1
|
Das A, Mandal SK, Kumar N, Maity N, Kumar A, Sinha S, Bahadur J, Chowdhury B, Sen D. Diverse pore ordering in porous silica: synthesis and quantitative structural insights based on combining scattering and imaging techniques. Phys Chem Chem Phys 2025. [PMID: 39836466 DOI: 10.1039/d4cp04056b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores. To delve into their structural morphology, we employed complementary characterization techniques, including X-ray scattering, electron microscopy, and gas adsorption. Small-angle X-ray scattering (SAXS) was used to obtain statistically averaged quantitative information about their porous network. Field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) were used to identify their morphology and positional ordering. The information from these three different techniques was indeed complementary in nature. Thus, combining the comparative results from the detailed analyses using scattering, imaging and gas adsorption techniques is effective in providing an overall quantitative understanding about the morphology and pore correlations in this type of porous material with diverse pore structures.
Collapse
Affiliation(s)
- Avik Das
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Satish K Mandal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Nitesh Kumar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Nayan Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Ashwani Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Biswajit Chowdhury
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
2
|
Yang R, Bernardino K, Xiao X, Gomes WR, Mattoso DA, Kotov NA, Bogdan P, de Moura AF. Graph Theoretical Description of Phase Transitions in Complex Multiscale Phases with Supramolecular Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402464. [PMID: 38952077 DOI: 10.1002/advs.202402464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Phase transitions are typically quantified using order parameters, such as crystal lattice distances and radial distribution functions, which can identify subtle changes in crystalline materials or high-contrast phases with large structural differences. However, the identification of phases with high complexity, multiscale organization and of complex patterns during the structural fluctuations preceding phase transitions, which are essential for understanding the system pathways between phases, is challenging for those traditional analyses. Here, it is shown that for two model systems- thermotropic liquid crystals and a lyotropic water/surfactant mixtures-graph theoretical (GT) descriptors can successfully identify complex phases combining molecular and nanoscale levels of organization that are hard to characterize with traditional methodologies. Furthermore, the GT descriptors also reveal the pathways between the different phases. Specifically, centrality parameters and node-based fractal dimension quantify the system behavior preceding the transitions, capturing fluctuation-induced breakup of aggregates and their long-range cooperative interactions. GT parameterization can be generalized for a wide range of chemical systems and be instrumental for the growth mechanisms of complex nanostructures.
Collapse
Affiliation(s)
- Ruochen Yang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Center of Complex Particle Systems (COMPASS), Ann Arbor, MI, 48109-2102, USA
| | - Kalil Bernardino
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Xiongye Xiao
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Center of Complex Particle Systems (COMPASS), Ann Arbor, MI, 48109-2102, USA
| | - Weverson R Gomes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Davi A Mattoso
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Nicholas A Kotov
- Center of Complex Particle Systems (COMPASS), Ann Arbor, MI, 48109-2102, USA
- Department of Chemical Engineering, Department of Materials Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2102, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Center of Complex Particle Systems (COMPASS), Ann Arbor, MI, 48109-2102, USA
| | - André F de Moura
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
3
|
Wang J, Xiong Z, Fan Y, Wang H, An C, Wang B, Yang M, Li X, Wang Y, Wang Y. Lignin/Surfactin Coacervate as an Eco-Friendly Pesticide Carrier and Antifungal Agent against Phytopathogen. ACS NANO 2024; 18:22415-22430. [PMID: 39126678 DOI: 10.1021/acsnano.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Excessive usage of biologically toxic fungicides and their matrix materials poses a serious threat to public health. Leveraging fungicide carriers with inherent pathogen inhibition properties is highly promising for enhancing fungicide efficacy and reducing required dosage. Herein, a series of coacervates have been crafted with lignin and surfactin, both of which are naturally derived and demonstrate substantial antifungal properties. This hierarchically assembled carrier not only effectively loads fungicides with a maximum encapsulation efficiency of 95% but also stably deposits on hydrophobic leaves for high-speed impacting droplets. Intriguingly, these coacervates exhibit broad spectrum fungicidal activity against eight ubiquitous phytopathogens and even act as a standalone biofungicide to replace fungicides. This performance can significantly reduce the fungicide usage and be further strengthened by an encapsulated fungicide. The inhibition rate reaches 87.0% when 0.30 mM pyraclostrobin (Pyr) is encapsulated within this coacervate, comparable to the effectiveness of 0.80 mM Pyr alone. Additionally, the preventive effects against tomato gray mold reached 53%, significantly surpassing those of commercial adjuvants. Thus, it demonstrates that utilizing biosurfactants and biomass with intrinsic antifungal activity to fabricate fully biobased coacervates can synergistically combine the functions of a fungicide carrier and antifungal agent against phytopathogens and guarantee environmental friendliness. This pioneering approach provides deeper insights into synergistically enhancing the effectiveness of agrochemicals from multiple aspects, including fungicide encapsulation, cooperative antifungal action, and droplet deposition.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming Yang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Li
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Algar L, Sicilia MD, Rubio S. Tailoring supramolecular solvents with phosphoryl groups for highly efficient extraction of chlorophenols in natural waters. Anal Chim Acta 2024; 1309:342688. [PMID: 38772668 DOI: 10.1016/j.aca.2024.342688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Chlorophenols are routinely determined in aquatic systems to check compliance with the restrictive international legislations set for protection of human and aquatic life. Their control requires affordable analytical methods, particularly in labs at low- and medium-income countries. Liquid chromatography-UV detection is a convenient technique for this purpose, but the availability of suitable sample processing remains pending. Organic solvents are inefficient for extracting the whole range of chlorophenols whereas solid-phase extractions are expensive and labour-intensive. So, an efficient, fast and cheap extraction of chlorophenols, amenable to any lab, would help to cope with their worldwide analytical control in natural waters. RESULTS A supramolecular solvent (SUPRAS) was tailored for providing mixed interaction mechanisms aimed at the efficient extraction of chlorophenols prior to LC-UV. The SUPRAS was synthesized from the self-assembly of hexylphosphonic acid under acidic conditions and consisted of sponge-like nanostructures made up of amphiphile and water. The phosphoryl (PO) group was selected as the major driver of the extraction because of its ability to act as halogen and hydrogen bond acceptor for chlorophenols. Additional interactions were hydrogen bonds from O-H amphiphilic groups and the surrounding water, and dispersion and CH-π interactions in the hydrocarbon chains. The number of binding sites in the SUPRAS could be modulated by addition of salt. The SUPRAS formed in situ in the sample, the extraction took 5 min, the concentration factor was around 220, quantification limits (0.1-0.3 μg L-1) were below the EU standards, and the method worked for natural waters. SIGNIFICANCE A fast, low-cost, and organic solvent-free sample processing only requiring conventional lab equipment (stirrers and centrifuges) provided SUPRAS extracts that could be directly analyzed by LC-UV. SUPRAS synthesis occurred spontaneously in the water sample under addition of hexylphosphonic acid and the whole process required low skills. The method meets the analytical and operational performances for the analytical control of chlorophenols in natural waters and it is within the reach of any lab.
Collapse
Affiliation(s)
- Lourdes Algar
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - María Dolores Sicilia
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain.
