1
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
2
|
Naumenko E, Akhatova F, Rozhina E, Fakhrullin R. Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication. Pharmaceutics 2021; 13:pharmaceutics13081230. [PMID: 34452190 PMCID: PMC8400787 DOI: 10.3390/pharmaceutics13081230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Polycations are an essential part of layer-by-layer (LbL)-assembled drug delivery systems, especially for gene delivery. In addition, they are used for other related applications, such as cell surface engineering. As a result, an assessment of the cytotoxicity of polycations and elucidation of the mechanisms of polycation toxicity is of paramount importance. In this study, we examined in detail the effects of a variety of water-soluble, positively charged synthetic polyelectrolytes on in vitro cytotoxicity, cell and nucleus morphology, and monolayer expansion changes. We have ranked the most popular cationic polyelectrolytes from the safest to the most toxic in relation to cell cultures. 3D cellular cluster formation was disturbed by addition of polyelectrolytes in most cases in a dose-dependent manner. Atomic force microscopy allowed us to visualize in detail the structures of the polyelectrolyte–DNA complexes formed due to electrostatic interactions. Our results indicate a relationship between the structure of the polyelectrolytes and their toxicity, which is necessary for optimization of drug and gene delivery systems.
Collapse
|
3
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
4
|
Wei Y, Xu H, Xu S, Su H, Zhang L, Sun R, Huang D, Zhao L, Wang K, Hu Y, Lian X. Inhibiting Cell Viability and Motility by Layer-by-Layer Assembly and Biomineralization. ACS OMEGA 2020; 5:17118-17128. [PMID: 32715197 PMCID: PMC7376689 DOI: 10.1021/acsomega.0c00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Herein, we proposed a drug-free strategy named cell surface shellization to inhibit the motility of SKOV-3 and HeLa cells. We alternately deposited two- or three-layer cationic polyelectrolyte (PE) and anionic PE films on the surface of SKOV-3 and HeLa cells. Then, a mineral shell (calcium carbonate, CaCO3) was formed on the surface of polymer shells via electrostatic force and biomineralization. The CCK-8 assay results and live/dead staining showed that the surface shells strongly aggravated the cytotoxicity. The monolayer scratch wound migration assay results and immunofluorescence staining results showed that the shells, especially the mineral shells, could efficiently inhibit the migration of SKOV-3 and HeLa cells without any anticancer drugs. The immunofluorescence results of the three small G proteins of the cells showed that the immunofluorescence intensity in SKOV-3 did not change. Preliminary results from our laboratory showed an increase in MMP-9 secreted by cancer cells after coating with films or mineral shells. It suggests that mechanisms that inhibit cell migration are related to the MMP signaling pathway. All the results indicated that shellization (films or nanomineral shells) but not limited to calcification can be used as one of the tools to change the function of cells.
Collapse
Affiliation(s)
- Yan Wei
- . Phone: +86-351-6014477. Fax: +86-351-6011816
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Moon HC, Han S, Borges J, Pesqueira T, Choi H, Han SY, Cho H, Park JH, Mano JF, Choi IS. Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. SOFT MATTER 2020; 16:6063-6071. [PMID: 32510086 DOI: 10.1039/d0sm00876a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The build-up and degradation of cytocompatible nanofilms in a controlled fashion have great potential in biomedical and nanomedicinal fields, including single-cell nanoencapsulation (SCNE). Herein, we report the fabrication of biodegradable films of cationic starch (c-ST) and anionic alginate (ALG) by electrostatically driven layer-by-layer (LbL) assembly technology and its application to the SCNE. The [c-ST/ALG] multilayer nanofilms, assembled either on individual Saccharomyces cerevisiae or on the 2D flat gold surface, degrade on demand, in a cytocompatible fashion, via treatment with α-amylase. Their degradation profiles are investigated, while systematically changing the α-amylase concentration, by several surface characterization techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. DNA incorporation in the LbL nanofilms and its controlled release, upon exposure of the nanofilms to an aqueous α-amylase solution, are demonstrated. The highly cytocompatible nature of the film-forming and -degrading conditions is assessed in the c-ST/ALG-shell formation and degradation of S. cerevisiae. We envisage that the cytocompatible, enzymatic degradation of c-ST-based nanofilms paves the way for developing advanced biomedical devices with programmed dissolution in vivo.
