1
|
Yi X, Liu S, Zhao T, Guo X, Zhou K, Ding W, Wang W. Temperature-Programmed Desorption of Single Zeolite Nanoparticles. J Am Chem Soc 2024. [PMID: 39566071 DOI: 10.1021/jacs.4c09274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Zeolites are essential solid acid catalysts in various chemical processes. Temperature-programmed desorption (TPD) is one of the most established techniques used to characterize the acidity of zeolites by measuring the desorption kinetics of probes from bulk samples. However, conventional TPD can hardly deliver the intrinsic acid properties of zeolites because the apparent desorption kinetics are inevitably mixed with mass transfer and thermal conduction due to the large sample amount (∼0.1 g). Herein, we developed an optical microscopy approach to measure the TPD spectra of single zeolite nanoparticles, termed oTPD, by in situ monitoring of the reduced scattering intensity of individuals as a result of the desorption of probe molecules during heating. A significantly reduced sample amount contributed to the oTPD spectrum, revealing an intrinsic desorption temperature of ∼300 °C lower than the apparent value and also a greatly narrowed peak width from ∼150 to ∼15 °C. Correlating oTPD and micro-Raman spectra of the very same individuals further uncovered a linear dependence between the acidity and the content of silicon islands. This study provided unprecedented capabilities for measuring the intrinsic acid properties and the desorption kinetics of single zeolite nanoparticles, with implications for better understanding the structure-acidity relationship and for designing better zeolite catalysts.
Collapse
Affiliation(s)
- Xuannuo Yi
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Taotao Zhao
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangke Guo
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhang B, Zhang D, Bao J, Han C, Song P, Xu W. Revealing the heterogeneous catalytic kinetics of PtRu nanocatalysts at the single particle level. Analyst 2024; 149:5184-5190. [PMID: 39258315 DOI: 10.1039/d4an01017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Comparison of the structural features and catalytic performance of bimetallic nanocatalysts will help to develop a unified understanding of structure-reaction relationships. The single-molecule fluorescence technique was utilized to reveal the differences in catalytic kinetics among PtRu bimetallic nanocatalysts and Pt and Ru monometallic nanocatalysts at the single particle level. The results show that bimetallic nanocatalysts have higher apparent rate constants and desorption rate constants relative to monometallic nanocatalysts, which leads to their higher catalytic activity. At the single particle level, bimetallic nanocatalysts have a wider distribution of apparent rate constants, suggesting that bimetallic nanocatalysts have higher activity heterogeneity relative to monometallic nanocatalysts. By investigating the relationship between the reaction rate and the rate of dynamic activity fluctuations, it was found that spontaneous surface restructuring and reaction-induced surface restructuring of nanoparticles occurred. The surface of bimetallic nanoparticles restructured faster, which made the bimetallic nanocatalysts more active. These findings provide new insights into the design of highly active bimetallic nanocatalysts.
Collapse
Affiliation(s)
- Bowei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Dezheng Zhang
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jinpeng Bao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ce Han
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Provincial Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Filez M, Walke P, Le-The H, Toyouchi S, Peeters W, Tomkins P, Eijkel JCT, De Feyter S, Detavernier C, De Vos DE, Uji-I H, Roeffaers MBJ. Nanoscale Chemical Diversity of Coke Deposits on Nanoprinted Metal Catalysts Visualized by Tip-Enhanced Raman Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305984. [PMID: 37938141 DOI: 10.1002/adma.202305984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Coke formation is the prime cause of catalyst deactivation, where undesired carbon wastes block the catalyst surface and hinder further reaction in a broad gamut of industrial chemical processes. Yet, the origins of coke formation and their distribution across the catalyst remain elusive, obstructing the design of coke-resistant catalysts. Here, the first-time application of tip-enhanced Raman spectroscopy (TERS) is demonstrated as a nanoscale chemical probe to localize and identify coke deposits on a post-mortem metal nanocatalyst. Monitoring coke at the nanoscale circumvents bulk averaging and reveals the local nature of coke with unmatched detail. The nature of coke is chemically diverse and ranges from nanocrystalline graphite to disordered and polymeric coke, even on a single nanoscale location of a top-down nanoprinted SiO2 -supported Pt catalyst. Surprisingly, not all Pt is an equal producer of coke, where clear isolated coke "hotspots" are present non-homogeneously on Pt which generate large amounts of disordered coke. After their formation, coke shifts to the support and undergoes long-range transport on the surrounding SiO2 surface, where it becomes more graphitic. The presented results provide novel guidelines to selectively free-up the coked metal surface at more mild rejuvenation conditions, thus securing the long-term catalyst stability.
