
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Snehadrinarayan Khatua
- Centre for Advanced
Studies, Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| |
Collapse
|
28
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
29
|
Bossert N, de Bruin D, Götz M, Bouwmeester D, Heinrich D. Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications. Sci Rep 2016; 6:37897. [PMID: 27901090 PMCID: PMC5129012 DOI: 10.1038/srep37897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.
Collapse
Affiliation(s)
- Nelli Bossert
- Leiden Institute of Physics, LION, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
| | - Donny de Bruin
- Leiden Institute of Physics, LION, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
| | - Maria Götz
- Fraunhofer-Institut for Silicate Research ISC, Würzburg, Germany
- Fakultaet fuer Chemie und Pharmazie, Julius-Maximilians-Universitaet Würzburg, Germany
| | - Dirk Bouwmeester
- Leiden Institute of Physics, LION, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
- Physics Department and California Nanosystems Institute UCSB, Santa Barbara, USA
| | - Doris Heinrich
- Leiden Institute of Physics, LION, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
- Fraunhofer-Institut for Silicate Research ISC, Würzburg, Germany
| |
Collapse
|
30
|
Gregersen S, Vosch T, Jensen KJ. Peptide-Stabilized, Fluorescent Silver Nanoclusters: Solid-Phase Synthesis and Screening. Chemistry 2016; 22:18492-18500. [PMID: 27809363 DOI: 10.1002/chem.201603176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 12/24/2022]
Abstract
Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA. Herein, we demonstrate how solid-phase methods can increase throughput dramatically in peptide ligand screening and in initial evaluation of fluorescence intensity and chemical stability of peptide-stabilized AgNCs (P-AgNCs). 9-Fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis on a hydroxymethyl-benzoic acid (HMBA) polyethylene glycol polyacrylamide copolymer (PEGA) resin enabled on-resin screening and evaluation of a peptide library, leading to identification of novel peptide-stabilized, fluorescent AgNCs. Using systematic amino acid substitutions, we synthesized and screened a 144-member library. This allowed us to evaluate the effect of length, charge, and Cys content in peptides used as ligands for AgNC stabilization. The results of this study will enable future spectroscopic studies of these peptide-stabilized AgNCs for bioimaging and other applications.
Collapse
Affiliation(s)
- Simon Gregersen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
31
|
New SY, Lee ST, Su XD. DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. NANOSCALE 2016; 8:17729-17746. [PMID: 27722695 DOI: 10.1039/c6nr05872h] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
12 years after the introduction of DNA-templated silver nanoclusters (DNA-AgNCs), exciting progress has been made and yet we are still in the midst of trying to fully understand this nanomaterial. The prominent excellence of DNA-AgNCs is undoubtedly its modulatable emission property, of which how variation in DNA templates causes emission tuning remains elusive. Based on the up-to-date DNA-AgNCs, we aim to establish the correlation between the structure/sequence of DNA templates and emission behaviour of AgNCs. Herein, we systematically present a wide-range of DNA-AgNCs based on the structural complexity of the DNA templates, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), triple-stranded DNA (tsDNA) and DNA nanostructures. For each DNA category, we discuss the emission property, quantum yield and synthesis condition of the respective AgNCs, before cross-comparing the impact of different DNA scaffolds on the properties of AgNCs. A future outlook for this area is given as a conclusion. By putting the information together, this review may shed new light on understanding DNA-AgNCs while we are expecting continuous breakthroughs in this field.
Collapse
Affiliation(s)
- S Y New
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - S T Lee
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - X D Su
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore 138634.