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
5
|
Kadakia P, Valentin JDP, Hong L, Watts S, Hameed OA, Walch M, Salentinig S. Biocompatible Rhamnolipid Self-Assemblies with pH-Responsive Antimicrobial Activity. Adv Healthc Mater 2024; 13:e2302596. [PMID: 37935580 DOI: 10.1002/adhm.202302596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Indexed: 11/09/2023]
Abstract
There is an urgent need for alternative antimicrobial materials due to the growing challenge of bacteria becoming resistant to conventional antibiotics. This study demonstrates the creation of a biocompatible pH-switchable antimicrobial material by combining bacteria-derived rhamnolipids (RL) and food-grade glycerol monooleate (GMO). The integration of RL into dispersed GMO particles, with an inverse-type liquid crystalline cubic structure in the core, leads to colloidally stable supramolecular materials. The composition and pH-triggered structural transformations are studied with small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. The composition-structure-activity relationship is analyzed and optimized to target bacteria at acidic pH values of acute wounds. The new RL/GMO dispersions reduce Staphylococcus aureus (S. aureus) populations by 7-log after 24 h of treatment with 64 µg mL-1 of RL and prevent biofilm formation at pH = 5.0, but have no activity at pH = 7.0. Additionally, the system is active against methicillin-resistant S. aureus (MRSA) with minimum inhibitory concentration of 128 µg mL-1 at pH 5.0. No activity is found against several Gram-negative bacteria at pH 5.0 and 7.0. The results provide a fundamental understanding of lipid self-assembly and the design of lipid-based biomaterials, which can further guide the development of alternative bio-based solutions to combat bacteria.
Collapse
Affiliation(s)
- Parth Kadakia
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Jules D P Valentin
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Owais Abdul Hameed
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
6
|
Mathews PD, Gama GS, Megiati HM, Madrid RRM, Garcia BBM, Han SW, Itri R, Mertins O. Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles. Pharmaceutics 2024; 16:141. [PMID: 38276511 PMCID: PMC10819309 DOI: 10.3390/pharmaceutics16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
Collapse
Affiliation(s)
- Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
- Institute of Biosciences, Sao Paulo State University, Botucatu 18618-689, Brazil
| | - Gabriella S. Gama
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Hector M. Megiati
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Rafael R. M. Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| | - Bianca B. M. Garcia
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Sang W. Han
- Interdisciplinary Center for Gene Therapy, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (B.B.M.G.); (S.W.H.)
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil; (P.D.M.); (G.S.G.); (H.M.M.); (R.R.M.M.)
| |
Collapse
|
7
|
Araújo-Silva H, Teixeira PV, Gomes AC, Lúcio M, Lopes CM. Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochim Biophys Acta Rev Cancer 2023; 1878:189011. [PMID: 37923232 DOI: 10.1016/j.bbcan.2023.189011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.
Collapse
Affiliation(s)
- Henrique Araújo-Silva
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia V Teixeira
- Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Xu C, Fracassi A, Baryiames CP, Bhattacharya A, Devaraj NK, Baiz CR. Sponge-phase Lipid Droplets as Synthetic Organelles: An Ultrafast Study of Hydrogen Bonding and Interfacial Environments. Chemphyschem 2023; 24:e202300404. [PMID: 37486881 DOI: 10.1002/cphc.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.
Collapse
Affiliation(s)
- Cong Xu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Christopher P Baryiames
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| |
Collapse
|
9
|
Flak D, Zalewski T, Fiedorowicz K, Przysiecka Ł, Jarek M, Klimaszyk A, Kempka M, Zimna A, Rozwadowska N, Avaro J, Liebi M, Nowaczyk G. Hybrids of manganese oxide and lipid liquid crystalline nanoparticles (LLCNPs@MnO) as potential magnetic resonance imaging (MRI) contrast agents. J Mater Chem B 2023; 11:8732-8753. [PMID: 37655519 DOI: 10.1039/d3tb01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as T1 contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles. In view of MRI application, the surface properties including the polarity of MnO are crucial factors determining their relaxation rate and thus the MRI efficiency. Two novel hybrid constructs consisting of LLCNPs loaded with hydrophobic MnO-oleate and hydrophilic MnO-DMSA NPs were prepared. These nanosystems were studied in terms of their physico-chemical properties, positive T1 contrast enhancement properties (in vitro and in vivo) and biological safety. LLCNPs@MnO-oleate and LLCNPs@MnO-DMSA hybrids exhibited a heterogeneous phase composition, however with differences in the inner periodic arrangement and structural parameters, as well as in the preferable localization of MnO NPs within the LLCNPs. Also, these hybrids differed in terms of particle size-related parameters and colloidal stability, which was found to be strongly dependent on the addition of differently functionalized MnO NPs. Embedding both types of MnO NPs into LLCNPs resulted in high relaxivity parameters, in comparison to bare MnO-DMSA NPs and also commercially developed CAs (e.g. Dotarem and Teslascan). Further biosafety studies revealed that cell internalization pathways were dependent on the prepared hybrid type, while viability, effects on the mitochondria membrane potential and cytoskeletal networks were rather related to the susceptibility of the particular cell line. The high relaxation rates achieved with the developed hybrid LLCNPs@MnO enable them to be possibly used as novel and biologically safe MRI T1-enhancing CAs in in vivo imaging.
Collapse
Affiliation(s)
- Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Katarzyna Fiedorowicz
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Adam Klimaszyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marek Kempka
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Jonathan Avaro
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics and Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Marianne Liebi
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| |
Collapse
|
10
|
Brasnett C, Squires AM, Smith AJ, Seddon AM. Lipid doping of the sponge (L 3) mesophase. SOFT MATTER 2023; 19:6569-6577. [PMID: 37603381 DOI: 10.1039/d3sm00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.
Collapse
Affiliation(s)
| | - Adam M Squires
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Ave., Didcot, OX11 0DE, UK
| | - Annela M Seddon
- School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK.
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
11
|
Morin M, Björklund S, Nilsson EJ, Engblom J. Bicontinuous Cubic Liquid Crystals as Potential Matrices for Non-Invasive Topical Sampling of Low-Molecular-Weight Biomarkers. Pharmaceutics 2023; 15:2031. [PMID: 37631245 PMCID: PMC10459996 DOI: 10.3390/pharmaceutics15082031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Many skin disorders, including cancer, have inflammatory components. The non-invasive detection of related biomarkers could therefore be highly valuable for both diagnosis and follow up on the effect of treatment. This study targets the extraction of tryptophan (Trp) and its metabolite kynurenine (Kyn), two compounds associated with several inflammatory skin disorders. We furthermore hypothesize that lipid-based bicontinuous cubic liquid crystals could be efficient extraction matrices. They comprise a large interfacial area separating interconnected polar and apolar domains, allowing them to accommodate solutes with various properties. We concluded, using the extensively studied GMO-water system as test-platform, that the hydrophilic Kyn and Trp favored the cubic phase over water and revealed a preference for locating at the lipid-water interface. The interfacial area per unit volume of the matrix, as well as the incorporation of ionic molecules at the lipid-water interface, can be used to optimize the extraction of solutes with specific physicochemical characteristics. We also observed that the cubic phases formed at rather extreme water activities (>0.9) and that wearing them resulted in efficient hydration and increased permeability of the skin. Evidently, bicontinuous cubic liquid crystals constitute a promising and versatile platform for non-invasive extraction of biomarkers through skin, as well as for transdermal drug delivery.