Collapse
Affiliation(s)
- Matthias Filez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Peter Walke
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hai Le-The
- BIOS Lab-on-a-Chip Group, MESA+ Institute, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Shuichi Toyouchi
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Wannes Peeters
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Patrick Tomkins
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jan C T Eijkel
- BIOS Lab-on-a-Chip Group, MESA+ Institute, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hiroshi Uji-I
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
5
|
Werny MJ, Siebers KB, Friederichs NH, Hendriksen C, Meirer F, Weckhuysen BM. Advancing the Compositional Analysis of Olefin Polymerization Catalysts with High-Throughput Fluorescence Microscopy. J Am Chem Soc 2022; 144:21287-21294. [DOI: 10.1021/jacs.2c09159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian J. Werny
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600AX Eindhoven, The Netherlands
| | - Kirsten B. Siebers
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | | | - Coen Hendriksen
- SABIC Technology Center, Urmonderbaan 22, 6167RD Geleen, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Gao M, Wan X, Lai S, Hu K, Chen X, Zeng F, Chen Z, Qian Y, Cui H, Zhu J, Ding G. Measurement of apparent diffusion constant on the cross‐section of thin
PVA
films under a free swelling condition with a facile electronic device. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Meiling Gao
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Xianglong Wan
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
- Anhui International Joint Research Center for Nano Carbon‐based Materials and Environmental Health Huainan China
| | - Shengfa Lai
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Kaiqiang Hu
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Xihui Chen
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Fei Zeng
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Zhibo Chen
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Yanfeng Qian
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Hao Cui
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| | - Jianghui Zhu
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL) University of Heidelberg Heidelberg Germany
| | - Guoxin Ding
- School of Materials Science and Engineering Anhui University of Science and Technology Huainan China
| |
Collapse
|
7
|
Zendehdel M, Cruciani G, Barghi B. Micro-meso structure NaP zeolite @TiO 2 nanocomposite: eco-friendly photocatalyst for simultaneous removal COD and degradation of methylene blue under solar irradiation. Photochem Photobiol Sci 2022; 21:1011-1029. [PMID: 35287186 DOI: 10.1007/s43630-022-00190-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
Abstract
A low-cost NaP zeolite@TiO2 nanocomposite catalyst with zeolite Si/Al ratio lower than three were synthesized for the first time under hydrothermal condition. The nanocomposites were characterized by different methods such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), N2 physisorption, NH3 temperature-programmed desorption (NH3-TPD), fluorescence microscopy, thermal analysis (TGA/DTA) and zeta potential analysis. The results showed that a micro-meso structure NaP zeolite with higher surface area and acidity with respect to pure zeolite was prepared. TiO2 nanoparticle was dispersed over the whole of zeolite without aggregation. A reduction of the TiO2 bandgap nanoparticle was observed from DRS spectra. The photocatalytic activity of low-cost NaP zeolite@TiO2 nanocomposite was tested for simultaneous methylene blue dye (MB) and chemical oxygen demand (COD) under solar and ultraviolet light. The result showed that the nanocomposite catalyst has great potential (above 90%) for COD removal discolouring of MB (about 99.6%) at room temperature. The optimum amount of some parameters such as the loaded amount of TiO2 (0.36 g), catalyst dosage (0.1 g), time (2 h), initial dye concentration (100 mg/L), solution pH value (about 7) under solar light were considered. In addition, present negative charge in the surface that show in zeta potential confirm the high activity of catalyst to interaction with cationic dye. As a further advantage, the NaP zeolite@TiO2 nanocomposite was easier to be separated in aqueous media than the pure TiO2 powders, making possible the reuse several times (over five runs) without using oxidant. Finally, the NaP zeolite@TiO2 nanocomposite was used for COD abatement in wastewater from two real industrial streams. The MB degradation kinetics were fitted by a pseudo-first-order model with K = 0.534 h-1.
