1
|
Lindner MM, Alachraf MW, Mitschke B, Schulze P, Leutzsch M, List B. Toward a Formyl-to-Phenyl Conversion: An Unexpected Photochemical Fulvene Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202303119. [PMID: 37329283 DOI: 10.1002/anie.202303119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Toward a conversion of aldehydes into arenes, we designed a sequence involving the initial reaction of an aldehyde to give a fulvene, followed by photochemical and platinum-catalyzed rearrangements into a Dewar benzene derivative, which finally isomerizes into the targeted arene. While computational studies support the plausibility of this route, we found that fulvene irradiation resulted in an unexpected isomerization into a spiro[2.4]heptadiene. This unusual photorearrangement has been investigated mechanistically and provides access to a variety of spiro[2.4]heptadienes with different substituents.
Collapse
Affiliation(s)
- Monika M Lindner
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - M Wasim Alachraf
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Philipp Schulze
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Reizer E, Viskolcz B, Fiser B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. CHEMOSPHERE 2022; 291:132793. [PMID: 34762891 DOI: 10.1016/j.chemosphere.2021.132793] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are mostly formed during the incomplete combustion of organic materials, but their importance and presence in materials science, and astrochemistry has also been proven. These carcinogenic persistent organic pollutants are essential in the formation of combustion generated particles as well. Due to their significant impact on the environment and human health, to understand the formation and growth of PAHs is essential. Therefore, the most important growth mechanisms are reviewed, and presented here from the past four decades (1981-2021) to initiate discussions from a new perspective. Although, the collected and analyzed observations are derived from both experimental, and computational studies, it is neither a systematic nor a comprehensive review. Nevertheless, the mechanisms were divided into three main categories, acetylene additions (e.g. HACA), vinylacetylene additions (HAVA), and radical reactions, and discussed accordingly.
Collapse
Affiliation(s)
- Edina Reizer
- Institute of Chemistry, University of Miskolc, H-3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, H-3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, H-3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary; Ferenc Rákóczi II. Transcarpathian Hungarian College of Higher Education, UA, 90200, Beregszász, Transcarpathia, Ukraine.
| |
Collapse
|
3
|
Grimm S, Baik SJ, Hemberger P, Bodi A, Kempf AM, Kasper T, Atakan B. Gas-phase aluminium acetylacetonate decomposition: revision of the current mechanism by VUV synchrotron radiation. Phys Chem Chem Phys 2021; 23:15059-15075. [PMID: 34231583 DOI: 10.1039/d1cp00720c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although aluminium acetylacetonate, Al(C5H7O2)3, is a common precursor for chemical vapor deposition (CVD) of aluminium oxide, its gas-phase decomposition is not well-known. Here, we studied its thermal decomposition in a microreactor by double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO) between 325 and 1273 K. The reactor flow field was characterized by CFD. Quantum chemical calculations were used for the assignment of certain species. The dissociative ionization of the room temperature precursor molecule starts at a photon energy of 8.5 eV by the rupture of the bond to an acetylacetonate ligand leading to the formation of the Al(C5H7O2)2+ ion. In pyrolysis experiments, up to 49 species were detected and identified in the gas-phase, including reactive intermediates and isomeric/isobaric hydrocarbons, oxygenated species as well as aluminium containing molecules. We detected aluminium bis(diketo)acetylacetonate-H, Al(C5H7O2)C5H6O2, at m/z 224 together with acetylacetone (C5H8O2) as the major initial products formed at temperatures above 600 K. A second decomposition channel affords Al(OH)2(C5H7O2) along with the formation of a substituted pentalene ring species (C10H12O2) as assigned by Franck-Condon simulations and quantum chemical calculations. Acetylallene (C5H6O), acetone (C3H6O) and ketene (C2H2O) were major secondary decomposition products, formed upon decomposition of the primary products. Three gas-phase aromatic hydrocarbons were also detected and partially assigned for the first time: m/z 210, m/z 186 (C14H18 or C12H10O2) and m/z 146 (C11H14 or C9H6O2) and their formation mechanism is discussed. Finally, Arrhenius parameters are presented on the gas-phase decomposition kinetics of Al(C5H7O2)3, aided by numerical simulation of the flow field.