| |
Collapse
|
32
|
Palagin D, Doye JPK. DNA-stabilized Ag-Au bimetallic clusters: the effects of alloying and embedding on optical properties. Phys Chem Chem Phys 2016; 18:22311-22. [PMID: 27459508 DOI: 10.1039/c6cp04352f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Global geometry optimization and time-dependent density functional theory calculations have been used to study the structural evolution and optical properties of AgnAun (n = 2-6) nanoalloys both as individual clusters and as clusters stabilized with the fragments of DNA of different size. We show that alloying can be used to control and tune the level of interaction between the metal atoms of the cluster and the organic fragments of the DNA ligands. For instance, gold and silver atoms are shown to exhibit synergistic effects in the process of charge transfer from the nucleobase to the cluster, with the silver atoms directly connected to the nitrogen atoms of cytosine increasing their positive partial charge, while their more electronegative neighbouring gold atoms host the excess negative charge. This allows the geometrical structures and optical absorption spectra of small bimetallic clusters to retain many of their main features upon aggregation with relatively large DNA fragments, such as a cytosine-based 9-nucleotide hairpin loop, which suggests a potential synthetic route to such hybrid metal-organic compounds, and opens up the possibility of bringing the unique tunable properties of bimetallic nanoalloys to biological applications.
Collapse
Affiliation(s)
- Dennis Palagin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
33
|
Yu Y, Mok BYL, Loh XJ, Tan YN. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications. Adv Healthc Mater 2016; 5:1844-59. [PMID: 27377035 DOI: 10.1002/adhm.201600192] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents.
Collapse
Affiliation(s)
- Yong Yu
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Beverly Y. L. Mok
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| |
Collapse
|
34
|
Li T, He N, Wang J, Li S, Deng Y, Wang Z. Effects of the i-motif DNA loop on the fluorescence of silver nanoclusters. RSC Adv 2016. [DOI: 10.1039/c5ra22489f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The loop sequences in i-motif DNA templates are well correlated with the fluorescence of the prepared Ag clusters.
Collapse
Affiliation(s)
- Taotao Li
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Jiuhai Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Song Li
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province
- Hunan Key Laboratory of Green Packaging and Biological Nanotechnology
- Hunan University of Technology
- Zhuzhou 412007
- China
| | - Yan Deng
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province
- Hunan Key Laboratory of Green Packaging and Biological Nanotechnology
- Hunan University of Technology
- Zhuzhou 412007
- China
| | - Zunliang Wang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
35
|
Dai C, Yang CX, Yan XP. Ratiometric Fluorescent Detection of Phosphate in Aqueous Solution Based on Near Infrared Fluorescent Silver Nanoclusters/Metal–Organic Shell Composite. Anal Chem 2015; 87:11455-9. [DOI: 10.1021/acs.analchem.5b03086] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cong Dai
- College of Chemistry, Research Center for Analytical Sciences, State
Key Laboratory of Medicinal Chemical Biology (Nankai University),
Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 94
Weijin Road, Tianjin 300071, China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, State
Key Laboratory of Medicinal Chemical Biology (Nankai University),
Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 94
Weijin Road, Tianjin 300071, China
| | - Xiu-Ping Yan
- College of Chemistry, Research Center for Analytical Sciences, State
Key Laboratory of Medicinal Chemical Biology (Nankai University),
Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 94
Weijin Road, Tianjin 300071, China
| |
Collapse
|
36
|
Lan J, Zou H, Liu Z, Gao M, Chen B, Li Y, Huang C. A visual physiological temperature sensor developed with gelatin-stabilized luminescent silver nanoclusters. Talanta 2015; 143:469-473. [DOI: 10.1016/j.talanta.2015.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/11/2023]
|
37
|
Shah P, Thulstrup PW, Cho SK, Bhang YJ, Ahn JC, Choi SW, Bjerrum MJ, Yang SW. In-solution multiplex miRNA detection using DNA-templated silver nanocluster probes. Analyst 2015; 139:2158-66. [PMID: 24616905 DOI: 10.1039/c3an02150e] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs (size ∼21nt to ∼25nt) that can be used as biomarkers of disease diagnosis, and efforts have been directed towards the invention of a rapid, simple and sequence-selective detection method for miRNAs. We recently developed a DNA/silver nanoclusters (AgNCs)-based turn-off fluorescence method in the presence of target miRNA. To further advance our method toward multiplex miRNA detection in solution, the design of various fluorescent DNA/AgNCs probes was essential. Therefore, tethering of DNA-12nt scaffolds with 9 different AgNCs emitters to target-sensing DNA sequences was investigated. Interestingly, for the creation of spectrally different DNA/AgNCs probes, not only were the emitters encapsulated in 9 different DNA-12nt scaffolds necessary but the tethered target-sensing DNA sequences are also crucial to tune the fluorescence across the visible to infra-red region. In this study, we obtained three spectrally distinctive emitters of each DNA/AgNCs probes such as green, red, and near-infrared (NIR) fluorescence. Using these DNA/AgNCs probes, we here show a proof of concept for a rapid, one-step, in-solution multiplex miRNA detection method.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology/Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci Rep 2015; 5:10163. [PMID: 25973536 PMCID: PMC4431418 DOI: 10.1038/srep10163] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022] Open
Abstract
Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.