Collapse
Affiliation(s)
- Mojgan Zendehdel
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran. .,Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran.
| | - Giuseppe Cruciani
- Department of Physics and Earth Sciences, University of Ferrara, Via G. Saragat 1, 44122, Ferrara, Italy
| | - Babak Barghi
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran
| |
Collapse
|
8
|
Lincoln R, Zhang W, Lovell TC, Jodko-Piórecka K, Devlaminck PA, Sakaya A, Van Kessel A, Cosa G. Chemically Tuned, Reversible Fluorogenic Electrophile for Live Cell Nanoscopy. ACS Sens 2022; 7:166-174. [PMID: 34985871 DOI: 10.1021/acssensors.1c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a chemically tuned fluorogenic electrophile designed to conduct live-cell super-resolution imaging by exploiting its stochastic reversible alkylation reaction with cellular nucleophiles. Consisting of a lipophilic BODIPY fluorophore tethered to an electrophilic cyanoacrylate warhead, the new probe cyanoAcroB remains nonemissive due to internal conversion along the cyanoacrylate moiety. Intermittent fluorescence occurs following thiolate Michael addition to the probe, followed by retro-Michael reaction, tuned by the cyano moiety in the acrylate warhead and BODIPY decoration. This design enables long-term super-resolved imaging of live cells by preventing fluorescent product accumulation and background increase, while preserving the pool of the probe. We demonstrate the imaging capabilities of cyanoAcroB via two methods: (i) single-molecule localization microscopy imaging with nanometer accuracy by stochastic chemical activation and (ii) super-resolution radial fluctuation. The latter tolerates higher probe concentrations and low imaging powers, as it exploits the stochastic adduct dissociation. Super-resolved imaging with cyanoAcroB reveals that electrophile alkylation is prevalent in mitochondria and endoplasmic reticulum. The 2D dynamics of these organelles within a single cell are unraveled with tens of nanometers spatial and sub-second temporal resolution through continuous imaging of cyanoAcroB extending for tens of minutes. Our work underscores the opportunities that reversible fluorogenic probes with bioinspired warheads bring toward illuminating chemical reactions with super-resolved features in live cells.
Collapse
Affiliation(s)
- Richard Lincoln
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Wenzhou Zhang
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Terri C. Lovell
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Katarzyna Jodko-Piórecka
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Pierre A. Devlaminck
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Antonius Van Kessel
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| |
Collapse
|
9
|
Abstract
AbstractNanoporous solids, including microporous, mesoporous and hierarchically structured porous materials, are of scientific and technological interest because of their high surface-to-volume ratio and ability to impose shape- and size-selectivity on molecules diffusing through them. Enormous efforts have been put in the mechanistic understanding of diffusion–reaction relationships of nanoporous solids, with the ultimate goal of developing materials with improved catalytic performance. Single-molecule localization microscopy can be used to explore the pore space via the trajectories of individual molecules. This ensemble-free perspective directly reveals heterogeneities in diffusion and diffusion-related reactivity of individual molecules, which would have been obscured in bulk measurements. In this article, we review developments in the spatial and temporal characterization of nanoporous solids using single-molecule localization microscopy. We illustrate various aspects of this approach, and showcase how it can be used to follow molecular diffusion and reaction behaviors in nanoporous solids.
Collapse
|
10
|
Fleury G, Roeffaers MBJ. Correlating Acid Site Distribution and Catalytic Activity in Dealuminated Mordenite at the Single-Particle Level. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guillaume Fleury
- Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B. J. Roeffaers
- Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Single Particle Approaches to Plasmon-Driven Catalysis. NANOMATERIALS 2020; 10:nano10122377. [PMID: 33260302 PMCID: PMC7761459 DOI: 10.3390/nano10122377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Plasmonic nanoparticles have recently emerged as a promising platform for photocatalysis thanks to their ability to efficiently harvest and convert light into highly energetic charge carriers and heat. The catalytic properties of metallic nanoparticles, however, are typically measured in ensemble experiments. These measurements, while providing statistically significant information, often mask the intrinsic heterogeneity of the catalyst particles and their individual dynamic behavior. For this reason, single particle approaches are now emerging as a powerful tool to unveil the structure-function relationship of plasmonic nanocatalysts. In this Perspective, we highlight two such techniques based on far-field optical microscopy: surface-enhanced Raman spectroscopy and super-resolution fluorescence microscopy. We first discuss their working principles and then show how they are applied to the in-situ study of catalysis and photocatalysis on single plasmonic nanoparticles. To conclude, we provide our vision on how these techniques can be further applied to tackle current open questions in the field of plasmonic chemistry.