Collapse
Affiliation(s)
- Hee Chul Moon
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - João Borges
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tamagno Pesqueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Korea
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
6
|
Ariga K, Yamauchi Y. Nanoarchitectonics from Atom to Life. Chem Asian J 2020; 15:718-728. [PMID: 32017354 DOI: 10.1002/asia.202000106] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Functional materials with rational organization cannot be directly created only by nanotechnology-related top-down approaches. For this purpose, a novel research paradigm next to nanotechnology has to be established to create functional materials on the basis of deep nanotechnology knowledge. This task can be assigned to an emerging concept, nanoarchitectonics. In the nanoarchitectonics approaches, functional materials were architected through combination of atom/molecular manipulation, organic chemical synthesis, self-assembly and related spontaneous processes, field-applied assembly, micro/nano fabrications, and bio-related processes. In this short review article, nanoarchitectonics-related approaches on materials fabrications and functions are exemplified from atom-scale to living creature level. Based on their features, unsolved problems for future developments of the nanoarchitectonics concept are finally discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics MANA, National Institute for Materials Science NIMS, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, JAPAN
| | - Yusuke Yamauchi
- University of Queensland, School of Chemical Engineering, AUSTRALIA
| |
Collapse
|
7
|
Kim S, Youn W, Choi IS, Park JH. Thickness-Tunable Eggshell Membrane Hydrolysate Nanocoating with Enhanced Cytocompatibility and Neurite Outgrowth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12562-12568. [PMID: 31448611 DOI: 10.1021/acs.langmuir.9b02055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The eggshell membrane is one of the easily obtainable natural biomaterials, but has been neglected in the biomaterial community, compared with marine biomaterials and discarded as a food waste. In this work, we utilized the ESM hydrolysate (ESMH), which was obtained by the enzymochemical method, as a bioactive functional material for interfacial bioengineering, exemplified by thickness-tunable, layer-by-layer (LbL) nanocoating with the Fe(III)-tannic acid (TA) complex. [Fe(III)-TA/ESMH] LbL films, ending with the ESMH layer, showed great cytocompatiblility with HeLa cells and even primary hippocampal neuron cells. More importantly, the films were found to be neurochemically active, inducing the acceleration of neurite outgrowth for the long-term neuron culture. We believe that the ability for building cytocompatible ESMH films in a thickness-tunable manner would be applicable to a broad range of different nanomaterials in shape and size and would be utilized with multimodal functionalities for biomedical applications, such as bioencapsulation, theranostics, and regenerative medicine.
Collapse
Affiliation(s)
- Seulbi Kim
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Ji Hun Park
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| |
Collapse
|
8
|
Celik SBG, Dominici SR, Filby BW, Das AAK, Madden LA, Paunov VN. Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions. Biomimetics (Basel) 2019; 4:E50. [PMID: 31336810 PMCID: PMC6784416 DOI: 10.3390/biomimetics4030050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Most current methods for the preparation of tissue spheroids require complex materials, involve tedious physical steps and are generally not scalable. We report a novel alternative, which is both inexpensive and up-scalable, to produce large quantities of viable human keratinocyte cell clusters (clusteroids). The method is based on a two-phase aqueous system of incompatible polymers forming a stable water-in-water (w/w) emulsion, which enabled us to rapidly fabricate cell clusteroids from HaCaT cells. We used w/w Pickering emulsion from aqueous solutions of the polymers dextran (DEX) and polyethylene oxide (PEO) and a particle stabilizer based on whey protein (WP). The HaCaT cells clearly preferred to distribute into the DEX-rich phase and this property was utilized to encapsulate them in the water-in-water (DEX-in-PEO) emulsion drops then osmotically shrank to compress them into clusters. Prepared formulations of HaCaT keratinocyte clusteroids in alginate hydrogel were grown where the cells percolated to mimic 3D tissue. The HaCaT cell clusteroids grew faster in the alginate film compared to the individual cells formulated in the same matrix. This methodology could potentially be utilised in biomedical applications.