Collapse
|
39
|
Copp SM, Schultz DE, Swasey S, Gwinn EG. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures. ACS NANO 2015; 9:2303-10. [PMID: 25630562 DOI: 10.1021/nn506322q] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.
Collapse
Affiliation(s)
- Stacy M Copp
- †Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| | - Danielle E Schultz
- ‡Department of Chemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Steven Swasey
- ‡Department of Chemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Elisabeth G Gwinn
- †Department of Physics, University of California, Santa Barbara, California 93106-9530, United States
| |
Collapse
|
40
|
Shah P, Choi SW, Kim HJ, Cho SK, Thulstrup PW, Bjerrum MJ, Bhang YJ, Ahn JC, Yang SW. DNA/RNA chimera templates improve the emission intensity and target the accessibility of silver nanocluster-based sensors for human microRNA detection. Analyst 2015; 140:3422-30. [PMID: 25759134 DOI: 10.1039/c5an00093a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years microRNAs (miRNAs) have been established as important biomarkers in a variety of diseases including cancer, diabetes, cardiovascular disease, aging, Alzheimer's disease, asthma, autoimmune disease and liver diseases. As a consequence, a variety of monitoring methods for miRNAs have been developed, including a fast and simple method for miRNA detection by exploitation of the unique photoluminescence of DNA-templated silver nanoclusters (DNA/AgNCs). To increase the versatility of the AgNC-based method, we have adopted DNA/RNA chimera templates for AgNC-based probes, allowing response from several human miRNAs which are hardly detectable with DNA-based probes. Here, we demonstrate in detail the power of DNA/RNA chimera/AgNC probes in detecting two human miRNAs, let-7a and miR-200c. The DNA/RNA chimera-based probes are highly efficient to determine the level of miRNAs in several human cell lines.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gwinn E, Schultz D, Copp SM, Swasey S. DNA-Protected Silver Clusters for Nanophotonics. NANOMATERIALS 2015; 5:180-207. [PMID: 28347005 PMCID: PMC5312861 DOI: 10.3390/nano5010180] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
DNA-protected silver clusters (AgN-DNA) possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.
Collapse
Affiliation(s)
- Elisabeth Gwinn
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Danielle Schultz
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Stacy M Copp
- Department of Physics, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Steven Swasey
- Department of Chemistry and Biochemistry, The University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
42
|
Afonin KA, Schultz D, Jaeger L, Gwinn E, Shapiro BA. Silver nanoclusters for RNA nanotechnology: steps towards visualization and tracking of RNA nanoparticle assemblies. Methods Mol Biol 2015; 1297:59-66. [PMID: 25895995 PMCID: PMC6345514 DOI: 10.1007/978-1-4939-2562-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing interest in designing functionalized, RNA-based nanoparticles (NPs) for applications such as cancer therapeutics requires simple, efficient assembly assays. Common methods for tracking RNA assemblies such as native polyacrylamide gels and atomic force microscopy are often time-intensive and, therefore, undesirable. Here we describe a technique for rapid analysis of RNA NP assembly stages using the formation of fluorescent silver nanoclusters (Ag NCs). This method exploits the single-stranded specificity and sequence dependence of Ag NC formation to produce unique optical readouts for each stage of RNA NP assembly, obtained readily after synthesis.
Collapse
Affiliation(s)
- Kirill A Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | | | | | |
Collapse
|
43
|
Hsu HC, Ho MC, Wang KH, Hsu YF, Chang CW. DNA stabilized silver nanoclusters as the fluorescent probe for studying the structural fluctuations and the solvation dynamics of human telomeric DNA. NEW J CHEM 2015. [DOI: 10.1039/c4nj02065k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanoclusters can be utilized as a fluorescent probe for studying the structural fluctuation and the solvation dynamics of human telomeric DNA.