Collapse
Affiliation(s)
- Maxim Morin
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Sebastian Björklund
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Emelie J. Nilsson
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Johan Engblom
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
12
|
Debas M, Freire RVM, Salentinig S. Supramolecular design of CO 2-responsive lipid nanomaterials. J Colloid Interface Sci 2023; 637:513-521. [PMID: 36724665 DOI: 10.1016/j.jcis.2023.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS Stimuli-responsive materials can innovate in various fields, including food and pharmaceutical sciences. Their response to a specific stimulus can be utilized to release loaded bioactive molecules or sense their presence. The biocompatibility and abundance of CO2 in the environment make it an exciting stimulus for such applications. We hypothesize the formation of CO2-responsive self-assemblies of oleyl-amidine in water. Their integration into glycerol-monooleate-based (GMO) dispersions is further thought to form CO2-switchable liquid crystalline nanoparticles. The switch from an non-charged acetamidine surfactant to its cationic amidinium form triggers curvature changes that ultimately induces phase transitions. EXPERIMENTS The CO2-switchable lipid (E)-N,N-dimethyl-N-((Z)-octadec-9-en1-yl)acetimidamide (OAm) is synthesized and formulated into emulsions and dispersed liquid crystals with GMO. The supramolecular structure and its response to CO2 are characterized using small angle X-ray scattering, dynamic light scattering, ζ-potential measurements and cryogenic transmission electron microscopy. FINDINGS Depending on the composition, OAm is discovered to self-assemble into a variety of CO2-responsive lyotropic liquid crystalline structures that can be dispersed in excess water. CO2-triggered colloidal transformations from unstructured OAm-in-water emulsions to direct micelles; dispersed inverse hexagonal phase to direct rod-like micelles, and sponge phase to vesicles are discovered. These structural changes are driven by the reaction of OAm's amidine headgroup with CO2. The results provide a fundamental understanding of CO2-triggered functional nanomaterials and may guide their future design into delivery platforms and biosensors.
Collapse
Affiliation(s)
- Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
13
|
Baranova I, Angelova A, Shepard WE, Andreasson J, Angelov B. Ice crystallization under cryogenic cooling in lipid membrane nanoconfined geometry: Time-resolved structural dynamics. J Colloid Interface Sci 2023; 634:757-768. [PMID: 36565618 DOI: 10.1016/j.jcis.2022.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Time-resolved structural investigations of crystallization of water in lipid/protein/salt mesophases at cryogenic temperatures are significant for comprehension of ice nanocrystal nucleation kinetics in lipid membranous systems and can lead to a better understanding of how to experimentally retard the ice formation that obstructs the protein crystal structure determination. Here, we present a time-resolved synchrotron microfocus X-ray diffraction (TR-XRD) study based on ∼40,000 frames that revealed the dynamics of water-to-ice crystallization in a lipid/protein/salt mesophase subjected to cryostream cooling at 100 K. The monoolein/hemoglobin/salt/water system was chosen as a model composition related to protein-loaded lipid cubic phases (LCP) broadly used for the crystallization of proteins. Under confinement in the nanoscale geometry, metastable short-living cubic ice (Ic) rapidly crystallized well before the formation of hexagonal ice (Ih). The detected early nanocrystalline states of water-to-ice transformation in multicomponent systems are relevant to a broad spectrum of technologies and understanding of natural phenomena, including crystallization, physics of water nanoconfinement, and rational design of anti-freezing and cryopreservation systems.
Collapse
Affiliation(s)
- Iuliia Baranova
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic; MFF, Charles University, CZ-12116 Prague, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic.
| |
Collapse
|
14
|
Aljabbari A, Lokras AG, Kirkensgaard JJK, Rades T, Franzyk H, Thakur A, Zhang Y, Foged C. Elucidating the nanostructure of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles. J Colloid Interface Sci 2023; 633:907-922. [PMID: 36508398 DOI: 10.1016/j.jcis.2022.11.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
We analyzed the structural and material properties of small interfering RNA (siRNA)-loaded lipid-polymer hybrid nanoparticles (LPNs) containing ionizable lipidoid and poly(dl-lactic-co-glycolic acid) (PLGA) using small-angle X-ray scattering, cryogenic transmission electron microscopy, polarized light microscopy, the Langmuir monolayer methodology, differential scanning calorimetry, and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. Scattering analyses showed that bulk lipidoid self-assemble into lamellar structures with a d-spacing of 38 Å, whereas lipidoid-siRNA lipoplexes display an in-plane lateral organization of siRNA in between lipidoid bilayers with a repeat distance of approximately 55 Å. The siRNA-loaded LPNs adopted a core-shell structure with an interaxial alignment of siRNA between lipidoid shell bilayers. Langmuir monolayer experiments showed a distinct interaction between the lipidoid headgroups and siRNA, which was dependent on buffer subphase pH. Thermal analyses suggested that PLGA and lipidoid interact, which was evident from a shift in the phase transition temperature of lipidoid, and the thermotropic phase behavior of lipidoid was affected by inclusion of siRNA. ATR-FTIR data confirmed the shift or disappearance of characteristic absorption bands of siRNA after lipidoid binding. In conclusion, siRNA-loaded LPNs display a core-shell structure, wherein the polymeric core functions as a colloid matrix support for siRNA-loaded lipidoid shell layers.
Collapse
Affiliation(s)
- Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
15
|
Mistry S, Fuhrmann PL, de Vries A, Karshafian R, Rousseau D. Structure-rheology relationship in monoolein liquid crystals. J Colloid Interface Sci 2022; 630:878-887. [DOI: 10.1016/j.jcis.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
16
|
Gorantla S, Saha RN, Singhvi G. Exploring the affluent potential of glyceryl mono oleate – myristol liquid crystal nanoparticles mediated localized topical delivery of Tofacitinib: Study of systematic QbD, skin deposition and dermal pharmacokinetics assessment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Moinpour M, Fracassi A, Brea RJ, Salvador-Castell M, Pandey S, Edwards MM, Seifert S, Joseph S, Sinha SK, Devaraj NK. Controlling Protein Enrichment in Lipid Sponge Phase Droplets using SNAP-tag Bioconjugation. Chembiochem 2021; 23:e202100624. [PMID: 34936727 DOI: 10.1002/cbic.202100624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Indexed: 11/11/2022]
Abstract
All cells use organized lipid compartments to facilitate specific biological functions. Membrane-bound organelles create defined spatial environments that favor unique chemical reactions while isolating incompatible biological processes. Despite the fundamental role of cellular organelles, there is a scarcity of methods for preparing functional artificial lipid-based compartments. Here, we demonstrate a robust bioconjugation system for sequestering proteins into zwitterionic lipid sponge phase droplets. Incorporation of benzylguanine (BG)-modified phospholipids that form stable covalent linkages with an O6-methylguanine DNA methyltransferase (SNAP-tag) fusion protein enables programmable control of protein capture. We show that this methodology can be used to anchor hydrophilic proteins at the lipid-aqueous interface, concentrating them within an accessible but protected chemical environment. SNAP-tag technology enables the integration of proteins that regulate complex biological functions in lipid sponge phase droplets, and should facilitate the development of advanced lipid-based artificial organelles.