Collapse
Affiliation(s)
- Sevde B G Celik
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | | | - Benjamin W Filby
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Anupam A K Das
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Leigh A Madden
- Department of Biomedical Science, University of Hull, Hull HU6 7RX, UK
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
9
|
Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomater 2019; 90:21-36. [PMID: 30986529 DOI: 10.1016/j.actbio.2019.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Biologically inspired materials with tunable bio- and physicochemical properties provide an essential framework to actively control and support cellular behavior. Cell membrane remodeling approaches benefit from the advances in polymer science and bioconjugation methods, which allow for the installation of un-/natural molecules and particles on the cells' surface. Synthetically remodeled cells have superior properties and are under intense investigation in various therapeutic scenarios as cell delivery systems, bio-sensing platforms, injectable biomaterials and bioinks for 3D bioprinting applications. In this review article, recent advances in the field of cell surface remodeling via bio-chemical means and the potential biomedical applications of these emerging cell hybrids are discussed. STATEMENT OF SIGNIFICANCE: Recent advances in bioconjugation methods, controlled/living polymerizations, microfabrication techniques and 3D printing technologies have enabled researchers to probe specific cellular functions and cues for therapeutic and research purposes through the formation of cell spheroids and polymer-cell chimeras. This review article highlights recent non-genetic cell membrane engineering strategies towards the fabrication of cellular ensembles and microtissues with interest in 3D in vitro modeling, cell therapeutics and tissue engineering. From a wider perspective, these approaches may provide a roadmap for future advances in cell therapies which will expedite the clinical use of cells, thereby improving the quality and accessibility of disease treatments.
Collapse
|
10
|
Liu T, Wang Y, Zhong W, Li B, Mequanint K, Luo G, Xing M. Biomedical Applications of Layer-by-Layer Self-Assembly for Cell Encapsulation: Current Status and Future Perspectives. Adv Healthc Mater 2019; 8:e1800939. [PMID: 30511822 DOI: 10.1002/adhm.201800939] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/10/2018] [Indexed: 12/23/2022]
Abstract
Encapsulating living cells within multilayer functional shells is a crucial extension of cellular functions and a further development of cell surface engineering. In the last decade, cell encapsulation has been widely utilized in many cutting-edge biomedical fields. Compared with other techniques for cell encapsulation, layer-by-layer (LbL) self-assembly technology, due to the versatility and tunability to fabricate diverse multilayer shells with controllable compositions and structures, is considered as a promising approach for cell encapsulation. This review summarizes the state-of-the-art and potential future biomedical applications of LbL cell encapsulation. First of all, a brief introduction to the LbL self-assembly technique, including assembly mechanisms and technologies, is made. Next, different cell encapsulation strategies by LbL self-assembly techniques are explained. Then, the biomedical applications of LbL cell encapsulation in cell-based biosensors, cell transplantation, cell/molecule delivery, and tissue engineering, are highlighted. Finally, discussions on the current limitations and future perspectives of LbL cell encapsulation are also provided.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Ying Wang
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Wen Zhong
- Department of Biosystem Engineering; Faculty of Agriculture; University of Manitoba; Winnpeg MB Canada
| | - Bingyun Li
- School of Medicine; West Virginia University; Morgantown WV 26506-9196 USA
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering; University of Western; Ontario London N6A 5B9 Canada
| | - Gaoxing Luo
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
| | - Malcolm Xing
- Institute of Burn Research; State Key Laboratory of Trauma; Burn and Combined Injury; Southwest Hospital; Third Military Medical University (Army Medical University); Gaotanyan Street Chongqing 400038 China
- Department of Mechanical Engineering; Faculty of Engineering; University of Manitoba; Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
11
|
Oliveira MB, Hatami J, Mano JF. Coating Strategies Using Layer-by-layer Deposition for Cell Encapsulation. Chem Asian J 2016; 11:1753-64. [PMID: 27213990 DOI: 10.1002/asia.201600145] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/19/2022]
Abstract
The layer-by-layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell-laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.