Collapse
|
12
|
|
13
|
|
14
|
Cavell AC, Krasecki VK, Li G, Sharma A, Sun H, Thompson MP, Forman CJ, Guo SY, Hickman RJ, Parrish KA, Aspuru-Guzik A, Cronin L, Gianneschi NC, Goldsmith RH. Optical monitoring of polymerizations in droplets with high temporal dynamic range. Chem Sci 2020; 11:2647-2656. [PMID: 34084323 PMCID: PMC8157680 DOI: 10.1039/c9sc05559b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The ability to optically monitor a chemical reaction and generate an in situ readout is an important enabling technology, with applications ranging from the monitoring of reactions in flow, to the critical assessment step for combinatorial screening, to mechanistic studies on single reactant and catalyst molecules. Ideally, such a method would be applicable to many polymers and not require only a specific monomer for readout. It should also be applicable if the reactions are carried out in microdroplet chemical reactors, which offer a route to massive scalability in combinatorial searches. We describe a convenient optical method for monitoring polymerization reactions, fluorescence polarization anisotropy monitoring, and show that it can be applied in a robotically generated microdroplet. Further, we compare our method to an established optical reaction monitoring scheme, the use of Aggregation-Induced Emission (AIE) dyes, and find the two monitoring schemes offer sensitivity to different temporal regimes of the polymerization, meaning that the combination of the two provides an increased temporal dynamic range. Anisotropy is sensitive at early times, suggesting it will be useful for detecting new polymerization "hits" in searches for new reactivity, while the AIE dye responds at longer times, suggesting it will be useful for detecting reactions capable of reaching higher molecular weights.
Collapse
Affiliation(s)
- Andrew C Cavell
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Veronica K Krasecki
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Guoping Li
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Abhishek Sharma
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow Scotland G12 8QQ UK
| | - Hao Sun
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew P Thompson
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Christopher J Forman
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Si Yue Guo
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
| | - Katherine A Parrish
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
- Canadian Institute for Advanced Research (CIFAR) Senior Fellow Toronto Ontario M5S 1M1 Canada
- CIFAR Artificial Intelligence Chair, Vector Institute Toronto Ontario M5S 1M1 Canada
| | - Leroy Cronin
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow Scotland G12 8QQ UK
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
15
|
Gao Y, Nie W, Wang X, Fan F, Li C. Advanced space- and time-resolved techniques for photocatalyst studies. Chem Commun (Camb) 2020; 56:1007-1021. [DOI: 10.1039/c9cc07128h] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanoparticle photocatalysts present the obvious characteristic of heterogeneity in structure, energy, and function at spatial and temporal scales.
Collapse
Affiliation(s)
- Yuying Gao
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Wei Nie
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Xiuli Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Fengtao Fan
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Can Li
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| |
Collapse
|
16
|
Levin S, Fritzsche J, Nilsson S, Runemark A, Dhokale B, Ström H, Sundén H, Langhammer C, Westerlund F. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat Commun 2019; 10:4426. [PMID: 31562383 PMCID: PMC6764984 DOI: 10.1038/s41467-019-12458-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
Studying single catalyst nanoparticles, during reaction, eliminates averaging effects that are an inherent limitation of ensemble experiments. It enables establishing structure-function correlations beyond averaged properties by including particle-specific descriptors such as defects, chemical heterogeneity and microstructure. Driven by these prospects, several single particle catalysis concepts have been implemented. However, they all have limitations such as low throughput, or that they require very low reactant concentrations and/or reaction rates. In response, we present a nanofluidic device for highly parallelized single nanoparticle catalysis in solution, based on fluorescence microscopy. Our device enables parallel scrutiny of tens of single nanoparticles, each isolated inside its own nanofluidic channel, and at tunable reaction conditions, ranging from the fully mass transport limited regime to the surface reaction limited regime. In a wider perspective, our concept provides a versatile platform for highly parallelized single particle catalysis in solution and constitutes a promising application area for nanofluidics.