Collapse
Affiliation(s)
- Mahta Moinpour
- UCSD: University of California San Diego, Chemistry and Biochemistry, UNITED STATES
| | - Alessandro Fracassi
- UCSD: University of California San Diego, Chemistry and Biochemistry, UNITED STATES
| | - Roberto J Brea
- University of A Coruna: Universidade da Coruna, Chemistry, SPAIN
| | | | - Sudip Pandey
- UCSD: University of California San Diego, Physics, UNITED STATES
| | - Madison M Edwards
- UCSD: University of California San Diego, Chemistry and Biochemistry, UNITED STATES
| | - Soenke Seifert
- Argonne National Laboratory, Xray science division, UNITED STATES
| | - Simpson Joseph
- UCSD: University of California San Diego, Chemistry and Biochemistry, UNITED STATES
| | - Sunil K Sinha
- UCSD: University of California San Diego, Physics, UNITED STATES
| | - Neal Krishna Devaraj
- University of California, San Diego, Chemistry and Biochemistry, 9500 Gilman Drive, Urey Hall 4120, 92093, La Jolla, UNITED STATES
| |
Collapse
|
18
|
Bailey LF, Vavolil Prabhakaran J, Vishwapathi VK, Kulkarni CV. Electroformation of Particulate Emulsions Using Lamellar and Nonlamellar Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14527-14539. [PMID: 34855404 DOI: 10.1021/acs.langmuir.1c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the development of an electroformation technique for the preparation of particulate (particle-based) emulsions. These oil-in-water (here, lipid phase acts as an "oil") emulsions were prepared using nonlamellar lipid phases. Such emulsion particles offer high hydrophobic volumes compared to conventional lipid particles based on lamellar phases (vesicles/liposomes). In addition, the tortuous internal nanostructure contributes through greater surface area per volume of lipid particles allowing an enhanced loading of payloads. The electroformation method makes use of a capacitor formed from two indium tin oxide coated conductive glass surfaces separated by a dielectric aqueous medium. This capacitor setup is enclosed in a custom-designed 3D-printed unit. Lipid molecules, deposited on conductive surfaces, self-assemble into a nanostructure in the presence of an aqueous medium, which when subjected to an alternating current electric field forms nano- and/or microparticles. Optical microscopy, dynamic light scattering, and small-angle X-ray scattering techniques were employed for micro- and nanostructural analyses of electroformed particles. With this method, it is possible to produce particulate emulsions at a very low (e.g., 0.0005 wt % or 0.5 mg/mL) lipid concentration. We demonstrate an applicability of the electroformation method for drug delivery by preparing lipid particles with curcumin, which is a highly important but water-insoluble medicinal compound. As the method employs gentle conditions, it is potentially noninvasive for the delivery of delicate biomolecules and certain drugs, which are prone to decomposition or denaturation due to the high thermomechanical energy input and/or nonaqueous solvents required for existing methods.
Collapse
Affiliation(s)
| | - Jayachandran Vavolil Prabhakaran
- Applied Biology Section, Department of Applied Sciences, University of Technology and Applied Sciences, P. O. Box 74, Al-Khuwair, 133 Muscat, Sultanate of Oman
| | | | | |
Collapse
|
19
|
González-Rubio S, Ballesteros-Gómez A, García-Gómez D, Rubio S. Double-headed amphiphile-based sponge droplets: synthesis, characterization and potential for the extraction of compounds over a wide polarity range. Talanta 2021; 239:123108. [PMID: 34863061 DOI: 10.1016/j.talanta.2021.123108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022]
Abstract
Supramolecular solvents (SUPRASs) are gaining momentum in the multi-residue analysis of liquid samples thanks to the delimited hydrophilic and hydrophobic microenvironments in their nanostructures. In this work, SUPRASs with increased hydrophilicity were synthesized with the aim of enhancing the extractability of polar compounds. For this purpose, a double-headed amphiphile, 1,2-decanediol, was self-assembled in hydro-organic media in the presence and absence of sodium chloride. The SUPRASs formed, characterized by scanning electron microscopy, consisted of sponge droplets made up of a highly convoluted three-dimensional (3D) network of amphiphile. The network contained interconnected bilayers that were intersected by similarly interconnected aqueous channels with high and nearly constant water content (∼30%, w/w). Both the inherently open structure of the sponge morphology and the increased hydrophilic-hydrophobic balance of the amphiphile, provided highly hydrophilic microenvironments into the aggregates that rendered in increased recovery factors for 15 perfluorinated compounds (PFCs, C4-C18, log Pow values from 0.4 to 11.6) in natural waters. Extraction took 15 min without further clean-up or evaporation of extracts which were readily compatible with LC-MS/MS quantitation. Absolute recoveries for PFCs, at the level of a few ng L-1, were in the range 70-120%, except for perfluoropentanoic acid (40%) and perfluorobutane sulfonic acid (51%). Detection limits for PFCs in water were in the range 0.01-0.02 ng L-1, which allowed their determination in slightly polluted waters (0.07-2.33 ng L-1). This work proves that hydrophilicity in SUPRASs can be tailored through the amphiphile and the morphology of their aggregates, and that this characteristic improves compound extractability in multi-residue analysis.
Collapse
Affiliation(s)
- S González-Rubio
- Department of Analytical Chemistry. Institute of Fine Chemistry and Nanochemistry. Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (anexo), E-14071, Córdoba, Spain
| | - A Ballesteros-Gómez
- Department of Analytical Chemistry. Institute of Fine Chemistry and Nanochemistry. Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (anexo), E-14071, Córdoba, Spain.
| | - D García-Gómez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, Spain
| | - S Rubio
- Department of Analytical Chemistry. Institute of Fine Chemistry and Nanochemistry. Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (anexo), E-14071, Córdoba, Spain
| |
Collapse
|
20
|
Paterson DA, Fong WK, Hook S, Gamble AB. Hydrogen Sulfide-Responsive Bicontinuous Nanospheres. Biomacromolecules 2021; 22:4770-4782. [PMID: 34652153 DOI: 10.1021/acs.biomac.1c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Block copolymers (BCPs) that can self-assemble into particles and be triggered by disease-specific molecules such as hydrogen sulfide (H2S) have the potential to impact on drug delivery, decreasing off-target toxicities while increasing drug efficacy. However, the incorporation of H2S-responsive aryl azides into BCPs for self-assembly has been limited by heat, light, and radical sensitivities. In this study, a robust activator regenerated by the electron-transfer atom-transfer radical polymerization reaction was used to synthesize aryl-azide-containing BCPs under ambient conditions. Conditions controlling self-assembly of the BCPs into 150-200 nm particles and the physicochemical properties of the particles were investigated. The use of nanoprecipitation with tetrahydrofuran to promote self-assembly of the BCPs resulted in vesicle structures, while dimethylformamide or dimethylsulfoxide resulted in polymeric bicontinuous nanospheres (BCNs). Triggering of the BCPs and particles (vesicles or BCNs) via exposure to H2S revealed that unsubstituted aryl azides were readily reduced (by HS-), resulting in particle disruption or cross-linking. The relative polar nature of the particle bilayers containing unsubstituted aryl azides and the open structure of the BCNs did however limit encapsulation of small hydrophilic and hydrophobic payloads. Incorporation of a benzylamide substituent onto the aryl azide group increased the hydrophobicity of the particles and encapsulation of hydrophilic cargo but reduced sensitivity to H2S, likely due to the reduced penetration of HS- into the bilayer.
Collapse
Affiliation(s)
| | - Wye-Khay Fong
- Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
21
|
Minnelli C, Moretti P, Laudadio E, Gerelli Y, Pigozzo A, Armeni T, Galeazzi R, Mariani P, Mobbili G. Tuning curvature and phase behavior of monoolein bilayers by epigallocatechin-3-gallate: Structural insight and cytotoxicity. Colloids Surf B Biointerfaces 2021; 209:112171. [PMID: 34736221 DOI: 10.1016/j.colsurfb.2021.112171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/17/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The use of glyceryl monooleate (GMO)-based nanoparticles has not yet been explored in overcoming the low bioavailability of Epigallocatechin-3-gallate (EGCG), a green tea polyphenol with a known anticancer activity. Since the inclusion of a guest molecule can affect the curvature and the supramolecular structure of fully hydrated GMO-based phase, the phase behavior of bulk and dispersed liquid crystalline systems containing EGCG were explored by Small Angle Neutron Scattering and X-Ray Diffraction experiments. Molecular Dynamic Simulations showed how the interaction of EGCG with polar heads of GMO strongly affects the curvature and packing of GMO phase. The EGCG encapsulation efficiency was determined in the nanodispersions and their size studied by Dynamic Light Scattering and Atomic Force Microscopy. A nanodispersed formulation has been optimized with a cytotoxic effect more than additive of GMO and EGCG.