Collapse
Affiliation(s)
- Sebastian Grimm
- University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Chair of Thermodynamics, Duisburg 47057, Germany. and Center for NanoIntegration Duisburg-Essen (CENIDE), Duisburg 47057, Germany
| | - Seung-Jin Baik
- Center for NanoIntegration Duisburg-Essen (CENIDE), Duisburg 47057, Germany and University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Chair of Fluid Dynamics, Duisburg 47057, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Andreas M Kempf
- Center for NanoIntegration Duisburg-Essen (CENIDE), Duisburg 47057, Germany and University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Chair of Fluid Dynamics, Duisburg 47057, Germany
| | - Tina Kasper
- Center for NanoIntegration Duisburg-Essen (CENIDE), Duisburg 47057, Germany and University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Chair of Mass Spectrometry of Reactive Fluids, Duisburg 47057, Germany
| | - Burak Atakan
- University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Chair of Thermodynamics, Duisburg 47057, Germany. and Center for NanoIntegration Duisburg-Essen (CENIDE), Duisburg 47057, Germany
| |
Collapse
|
4
|
Exploring combustion chemistry of 1‐pentene: Flow reactor pyrolysis at various pressures and development of a detailed combustion model. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Cao X, Gong C, Liu J, Ma H, Li Z, Wang J, Li X. Development of a detailed pyrolysis mechanism for C
1
–C
4
hydrocarbons under a wide range of temperature and pressure. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaomei Cao
- College of Aeronautics and Astronautics Sichuan University Chengdu China
| | | | - Jianwen Liu
- Beijing Power Machinery Institute Beijing China
| | - Huimin Ma
- Beijing Power Machinery Institute Beijing China
| | - Zerong Li
- College of Chemistry Sichuan University Chengdu China
| | - Jingbo Wang
- College of Chemical Engineering Sichuan University Chengdu China
| | - Xiangyuan Li
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
6
|
He C, Zhao L, Doddipatla S, Thomas AM, Nikolayev AA, Galimova GR, Azyazov VN, Mebel AM, Kaiser RI. Gas-Phase Synthesis of 3-Vinylcyclopropene via the Crossed Beam Reaction of the Methylidyne Radical (CH; X 2 Π) with 1,3-Butadiene (CH 2 CHCHCH 2 ; X 1 A g ). Chemphyschem 2020; 21:1295-1309. [PMID: 32291897 DOI: 10.1002/cphc.202000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2 Π) with 1,3-butadiene (CH2 CHCHCH2 ; X1 Ag ) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon-carbon double bond of 1,3-butadiene, leading to doublet C5 H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol-1 . Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5 H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | | | - Galiya R Galimova
- Samara National Research University, Samara, 443086, Russian Federation.,Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
7
|
González MG, Marggi Poullain S, Rubio-Lago L, Bañares L. Velocity map imaging study of the photodissociation dynamics of the allyl radical. Phys Chem Chem Phys 2020; 22:5995-6003. [PMID: 32123886 DOI: 10.1039/c9cp04758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation of the allyl radical (CH2[double bond, length as m-dash]CH-CH2˙) following excitation between 216 and 243 nm has been investigated employing velocity map imaging in conjunction with resonance enhanced multiphoton ionization to detect the hydrogen atom and CH3(ν = 0) produced. The translational energy distributions for the two fragments are reported and analyzed along with the corresponding fragment ion angular distributions. The results are discussed in terms of the different reactions pathways characterizing the hydrogen atom elimination and the minor methyl formation. On one hand, the angular analysis provides evidence of an additional mechanism, not reported before, leading to prompt dissociation and fast hydrogen atoms. On the other hand, the methyl elimination channel has been characterized as a function of the excitation energy and the contribution of three reaction pathways: single 1,3-hydrogen shift, double 1,2-hydrogen shift and through the formation of vinylidene have been discussed. Contrary to previous predictions, the vinylidene channel, which plays a significant role at lower energies, seems to vanish following excitation on the E[combining tilde]2B1(3px) excited state at λ≤ 230 nm.