Collapse
Affiliation(s)
- Sune Levin
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sara Nilsson
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - August Runemark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Bhausaheb Dhokale
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
17
|
Bolivar JM, Nidetzky B. The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules 2019; 24:molecules24193460. [PMID: 31554193 PMCID: PMC6803829 DOI: 10.3390/molecules24193460] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The liquid milieu in which enzymes operate when they are immobilized in solid materials can be quite different from the milieu in bulk solution. Important differences are in the substrate and product concentration but also in pH and ionic strength. The internal milieu for immobilized enzymes is affected by the chemical properties of the solid material and by the interplay of reaction and diffusion. Enzyme performance is influenced by the internal milieu in terms of catalytic rate (“activity”) and stability. Elucidation, through direct measurement of differences in the internal as compared to the bulk milieu is, therefore, fundamentally important in the mechanistic characterization of immobilized enzymes. The deepened understanding thus acquired is critical for the rational development of immobilized enzyme preparations with optimized properties. Herein we review approaches by opto-chemical sensing to determine the internal milieu of enzymes immobilized in porous particles. We describe analytical principles applied to immobilized enzymes and focus on the determination of pH and the O2 concentration. We show measurements of pH and [O2] with spatiotemporal resolution, using in operando analysis for immobilized preparations of industrially important enzymes. The effect of concentration gradients between solid particle and liquid bulk on enzyme performance is made evident and quantified. Besides its use in enzyme characterization, the method can be applied to the development of process control strategies.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
18
|
Pini R, Joss L. See the unseen: applications of imaging techniques to study adsorption in microporous materials. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Zhang Z, Wu H, Yu Z, Song R, Qian K, Chen X, Tian J, Zhang W, Huang W. Site‐Resolved Cu
2
O Catalysis in the Oxidation of CO. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenhua Zhang
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Hong Wu
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Zongyou Yu
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Rui Song
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Xuanye Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Jie Tian
- Engineering and Materials Science Experiment CenterUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- Department of Materials Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical PhysicsUniversity of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
20
|
Zhang Z, Wu H, Yu Z, Song R, Qian K, Chen X, Tian J, Zhang W, Huang W. Site-Resolved Cu 2 O Catalysis in the Oxidation of CO. Angew Chem Int Ed Engl 2019; 58:4276-4280. [PMID: 30680863 DOI: 10.1002/anie.201814258] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 11/07/2022]
Abstract
The identification of the contribution of different surface sites to the catalytic activity of a catalyst nanoparticle is one of the most challenging issues in the fundamental studies of heterogeneous catalysis. We herein demonstrate an effective strategy of using a series of uniform cubic Cu2 O nanocrystals with different sizes to identify the intrinsic activity and contributions of face and edge sites in the catalysis of CO oxidation by a combination of reaction kinetics analysis and DFT calculations. Cu2 O nanocrystals undergo in situ surface oxidation forming CuO thin films during CO oxidation. As the average size of the cubic Cu2 O nanocrystals decreases from 1029 nm to 34 nm, the dominant active sites contributing to the catalytic activity switch from face sites to edge sites. These results reveal the interplay between the intrinsic catalytic activity and the density of individual types of surface sites on a catalyst nanoparticle in determining their contributions to the catalytic activity.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zongyou Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Rui Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuanye Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Tian
- Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.,Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
21
|
Ye R, Mao X, Sun X, Chen P. Analogy between Enzyme and Nanoparticle Catalysis: A Single-Molecule Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rong Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiangcheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Ristanović Z, Chowdhury AD, Brogaard RY, Houben K, Baldus M, Hofkens J, Roeffaers MBJ, Weckhuysen BM. Reversible and Site-Dependent Proton-Transfer in Zeolites Uncovered at the Single-Molecule Level. J Am Chem Soc 2018; 140:14195-14205. [PMID: 30280894 PMCID: PMC6213027 DOI: 10.1021/jacs.8b08041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Zeolite
activity and selectivity is often determined by the underlying
proton and hydrogen-transfer reaction pathways. For the first time,
we use single-molecule fluorescence microscopy to directly follow
the real-time behavior of individual styrene-derived carbocationic
species formed within zeolite ZSM-5. We find that intermittent fluorescence
and remarkable photostability of carbocationic intermediates strongly
depend on the local chemical environment imposed by zeolite framework
and guest solvent molecules. The carbocationic stability can be additionally
altered by changing para-substituent on the styrene
moiety, as suggested by DFT calculations. Thermodynamically unstable
carbocations are more likely to switch between fluorescent (carbocationic)
and dark (neutral) states. However, the rate constants of this reversible
change can significantly differ among individual carbocations, depending
on their exact location in the zeolite framework. The lifetimes of
fluorescent states and reversibility of the process can be additionally
altered by changing the interaction between dimeric carbocations and
solvated Brønsted acid sites in the MFI framework. Advanced multidimensional
magic angle spinning solid-state NMR spectroscopy has been employed
for the accurate structural elucidation of the reaction products during
the zeolite-catalyzed dimerization of styrene in order to corroborate
the single-molecule fluorescence microscopy data. This complementary
approach of single-molecule fluorescence microscopy, NMR, and DFT
collectively indicates that the relative stability of the carbocationic
and the neutral states largely depends on the substituent and the
local position of the Brønsted acid site within the zeolite framework.