Collapse
Affiliation(s)
- Cristina Minnelli
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Paolo Moretti
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emiliano Laudadio
- Department SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Yuri Gerelli
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Tatiana Armeni
- Department DISCO, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Paolo Mariani
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanna Mobbili
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
22
|
Watts S, Ramstedt M, Salentinig S. Ethanol Inactivation of Enveloped Viruses: Structural and Surface Chemistry Insights into Phi6. J Phys Chem Lett 2021; 12:9557-9563. [PMID: 34581569 DOI: 10.1021/acs.jpclett.1c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid-enveloped viruses, such as Ebola, influenza, or coronaviruses, are a major threat to human health. Ethanol is an efficient disinfectant that is widely used to inactivate these viruses and prevent their transmission. However, the interactions between ethanol and enveloped viruses leading to their inactivation are not yet fully understood. This study demonstrates the link between ethanol-induced viral inactivation and the nanostructural and chemical transformations of the model virus Phi6, an 85 nm diameter lipid-enveloped bacterial virus that is commonly used as surrogate for human pathogenic viruses. The virus morphology was investigated using small-angle X-ray scattering and dynamic light scattering and was related to its infectivity. The Phi6's surface chemistry was characterized by cryogenic X-ray photoelectron spectroscopy, and the modifications in protein structure were assessed by circular dichroism and fluorescence spectroscopy. Ethanol-triggered structural modifications were found in the lipid envelope, detaching from the protein capsid and forming coexisting nanostructures.
Collapse
Affiliation(s)
- Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
23
|
Stability of cubic phase and curvature tuning in the lyotropic system of branched chain galactose-based glycolipid by amphiphilic additives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
pH-responsive aminolipid nanocarriers for antimicrobial peptide delivery. J Colloid Interface Sci 2021; 603:398-407. [PMID: 34197988 DOI: 10.1016/j.jcis.2021.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/06/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS pH-responsive aminolipid self-assemblies are promising platforms for the targeted delivery of antimicrobial peptides (AMPs), with the potential to improve their therapeutic efficiency and physico-chemical stability. EXPERIMENTS pH-sensitive nanocarriers based on dispersed self-assemblies of 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) with the human cathelicidin LL-37 in excess water were characterized at different pH values using small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. Fluorescence and electrophoretic mobility measurements were used to probe the encapsulation efficiency of LL-37 and the nanocarriers' surface potential. FINDINGS Upon decreasing pH in the DODAP/water systems, normal oil-in-water emulsions at pH ≥ 5.0 transitioned to emulsions encapsulating inverse hexagonal and cubic structures at pH between 4.5 and 4.0, and mostly positively-charged vesicles at pH < 4.0. These colloidal transformations are driven by the protonation of DODAP upon pH decrease. The larger lipid-water interfacial area provided by the DODAP self-assemblies at pH ≤ 4.5 allowed for an adequate encapsulation efficiency of LL-37, favouring the formation of vesicles in a concentration-dependent manner. Contrary, LL-37 was found to dissociate from the emulsion droplets at pH 6.0. The knowledge on the pH-triggered self-assembly of LL-37 and DODAP, combined with the results on peptide release from the structures contribute to the fundamental understanding of lipid/peptide self-assembly. The results can guide the rational design of future pH-responsive AMP delivery systems.
Collapse
|
25
|
Zabara M, Ren Q, Amenitsch H, Salentinig S. Bioinspired Antimicrobial Coatings from Peptide-Functionalized Liquid Crystalline Nanostructures. ACS APPLIED BIO MATERIALS 2021; 4:5295-5303. [PMID: 35007010 DOI: 10.1021/acsabm.1c00415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface-associated microbial infections and contaminations are a major challenge in various fields including the food and health sectors. This study demonstrates the design of antimicrobial coatings based on the self-assembly of the food-grade amphiphilic lipid glycerol monooleate with the human cathelicidin-derived antimicrobial peptide LL-37. Structural properties of the coating and their alterations with composition were studied using advanced experimental methods including synchrotron grazing-incidence small-angle X-ray scattering and ellipsometry. The integration of the LL-37 and its potential release from the nanostructured films into the surrounding solution was characterized with confocal Raman microscopy. Additional biological evaluation studies with clinically relevant bacterial strains, namely, Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive), were performed to investigate the antimicrobial activity of the coatings. Significant killing activity of the coating was found against both bacterial strains. The presented findings contribute to the fundamental understanding of lipid-peptide self-assembly on the surface and may open up a promising strategy for designing simple, sustainable antimicrobial coatings for medical and food applications.
Collapse
Affiliation(s)
- Mahsa Zabara
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Department Materials Meet Life, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Heinz Amenitsch
- Institute for Inorganic Chemistry, Graz University of Technology, Stremayergasse 9/V, 8010 Graz, Austria
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
26
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Georgiev MT, Aleksova LA, Kralchevsky PA, Danov KD. Phase separation of saturated micellar network and its potential applications for nanoemulsification. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Tien ND, Maurya AK, Fortunato G, Rottmar M, Zboray R, Erni R, Dommann A, Rossi RM, Neels A, Sadeghpour A. Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11787-11797. [PMID: 32936649 DOI: 10.1021/acs.langmuir.0c01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.
Collapse
Affiliation(s)
- Nguyen D Tien
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Anjani K Maurya
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg 79085, Switzerland
| | - Amin Sadeghpour
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| |
Collapse
|
29
|
Bhattacharya A, Niederholtmeyer H, Podolsky KA, Bhattacharya R, Song JJ, Brea RJ, Tsai CH, Sinha SK, Devaraj NK. Lipid sponge droplets as programmable synthetic organelles. Proc Natl Acad Sci U S A 2020; 117:18206-18215. [PMID: 32694212 PMCID: PMC7414067 DOI: 10.1073/pnas.2004408117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Rupak Bhattacharya
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Jing-Jin Song
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Chu-Hsien Tsai
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
30
|
Cui C, Deng Y, Han L. Bicontinuous cubic phases in biological and artificial self-assembled systems. SCIENCE CHINA MATERIALS 2020; 63:686-702. [PMID: 32219007 PMCID: PMC7094945 DOI: 10.1007/s40843-019-1261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Nature has created innumerable life forms with miraculous hierarchical structures and morphologies that are optimized for different life events through evolution over billions of years. Bicontinuous cubic structures, which are often described by triply periodic minimal surfaces (TPMSs) and their constant mean curvature (CMC)/parallel surface companions, are of special interest to various research fields because of their complex form with unique physical functionalities. This has prompted the scientific community to fully understand the formation, structure, and properties of these materials. In this review, we summarize and discuss the formation mechanism and relationships of the relevant biological structures and the artificial self-assembly systems. These structures can be formed through biological processes with amazing regulation across a great length scales; nevertheless, artificial construction normally produces the structure corresponding to the molecular size and shape. Notably, the block copolymeric system is considered to be an applicable and attractive model system for the study of biological systems due to their versatile design and rich phase behavior. Some of the phenomena found in these two systems are compared and discussed, and this information may provide new ideas for a comprehensive understanding of the relationship between molecular shape and resulting interface curvature and the self-assembly process in living organisms. We argue that the co-polymeric system may serve as a model to understand these biological systems and could encourage additional studies of artificial self-assembly and the creation of new functional materials.