Collapse
Affiliation(s)
- Marta G González
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
8
|
Sun G, Lucas M, Song Y, Zhang J, Brazier C, Houston PL, Bowman JM. H atom Product Channels in the Ultraviolet Photodissociation of the 2-Propenyl Radical. J Phys Chem A 2019; 123:9957-9965. [DOI: 10.1021/acs.jpca.9b07797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ge Sun
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Michael Lucas
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Yu Song
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Christopher Brazier
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, California 90840, United States
| | - Paul L. Houston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States and
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH). Molecules 2019; 24:molecules24061040. [PMID: 30884744 PMCID: PMC6470522 DOI: 10.3390/molecules24061040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/02/2022] Open
Abstract
The formation of polycyclic aromatic hydrocarbons (PAHs) is a strong global concern due to their harmful effects. To help the reduction of their emissions, a crucial understanding of their formation and a deep exploration of their growth mechanism is required. In the present work, the formation of benzo(a)pyrene was investigated computationally employing chrysene and benz(a)anthracene as starting materials. It was assumed a type of methyl addition/cyclization (MAC) was the valid growth mechanism in this case. Consequently, the reactions implied addition reactions, ring closures, hydrogen abstractions and intramolecular hydrogen shifts. These steps of the mechanism were computed to explore benzo(a)pyene formation. The corresponding energies of the chemical species were determined via hybrid density funcional theory (DFT), B3LYP/6-31+G(d,p) and M06-2X/6-311++G(d,p). Results showed that the two reaction routes had very similar trends energetically, the difference between the energy levels of the corresponding molecules was just 6.13 kJ/mol on average. The most stable structure was obtained in the benzo(a)anthracene pathway.
Collapse
|
10
|
Schleier D, Constantinidis P, Faßheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B, Voronova K. Kinetics of the a-C 3H 5 + O 2 reaction, investigated by photoionization using synchrotron radiation. Phys Chem Chem Phys 2018; 20:10721-10731. [PMID: 29340384 DOI: 10.1039/c7cp07893e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of the combustion-relevant reaction of the allyl radical, a-C3H5, with molecular oxygen has been studied in a flow tube reactor at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source storage ring, using the CRF-PEPICO (Combustion Reactions Followed by Photoelectron Photoion Coincidence Spectroscopy) setup. The ability to measure threshold photoelectron spectra enables a background-free detection of reactive species as well as an isomer-specific analysis of reaction products. Allyl was generated by direct photodissociation of allyl iodide at 266 nm and 213 nm and indirectly by the reaction of propene with Cl atoms, which were generated by photolysis from oxalyl chloride at 266 nm. Experiments were conducted at room temperature at low pressures between 0.8 and 3 mbar using Ar as the buffer gas and with excess O2 to maintain nearly pseudo-first-order reaction conditions. Whereas allyl was detected by photoionisation using synchrotron radiation, the main reaction product allyl peroxy was not observed due to dissociative ionisation of this weakly bound species. From the concentration-time profiles of the allyl signal, second-order rate constants between 1.35 × 1011 cm3 mol-1 s-1 at 0.8 mbar and 1.75 × 1011 cm3 mol-1 s-1 at 3 mbar were determined. The rates obtained for the different allyl radical generation schemes agree well with each other, but are about a factor of 2 higher than the ones reported previously using He as a buffer gas. The discrepancy is partly attributed to the higher collision efficiency of Ar causing a varying fall-off behavior. When allyl is produced by the reaction of propene with Cl atom, an unexpected product is observed at m/z = 68, which was identified as 1,3-butadienal in the threshold photoelectron spectrum. It is formed in a secondary reaction of allyl with the OCCl radical, which is generated in the 266 nm photolysis of oxalyl chloride.
Collapse
Affiliation(s)
- D Schleier
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruwe L, Moshammer K, Hansen N, Kohse-Höinghaus K. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames. Phys Chem Chem Phys 2018; 20:10780-10795. [PMID: 29392266 DOI: 10.1039/c7cp07743b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane < 1-pentene < 2M2B. This comparative study enables valuable insights into fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.
Collapse
Affiliation(s)
- Lena Ruwe
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
12
|
Baer T, Tuckett RP. Advances in threshold photoelectron spectroscopy (TPES) and threshold photoelectron photoion coincidence (TPEPICO). Phys Chem Chem Phys 2017; 19:9698-9723. [DOI: 10.1039/c7cp00144d] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The history and evolution of molecular threshold photoelectron spectroscopy and threshold photoelectron photoion coincidence spectroscopy (TPEPICO) over the last fifty years are reviewed.