Collapse
Affiliation(s)
- Mariana B Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Javad Hatami
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Raczkowska J, Stetsyshyn Y, Awsiuk K, Zemła J, Kostruba A, Harhay K, Marzec M, Bernasik A, Lishchynskyi O, Ohar H, Budkowski A. Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Adv 2016. [DOI: 10.1039/c6ra07223b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(4-vinylpyridine)-grafted brushes demonstrate a thermal response of their wettability (stronger than that for spin-coated films), surface morphology, and protein adsorption.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| | | | - Kamil Awsiuk
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| | - Joanna Zemła
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| | - Andrij Kostruba
- Lviv Academy of Commerce
- Lviv Institute for Physical Optics
- 79011 Lviv
- Ukraine
| | | | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
| | | | - Halyna Ohar
- Lviv Polytechnic National University
- 79013 Lviv
- Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics
- Jagiellonian University
- 30-348 Kraków
- Poland
| |
Collapse
|
13
|
Konnova SA, Danilushkina AA, Fakhrullina GI, Akhatova FS, Badrutdinov AR, Fakhrullin RF. Silver nanoparticle-coated “cyborg” microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Adv 2015. [DOI: 10.1039/c4ra15857a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver nanoparticles-coated “cyborg” cells.
Collapse
Affiliation(s)
- S. A. Konnova
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. A. Danilushkina
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - G. I. Fakhrullina
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - F. S. Akhatova
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - A. R. Badrutdinov
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| | - R. F. Fakhrullin
- Bionanotechnology Lab
- Institute of Fundamental Medicine and Biology
- Kazan Federal University
- Kazan
- Russian Federation
| |
Collapse
|
14
|
Jenkins JS, Flickinger MC, Velev OD. Engineering Cellular Photocomposite Materials Using Convective Assembly. MATERIALS 2013; 6:1803-1825. [PMID: 28809244 PMCID: PMC5452526 DOI: 10.3390/ma6051803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022]
Abstract
Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick), organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.
Collapse
Affiliation(s)
- Jessica S Jenkins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, 911 Partners Way, NC 27695, USA.
| | - Michael C Flickinger
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, 911 Partners Way, NC 27695, USA.
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Centennial Campus, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, 911 Partners Way, NC 27695, USA.
| |
Collapse
|
15
|
Small WR, Stoyanov SD, Paunov VN. Scaffold free fabrication of linear multicellular assemblies by dielectrophoretic hydrogel trapping technique. Biomater Sci 2013; 1:996-1002. [DOI: 10.1039/c3bm60118h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Fakhrullin RF, Lvov YM. "Face-lifting" and "make-up" for microorganisms: layer-by-layer polyelectrolyte nanocoating. ACS NANO 2012; 6:4557-4564. [PMID: 22612633 DOI: 10.1021/nn301776y] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Layer-by-layer encapsulation of living biological cells and other microorganisms via sequential adsorption of oppositely charged functional nanoscale components is a promising instrument for engineering cells with enhanced properties and artificial microorganisms. Such nanoarchitectural shells assembled in mild aqueous conditions provide cells with additional abilities, widening their functionality and applications in artificial spore formation, whole-cell biosensors, and fabrication of three-dimensional multicellular clusters.
Collapse
Affiliation(s)
- Rawil F Fakhrullin
- Department of Microbiology, Kazan (Idel buye/Volga region) Federal University, Kreml urami 18, Kazan, Republic of Tatarstan, 420008, Russia
| | | |
Collapse
|
17
|
Chang YW, He P, Marquez SM, Cheng Z. Uniform yeast cell assembly via microfluidics. BIOMICROFLUIDICS 2012; 6:24118-241189. [PMID: 22655026 PMCID: PMC3360730 DOI: 10.1063/1.4714221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/24/2012] [Indexed: 05/06/2023]
Abstract
This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures.
Collapse
|
18
|
Fakhrullin RF, Zamaleeva AI, Minullina RT, Konnova SA, Paunov VN. Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem Soc Rev 2012; 41:4189-206. [DOI: 10.1039/c2cs15264a] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|