Collapse
Affiliation(s)
- Congcong Cui
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
31
|
Su CY, Lyu Q, Kang DY, Yang ZH, Lam CH, Chen YH, Lo SC, Hua CC, Lin LC. Hexagonal Superalignment of Nano-Objects with Tunable Separation in a Dilute and Spacer-Free Solution. PHYSICAL REVIEW LETTERS 2019; 123:238002. [PMID: 31868485 DOI: 10.1103/physrevlett.123.238002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Manipulating building-block nanomaterials to form an ordered superstructure in a dilute and spacer-free solution phase challenges the existing 5-nm node lithography and nanorobotics. The cooperative nature of nanocrystals, polymers, and cells can lead to superarrays or colloidal crystals. For known highly ordered systems, the characteristic length of materials, defined as the shortest dimension of objects, is generally larger than their separations. A spacer (small-molecule surfactant or polymer) is typically required to diminish short range van der Waals attraction, which results in a glassy or liquid state. Herein we propose a new concept of achieving highly ordered nano-objects in a dilute and spacer-free system via the synergistic effects of excellent solvation and appropriate constraints on rotational motion. As a proof of concept, this study demonstrates that aluminosilicate nanotubes (AlSiNTs) suspended in water under dilute conditions (e.g., 1.0 wt%) can spontaneously form hexagonal arrays with an intertubular distance as large as tens of nanometers. The separation distance of the ordered superstructure is also tunable via controlling the concentration and length of nanotubes. These superaligned structures are probed using small-angle x-ray scattering and cryo-TEM characterizations, with underlying mechanisms investigated at an atomic level using molecular dynamics simulations. The concept and discovery of this work can open up opportunities to a variety of applications including visible-UV photonics and nanolithography, and may be generalizable to other nano-object systems that fulfill similar requirements.
Collapse
Affiliation(s)
- Chien-You Su
- Department of Chemical Engineering, National Chung Cheng University, No.168, Sec. 1, University Rd., Minhsiung, Chiayi 62102, Taiwan
| | - Qiang Lyu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, Ohio 43210, USA
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Zhi-Huei Yang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chon Hei Lam
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Hsiang Chen
- Dept. Electron Microscopy Development and Application, Materials and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Chung Hsing Road, Sec. 4, Hsinchu 31040, Taiwan
| | - Shen-Chuan Lo
- Dept. Electron Microscopy Development and Application, Materials and Chemical Research Laboratories, Industrial Technology Research Institute, No. 195, Chung Hsing Road, Sec. 4, Hsinchu 31040, Taiwan
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, No.168, Sec. 1, University Rd., Minhsiung, Chiayi 62102, Taiwan
| | - Li-Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, Ohio 43210, USA
| |
Collapse
|
32
|
Li Y, Angelova A, Hu F, Garamus VM, Peng C, Li N, Liu J, Liu D, Zou A. pH Responsiveness of Hexosomes and Cubosomes for Combined Delivery of Brucea javanica Oil and Doxorubicin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14532-14542. [PMID: 31635451 DOI: 10.1021/acs.langmuir.9b02257] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report pH-responsive liquid crystalline lipid nanoparticles, which are dual-loaded by Brucea javanica oil (BJO) and doxorubicin hydrochloride (DOX) and display a pH-induced inverted hexagonal (pH = 7.4) to cubic (pH = 6.8) to emulsified microemulsion (pH = 5.3) phase transition with a therapeutic application in cancer inhibition. BJO is a traditional herbal medicine that strongly inhibits the proliferation and metastasis of various cancers. Doxorubicin is an antitumor drug, which prevents DNA replication and hampers protein synthesis through intercalation between the base pairs of the DNA helices. Its dose-dependent cardiotoxicity imposes the need for safe delivery carriers. Here, pH-induced changes in the structural and interfacial properties of designed multicomponent drug delivery (monoolein-oleic acid-BJO-DOX) systems are determined by synchrotron small-angle X-ray scattering and the Langmuir film balance technique. The nanocarrier assemblies display good physical stability in the studied pH range and adequate particle sizes and ζ-potentials. Their interaction with model lipid membrane interfaces is enhanced under acidic pH conditions, which mimic the microenvironment around tumor cells. In vitro cytotoxicity and apoptosis studies with BJO-DOX dual-loaded pH-switchable liquid crystalline nanoparticles are performed on the human breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line and MCF-7 cells with doxorubicin resistance (MCF-7/DOX), respectively. The obtained pH-sensitive nanomedicines exhibit enhanced antitumor efficacy. The performed preliminary studies suggest a potential reversal of the resistance of the MCF-7/DOX cells to DOX. These results highlight the necessity for further understanding the link between the established pH-dependent drug release profiles of the nanocarriers and the role of their pH-switchable inverted hexagonal, bicontinuous cubic, and emulsified microemulsion inner organizations for therapeutic outcomes.
Collapse
Affiliation(s)
- Yawen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Angelina Angelova
- Institut Galien Paris-Sud , CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT , F-92296 Châtenay-Malabry cedex, France
| | - Fangzhou Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research , D-21502 Geesthacht , Germany
| | - Changjun Peng
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Na Li
- National Center for Protein Science Shanghai and Shanghai Institute of Biochemistry and Cell Biology , Shanghai 200237 , P. R. China
| | - Jianwen Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Dan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|
33
|
Andrzejewska W, Wilkowska M, Skrzypczak A, Kozak M. Ammonium Gemini Surfactants Form Complexes with Model Oligomers of siRNA and dsDNA. Int J Mol Sci 2019; 20:ijms20225546. [PMID: 31703275 PMCID: PMC6887939 DOI: 10.3390/ijms20225546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Dimeric cationic surfactants (gemini-type) are a group of amphiphilic compounds with potential use in gene therapy as effective carriers for nucleic acid transfection (i.e., siRNA, DNA, and plasmid DNA). Our studies have shown the formation of lipoplexes composed of alkanediyl-α,ω-bis[(oxymethyl)dimethyldodecylammonium] chlorides and selected 21-base-pair nucleic acid (dsDNA and siRNA) oligomers. To examine the structure and physicochemical properties of these systems, optical microscopy, circular dichroism spectroscopy (CD), small-angle X-ray scattering of synchrotron radiation (SR-SAXS), and agarose gel electrophoresis (AGE) were used. The lengths of spacer groups of the studied surfactants had a significant influence on the surfactants’ complexing properties. The lowest charge ratio (p/n) at which stable lipoplexes were observed was 1.5 and the most frequently occurring microstructure of these lipoplexes were cubic and micellar phases for dsDNA and siRNA, respectively. The cytotoxicity tests on HeLa cells indicated the non-toxic concentration of surfactants to be at approximately 10 µM. The dicationic gemini surfactants studied form complexes with siRNA and dsDNA oligomers; however, the complexation process is more effective towards siRNA. Therefore these systems could be applied as transfection systems for therapeutic nucleic acids.
Collapse
Affiliation(s)
- Weronika Andrzejewska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (W.A.); (M.W.)
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Michalina Wilkowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (W.A.); (M.W.)
| | - Andrzej Skrzypczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (W.A.); (M.W.)