Collapse
Affiliation(s)
- Hung-Chi Hsu
- Department of Chemistry
- National Changhua University of Education
- Changhua 50058
- Taiwan
| | - Meng-Chieh Ho
- Department of Chemistry
- National Changhua University of Education
- Changhua 50058
- Taiwan
| | - Kai-Hung Wang
- Department of Chemistry
- National Changhua University of Education
- Changhua 50058
- Taiwan
| | - Ying-Feng Hsu
- Department of Chemistry
- National Changhua University of Education
- Changhua 50058
- Taiwan
| | - Chih-Wei Chang
- Department of Chemistry
- National Changhua University of Education
- Changhua 50058
- Taiwan
| |
Collapse
|
44
|
Goswami N, Zheng K, Xie J. Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules. NANOSCALE 2014; 6:13328-47. [PMID: 25266043 DOI: 10.1039/c4nr04561k] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.
Collapse
Affiliation(s)
- Nirmal Goswami
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
45
|
Zhang Y, Jiang H, Ge W, Li Q, Wang X. Cytidine-directed rapid synthesis of water-soluble and highly yellow fluorescent bimetallic AuAg nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10910-10917. [PMID: 25158043 DOI: 10.1021/la5028702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent gold/silver nanoclusters templated by DNA or oligonucleotides have been widely reported since DNA or oligonucleotides could be designed to position a few metal ions at close proximity prior to their reduction, but nucleoside-templated synthesis is more challenging. In this work, a novel type of strategy taking cytidine (C) as template to rapid synthesis of fluorescent, water-soluble gold and silver nanoclusters (C-AuAg NCs) has been developed. The as-prepared C-AuAg NCs have been characterized by UV-vis absorption spectroscopy, fluorescence, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma mass spectroscopy (ICP-MS). The characterizations demonstrate that C-AuAg NCs with a diameter of 1.50 ± 0.31 nm, a quantum yield ∼9%, and an average lifetime ∼6.07 μs possess prominent fluorescence properties, good dispersibility, and easy water solubility, indicating the promising application in bioanalysis and biomedical diagnosis. Furthermore, this strategy by rapid producing of highly fluorescent nanoclusters could be explored for the possible recognition of some disease-related changes in blood serum. This raises the possibility of their promising application in bioanalysis and biomedical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , No. 2 Sipailou, Nanjing 210096, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Copp SM, Bogdanov P, Debord M, Singh A, Gwinn E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5839-45. [PMID: 25043854 DOI: 10.1002/adma.201401402] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/20/2014] [Indexed: 05/21/2023]
Abstract
Discriminative base motifs within DNA templates for fluorescent silver clusters are identified using methods that combine large experimental data sets with machine learning tools for pattern recognition. Combining the discovery of certain multibase motifs important for determining fluorescence brightness with a generative algorithm, the probability of selecting DNA templates that stabilize fluorescent silver clusters is increased by a factor of >3.
Collapse
Affiliation(s)
- Stacy M Copp
- Physics Department, UCSB, Santa Barbara, CA, 93106, USA
| | | | | | | | | |
Collapse
|
47
|
Peng J, Shao Y, Liu L, Zhang L, Liu H, Wang Y. Ag nanoclusters as probes for turn-on fluorescence recognition of TpG dinucleotide with a high selectivity. Anal Chim Acta 2014; 850:78-84. [PMID: 25441163 DOI: 10.1016/j.aca.2014.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/14/2014] [Indexed: 01/16/2023]
Abstract
CpG dinucleotide in DNA has a great tendency to mutate to TpG dinucleotide and this transition can cause some serious diseases. In this work, fluorescent Ag nanoclusters (Ag NCs) were employed as useful inorganic fluorophores for the potential of selectively discriminating TpG dinucleotide from CpG dinucleotide. Opposite the base Y of interest in YpG dinucleotide (Y=C or T), a bulge site was introduced so as to make the base Y to be unpaired and ready for Ag(+) binding. Such that the unpaired Y and context base pairs can provide a specific space suitable for creating fluorescent Ag NCs. We found that in comparison with CpG dinucleotide, TpG dinucleotide is much more efficient in growing fluorescent Ag NCs. Therefore, mutation of CpG dinucleotide to TpG can be identified by a turn-on fluorescence response and a high selectivity. More interestingly, Ag NCs exhibit a better performance in the TpG recognition over the other dinucleotides (Y=A and G) than the previously used organic fluorophores. Additionally, the effectiveness of the bulge site design in discriminating these dinucleotides was evidenced by control DNAs having the abasic site structure. We expect that a practical method for TpG dinucleotide recognition with a high selectivity can be developed using the bulge site-grown fluorescent Ag NCs as novel probes.