Collapse
Affiliation(s)
- Tomas Baer
- Chemistry Department
- University of North Carolina
- Chapel Hill
- USA
| | | |
Collapse
|
13
|
Sinha S, Rahman RK, Raj A. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl–indenyl addition. Phys Chem Chem Phys 2017; 19:19262-19278. [DOI: 10.1039/c7cp02539d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resonantly stabilized benzyl and indenyl radicals play a role in the formation of pyrene and fluoranthene.
Collapse
Affiliation(s)
- Sourab Sinha
- Department of Chemical Engineering
- The Petroleum Institute
- Abu Dhabi
- United Arab Emirates
- Department of Chemistry
| | - Ramees K. Rahman
- Department of Chemical Engineering
- The Petroleum Institute
- Abu Dhabi
- United Arab Emirates
| | - Abhijeet Raj
- Department of Chemical Engineering
- The Petroleum Institute
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
14
|
Song Y, Lucas M, Alcaraz M, Zhang J, Brazier C. Ultraviolet Photodissociation Dynamics of the Allyl Radical via the B̃2A1(3s), C̃2B2(3py), and Ẽ2B1(3px) Electronic Excited States. J Phys Chem A 2015; 119:12318-28. [DOI: 10.1021/acs.jpca.5b06684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Song
- Department
of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Michael Lucas
- Department
of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Maria Alcaraz
- Department
of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department
of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Christopher Brazier
- Department of Chemistry and
Biochemistry, California State University, Long Beach, Long Beach, California 90840, United States
| |
Collapse
|
15
|
Moshammer K, Jasper AW, Popolan-Vaida DM, Lucassen A, Diévart P, Selim H, Eskola AJ, Taatjes CA, Leone SR, Sarathy SM, Ju Y, Dagaut P, Kohse-Höinghaus K, Hansen N. Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. J Phys Chem A 2015; 119:7361-74. [PMID: 25695304 DOI: 10.1021/acs.jpca.5b00101] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + ĊH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OĊHOOH intermediate, which predominantly leads to the HPMF.
Collapse
Affiliation(s)
- Kai Moshammer
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States.,‡Department of Chemistry, Bielefeld University, D-33615 Bielefeld, Germany
| | - Ahren W Jasper
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Denisia M Popolan-Vaida
- §Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States.,∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Arnas Lucassen
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Pascal Diévart
- ⊥Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hatem Selim
- #Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arkke J Eskola
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Craig A Taatjes
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Stephen R Leone
- §Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States.,∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - S Mani Sarathy
- #Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yiguang Ju
- ⊥Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Philippe Dagaut
- ∇Centre National de la Recherche Scientifique (CNRS), INSIS, 45071 Orléans Cedex 2, France
| | | | - Nils Hansen
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
16
|
Trogolo D, Maranzana A, Ghigo G, Tonachini G. First Ring Formation by Radical Addition of Propargyl to But-1-ene-3-yne in Combustion. Theoretical Study of the C7H7 Radical System. J Phys Chem A 2014; 118:427-40. [DOI: 10.1021/jp4082905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Trogolo
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Giovanni Ghigo
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Glauco Tonachini
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| |
Collapse
|
17
|
Polino D, Klippenstein SJ, Harding LB, Georgievskii Y. Predictive Theory for the Addition and Insertion Kinetics of 1CH2 Reacting with Unsaturated Hydrocarbons. J Phys Chem A 2013; 117:12677-92. [DOI: 10.1021/jp406246y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Polino
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Dipartimento
di Chimica, Materiali e Ingegneria chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lawrence B. Harding
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuri Georgievskii
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
18
|
Tabor DP, Harding ME, Ichino T, Stanton JF. High-Accuracy Extrapolated Ab Initio Thermochemistry of the Vinyl, Allyl, and Vinoxy Radicals. J Phys Chem A 2012; 116:7668-76. [DOI: 10.1021/jp302527n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel P. Tabor
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| | - Michael E. Harding
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| | - Takatoshi Ichino
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| | - John F. Stanton
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| |
Collapse
|
19
|
Matsugi A, Miyoshi A. Computational study on the recombination reaction between benzyl and propargyl radicals. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20625] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Matsugi A, Suma K, Miyoshi A. Kinetics and Mechanisms of the Allyl + Allyl and Allyl + Propargyl Recombination Reactions. J Phys Chem A 2011; 115:7610-24. [DOI: 10.1021/jp203520j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akira Matsugi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohsuke Suma
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Miyoshi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|