- Joint SAXS Laboratory, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Correspondence: ; Tel.: +48-61-829-5266
| |
Collapse
|
34
|
Andrzejewska W, Wilkowska M, Peplińska B, Skrzypczak A, Kozak M. Structural characterization of transfection nanosystems based on tricationic surfactants and short double stranded oligonucleotides. Biochem Biophys Res Commun 2019; 518:706-711. [PMID: 31472953 DOI: 10.1016/j.bbrc.2019.08.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 11/24/2022]
Abstract
For several years cationic surfactants have been the subjects of extensive studies as potential transgene carriers to be used in gene therapy. We report the formation of stable complexes between 21 base pairs oligonucleotides - siRNA, enhancing DMPK gene, and dsDNA and two tricationic surfactants (1,2,3-propanetri[oxymethyl-3-(1-dodecylimidazolium)]chloride and 1,2,3-propanetri[(oxymethyl)dimethyldodecylammonium]chloride. Structural studies by SAXS and TEM have shown that the dominant structure of the obtained lipoplexes is based on hexagonal, lamellar and cubic phases, packed in highly ordered aggregates. It has been established that tricationic surfactants can be used as siRNA carriers in gene therapy.
Collapse
Affiliation(s)
- Weronika Andrzejewska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Michalina Wilkowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Barbara Peplińska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Skrzypczak
- Faculty of Chemical Technology, Poznan University of Technology, Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; Joint SAXS Laboratory, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
35
|
Valldeperas M, Talaikis M, Dhayal SK, Velička M, Barauskas J, Niaura G, Nylander T. Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases. Biophys J 2019; 117:829-843. [PMID: 31422820 DOI: 10.1016/j.bpj.2019.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Martynas Velička
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | | | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
36
|
Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today 2019; 24:1405-1412. [DOI: 10.1016/j.drudis.2019.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
|
37
|
Prange JA, Aleandri S, Komisarski M, Luciani A, Käch A, Schuh CD, Hall AM, Mezzenga R, Devuyst O, Landau EM. Overcoming Endocytosis Deficiency by Cubosome Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:2490-2499. [DOI: 10.1021/acsabm.9b00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jenny A. Prange
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Simone Aleandri
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Marek Komisarski
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Andres Käch
- Center for Microscopy and Image Analysis, University of Zurich, Zurich 8057, Switzerland
| | | | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Ehud M. Landau
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
38
|
A vesicle-to-sponge transition via the proliferation of membrane-linking pores in ω-3 polyunsaturated fatty acid-containing lipid assemblies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Talaikis M, Valldeperas M, Matulaitienė I, Borzova JL, Barauskas J, Niaura G, Nylander T. On the Molecular Interactions in Lipid Bilayer-Water Assemblies of Different Curvatures. J Phys Chem B 2019; 123:2662-2672. [PMID: 30785750 DOI: 10.1021/acs.jpcb.8b11387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work concerns the importance of intermolecular interactions present in aqueous lipid assembly systems depending on the type of aggregates they form. We have studied aqueous mixtures of diglycerol monooleate, Capmul glycerol monoleate (GMO-50) and polyoxyethylene (20) sorbitan monooleate (Polysorbate 80, P80) using small-angle X-ray scattering (SAXS) measurements to reveal the structure of liquid crystalline phases. On the basis of the SAXS data, a phase diagram was constructed. We discuss the effect of curvature changes of the lipid-aqueous interface obtained by changing the water content and the temperature. The results are related to the intermolecular interactions, as revealed by Raman spectroscopy, with a focus on the bilayer type of system of different curvature and bilayer flexibility, namely, the lamellar phase, bicontinuous cubic phase, and sponge phase. All phases show large similarities in their chain conformation and head group interactions as revealed by the Raman spectra, arising from the fact that all three structures are formed by lipid bilayers. However, subtle differences in the molecular organization of the sponge phase were revealed by employing Raman difference spectroscopy and by analysis of key spectroscopic indicators, which show a less dense hydrocarbon chain packing compared to the inverse bicontinuous cubic or lamellar phase.
Collapse
Affiliation(s)
- Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center , Vilnius University , Sauletekio av. 7 , LT-10257 Vilnius , Lithuania
| | | | - Ieva Matulaitienė
- Department of Organic Chemistry , Center for Physical Sciences and Technology , Sauletekio av. 3 , LT-10257 Vilnius , Lithuania
| | - Jekaterina Latynis Borzova
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center , Vilnius University , Sauletekio av. 7 , LT-10257 Vilnius , Lithuania
| | - Justas Barauskas
- Camurus AB , Ideon Science Park, Gamma Building, Sölvegatan 41 , SE-22379 Lund , Sweden
| | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center , Vilnius University , Sauletekio av. 7 , LT-10257 Vilnius , Lithuania
| | | |
Collapse
|
40
|
Valldeperas M, Dabkowska AP, Pálsson GK, Rogers S, Mahmoudi N, Carnerup A, Barauskas J, Nylander T. Interfacial properties of lipid sponge-like nanoparticles and the role of stabilizer on particle structure and surface interactions. SOFT MATTER 2019; 15:2178-2189. [PMID: 30742188 DOI: 10.1039/c8sm02634c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The advantage of using nonlamellar lipid liquid crystalline phases has been demonstrated in many applications, such as drug delivery, protein encapsulation and crystallisation. We have recently reported that a mixture of mono- and diglycerides is able to form sponge-like nanoparticles (L3-NPs) with large enough aqueous pores to encapsulate macromolecules such as proteins. Here we use small angle neutron scattering (SANS) to reveal morphology, structural and chemical composition of these polysorbate 80 (P80) stabilized sponge phase nanoparticles, not previously known. Our results suggest that L3-NPs have a core-shell sphere structure, with a shell rich in P80. It was also found that even if P80 is mostly located on the surface, it also contributes to the formation of the inner sponge phase structure. An important aspect for the application and colloidal stability of these particles is their interfacial properties. Therefore, the interfacial behaviour of the nanoparticles on hydrophilic silica was revealed by Quartz crystal microbalance with dissipation (QCM-D) and neutron reflectivity (NR). Adsorption experiments reveal the formation of a thin lipid layer, with the dimension corresponding to a lipid bilayer after L3-NPs are in contact with hydrophilic silica. This suggests that the diglycerol monoleate/Capmul GMO-50/P80 particles reorganize themselves on this surface, probably due to interactions between P80 head group and SiO2.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department Chemistry, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Godlewska M, Majkowska-Pilip A, Stachurska A, Biernat JF, Gaweł D, Nazaruk E. Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Monoolein-based nanoparticles for drug delivery to the central nervous system: A platform for lysosomal storage disorder treatment. Eur J Pharm Biopharm 2018; 133:96-103. [PMID: 30315863 DOI: 10.1016/j.ejpb.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115 nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1 h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3 h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.
Collapse
|
43
|
Tran N, Zhai J, Conn CE, Mulet X, Waddington LJ, Drummond CJ. Direct Visualization of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase. J Phys Chem Lett 2018; 9:3397-3402. [PMID: 29809009 DOI: 10.1021/acs.jpclett.8b01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology, including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging because of the short-lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar-to-bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small-angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the center of a lamellar vesicle then propagates outward via the formation of interlamellar attachments and stalks. The observation was possible because of the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By the surveying of the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.