Collapse
Affiliation(s)
- Jian Peng
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| | - Lingling Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Lihua Zhang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Hua Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Ying Wang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| |
Collapse
|
48
|
Peng J, Shao Y, Liu L, Zhang L, Fu W, Liu H. Role of anion polarizability in fluorescence sensitization of DNA-templated silver nanoclusters. NANOTECHNOLOGY 2014; 25:235501. [PMID: 24848098 DOI: 10.1088/0957-4484/25/23/235501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent silver nanoclusters (Ag NCs) as novel fluorophores have received much attention because of their high brightness, good photostability and widely tunable emissions from the visible to the near-infrared range as a result of their size and existing environment. However, efforts are still needed to find the factors that tune the emission of Ag NCs. In this work, Ag NCs that were size-selectively grown on DNA were used to investigate the effect of the electronic properties of coordinating ligands. Halogen anions were used as the paradigm because of their periodicity in element properties. We found that addition of halogen anions did not alter the emission wavelength of Ag NCs, but the fluorescence intensity showed an initial increase at low concentrations of Cl(-), Br(-) and I(-) followed by a gradual decrease at high concentrations. No increase in fluorescence was observed for F(-) at either low or high concentration. Such specific halogen-anion sensitization of the fluorescence of Ag NCs suggests that the binding strength/manner and dipole polarizability of these anions synergistically tune the emission behavior of Ag NCs. Less fluorescence sensitization occurred for the anion having high enough polarizability to form a covalent bond with Ag NCs. The anion polarizability-sensitized fluorescence indicates the role of anion electronic properties in tuning the emission behavior of Ag NCs, which should be seriously considered in designing Ag NC-based sensors and devices.
Collapse
Affiliation(s)
- Jian Peng
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Copp S, Schultz D, Swasey S, Pavlovich J, Debord M, Chiu A, Olsson K, Gwinn E. Magic Numbers in DNA-Stabilized Fluorescent Silver Clusters Lead to Magic Colors. J Phys Chem Lett 2014; 5:959-963. [PMID: 24803994 PMCID: PMC3985885 DOI: 10.1021/jz500146q] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/27/2014] [Indexed: 05/19/2023]
Abstract
DNA-stabilized silver clusters are remarkable for the selection of fluorescence color by the sequence of the stabilizing DNA oligomer. Yet despite a growing number of applications that exploit this property, no large-scale studies have probed origins of cluster color or whether certain colors occur more frequently than others. Here we employ a set of 684 randomly chosen 10-base oligomers to address these questions. Rather than a flat distribution, we find that specific color bands dominate. Cluster size data indicate that these "magic colors" originate from the existence of magic numbers for DNA-stabilized silver clusters, which differ from those of spheroidal gold clusters stabilized by small-molecule ligands. Elongated cluster structures, enforced by multiple base ligands along the DNA, can account for both magic number sizes and color variation around peak wavelength populations.
Collapse
Affiliation(s)
- Stacy
M. Copp
- Physics
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - Danielle Schultz
- Chemistry
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - Steven Swasey
- Chemistry
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - James Pavlovich
- Chemistry
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - Mark Debord
- Physics
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - Alexander Chiu
- Physics
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - Kevin Olsson
- Physics
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
| | - Elisabeth Gwinn
- Physics
Department, University of California Santa
Barbara, Santa Barbara California 93117, United States
- E-mail:
| |
Collapse
|