Collapse
Affiliation(s)
- Nhiem Tran
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
- Australian Synchrotron, ANSTO, Clayton , Victoria 3168 , Australia
| | - Jiali Zhai
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | - Charlotte E Conn
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Clayton , Victoria 3168 , Australia
| | | | - Calum J Drummond
- School of Science , RMIT University , Melbourne , Victoria 3000 , Australia
| |
Collapse
|
44
|
Wilner SE, Xiao Q, Graber ZT, Sherman SE, Percec V, Baumgart T. Dendrimersomes Exhibit Lamellar-to-Sponge Phase Transitions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5527-5534. [PMID: 29660277 PMCID: PMC6010174 DOI: 10.1021/acs.langmuir.8b00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lamellar to nonlamellar membrane shape transitions play essential roles in key cellular processes, such as membrane fusion and fission, and occur in response to external stimuli, including drug treatment and heat. A subset of these transitions can be modeled by means of thermally inducible amphiphile assemblies. We previously reported on mixtures of hydrogenated, fluorinated, and hybrid Janus dendrimers (JDs) that self-assemble into complex dendrimersomes (DMSs), including dumbbells, and serve as promising models for understanding the complexity of biological membranes. Here we show, by means of a variety of complementary techniques, that DMSs formed by single JDs or by mixtures of JDs undergo a thermally induced lamellar-to-sponge transition. Consistent with the formation of a three-dimensional bilayer network, we show that DMSs become more permeable to water-soluble fluorophores after transitioning to the sponge phase. These DMSs may be useful not only in modeling isotropic membrane rearrangements of biological systems but also in drug delivery since nonlamellar delivery vehicles can promote endosomal disruption and cargo release.
Collapse
Affiliation(s)
- Samantha E. Wilner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Qi Xiao
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Zachary T. Graber
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Samuel E. Sherman
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders. ACS OMEGA 2018; 3:3235-3247. [PMID: 30023865 PMCID: PMC6044969 DOI: 10.1021/acsomega.7b01935] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 06/01/2023]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are bioactive lipids with considerable impact in medicine and nutrition. These compounds exert structuring effects on the cellular membrane organization, regulate the gene expression, and modulate various signaling cascades and metabolic processes. The purpose of the present work is to demonstrate the structural features of ω-3 PUFA-containing three-dimensional supramolecular lipid assemblies suitable for pharmaceutical applications that require soft porous carriers. We investigate the liquid crystalline structures formed upon mixing of eicosapentaenoic acid (EPA, 20:5) with the lyotropic nonlamellar lipid monoolein and the formation of multicompartment assemblies. Starting with the monoolein-based lipid cubic phase, double membrane vesicles, cubosome precursors, sponge-type particles (spongosomes), mixed intermediate nonlamellar structures, and multicompartment assemblies are obtained through self-assembly at different amphiphilic compositions. The dispersions containing spongosomes as well as nanocarriers with oil and vesicular compartments are stabilized by PEGylation of the lipid/water interfaces using a phospholipid with a poly(ethylene glycol) chain. The microstructures of the bulk mixtures were examined by cross-polarized light optical microscopy. The dispersed liquid crystalline structures and intermediate states were studied by small-angle X-ray scattering, cryogenic transmission electron microscopy, and quasielastic light scattering techniques. They established that PUFA influences the phase type and the sizes of the aqueous compartments of the liquid crystalline carriers. The resulting multicompartment systems and stealth nanosponges may serve as mesoporous reservoirs for coencapsulation of ω-3 PUFA (e.g., EPA) with water-insoluble drugs and hydrophilic macromolecules toward development of combination treatment strategies of neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Angelina Angelova
- Institut
Galien Paris-Sud, LabEx LERMIT, CNRS UMR
8612, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry Cedex, France
| | - Markus Drechsler
- Key
Lab “Electron and Optical Microscopy”, Bavarian Polymer
Institute (BPI), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Vasil M. Garamus
- Helmholtz-Zentrum
Geesthacht: Centre for Materials and Coastal Research, D-21502 Geesthacht, Germany
| | - Borislav Angelov
- Institute
of Physics, ELI Beamlines, Academy of Sciences
of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| |
Collapse
|
46
|
van 't Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 2018; 46:2705-2731. [PMID: 28280815 DOI: 10.1039/c6cs00663a] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
47
|
Tran N, Mulet X, Hawley AM, Fong C, Zhai J, Le TC, Ratcliffe J, Drummond CJ. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2764-2773. [PMID: 29381863 DOI: 10.1021/acs.langmuir.7b03541] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.
Collapse
Affiliation(s)
- Nhiem Tran
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | - Xavier Mulet
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | - Adrian M Hawley
- Australian Synchrotron, ANSTO , Clayton, Victoria 3149, Australia
| | - Celesta Fong
- CSIRO Manufacturing , Clayton, Victoria 3149, Australia
| | | | | | | | | |
Collapse
|
48
|
Truong-Cong T, Millart E, Tran LTC, Amenitsch H, Frebourg G, Lesieur S, Faivre V. A scalable process to produce lipid-based compartmented Janus nanoparticles with pharmaceutically approved excipients. NANOSCALE 2018; 10:3654-3662. [PMID: 29431806 DOI: 10.1039/c7nr08488a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnologies, theranostic approaches and fixed-dose combination products require the development of innovative carriers able to co-encapsulate several entities of interest. This communication describes the preparation and characterization of lipid-based Janus compartmented nanoparticles. They were successfully prepared using a scalable process with pharmaceutically approved excipients. The analysis of the microscopic structure and supramolecular organization demonstrated the formation of two physico-chemically different compartments enabling the co-administration at once of both liposoluble and hydrosoluble active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Tri Truong-Cong
- Institut Galien Paris-Sud, Université Paris-Saclay, Univ. Paris-Sud, Labex LERMIT, 5 rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Liu Q, Graham B, Hawley A, Dong YD, Boyd BJ. Novel agrochemical conjugates with self-assembling behaviour. J Colloid Interface Sci 2018; 512:369-378. [PMID: 29096098 DOI: 10.1016/j.jcis.2017.10.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS That conjugation of agrichemicals to pro-assembly hydrophobic moieties will enable enhanced compatibility and loading with host lyotropic liquid crystalline carrier matrix, and potentially self-assemble in their own right in aqueous environments. EXPERIMENTS A series of lipid-like agrochemical-conjugates were synthesized using specific amphiphilic entities conjugated onto the agrochemicals, picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). The self-assembly behaviour and compatibility of the novel entities when incorporated into phytantriol and monoolein-based liquid crystalline systems were examined using small angle X-ray scattering, cryo-TEM and polarized optical microscopy. FINDINGS Compared to agrochemical-conjugates with simple alkyl ester groups, the esterification of the agrochemicals with amphiphilic groups such as phytantriol and monoolein led to greater structural compatibility and consequently a greater loading of the agrochemicals in the liquid crystalline systems without destabilizing phase structure. Picloram-monoolein and picloram-monoelaidin can self-assemble to form lamellar structures in water. However, certain agrochemical-conjugates such as picloram-monoelaidin and picloram-PEGn-oleate showed poor compatibility with liquid crystalline systems, resulting in phase separation.
Collapse
Affiliation(s)
- Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Clayton, VIC, Australia
| | - Yao-Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
50
|
Cherny AY, Anitas EM, Osipov VA, Kuklin AI. Small-angle scattering from the Cantor surface fractal on the plane and the Koch snowflake. Phys Chem Chem Phys 2018; 19:2261-2268. [PMID: 28054690 DOI: 10.1039/c6cp07496k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, correlations can be built in the mass fractal amplitudes, which explains the decay of the scattering intensity I(q) ∼ qDs-4, with 1 < Ds < 2 being the fractal dimension of the perimeter. The curve I(q)q4-Ds is found to be log-periodic in the fractal region with a period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of the sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of the Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.
Collapse
Affiliation(s)
- Alexander Yu Cherny
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation. and Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34051, Republic of Korea
| | - Eugen M Anitas
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation. and Horia Hulubei National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest-Magurele, Romania
| | - Vladimir A Osipov
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation.
| | - Alexander I Kuklin
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation. and Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| |
Collapse
|