As a consequence, new insights into the host–guest chemistry
between the zeolite and aromatics, in terms of their surface mobility
and reactivity, have been obtained.
Collapse
Affiliation(s)
- Zoran Ristanović
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Abhishek Dutta Chowdhury
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Rasmus Y Brogaard
- Department of Chemistry , University of Oslo , Postboks 1126 Blindern, 0318 Oslo , Norway
| | - Klaartje Houben
- NMR Research Group, Bijvoet Centre for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Marc Baldus
- NMR Research Group, Bijvoet Centre for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Johan Hofkens
- Department of Chemistry , KU Leuven , Celestijnenlaan 200 F , B-3001 Leuven , Belgium
| | - Maarten B J Roeffaers
- Centre for Surface Chemistry and Catalysis , KU Leuven , Kasteelpark Arenberg 23 , 3001 Heverlee , Belgium
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
23
|
Unique size-dependent nanocatalysis revealed at the single atomically precise gold cluster level. Proc Natl Acad Sci U S A 2018; 115:10588-10593. [PMID: 30275320 DOI: 10.1073/pnas.1805711115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomically precise metal clusters have attracted increasing interest owing to their unique size-dependent properties; however, little has been known about the effect of size on the catalytic properties of metal clusters at the single-cluster level. Here, by real-time monitoring with single-molecule fluorescence microscopy the size-dependent catalytic process of individual Au clusters at single-turnover resolution, we study the size-dependent catalytic behaviors of gold (Au) clusters at the single-cluster level, and then observe the strong size effect on the catalytic properties of individual Au clusters, in both catalytic product formation and dissociation processes. Surprisingly, indicated by both experiments and density functional theory (DFT) calculations, due to such a unique size effect, besides observing the different product dissociation behaviors on different-sized Au clusters, we also observe that small Au clusters [i.e., Au15(MPA)13; here, MPA denotes 3-mercaptopropionic acid] catalyze the product formation through a competitive Langmuir-Hinshelwood mechanism, while those relatively larger Au clusters [e.g., Au18(MPA)14 and Au25(MPA)18] or nanoparticles catalyze the same process through a noncompetitive Langmuir-Hinshelwood mechanism. Such a size effect on the nanocatalysis could be attributed intrinsically to the size-dependent electronic structure of Au clusters. Further analysis of dynamic activity fluctuation of Au clusters reveals more different catalytic properties between Au clusters and traditional Au nanoparticles due to their different size-dependent structures.
Collapse
|
24
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
25
|
Schmidt JE, Peng L, Poplawsky JD, Weckhuysen BM. Nanoskalige chemische Bildgebung von Zeolithen durch Atomsondentomographie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joel E. Schmidt
- Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Linqing Peng
- Grinnell College 1115 8th Ave Grinnell, IA 50112 USA
| | - Jonathan D. Poplawsky
- Center for Nanophase Materials SciencesOak Ridge National Laboratory Oak Ridge TN 37831-6064 USA
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
26
|
Suchorski Y, Rupprechter G. Heterogeneous Surfaces as Structure and Particle Size Libraries of Model Catalysts. Catal Letters 2018; 148:2947-2956. [PMID: 30393447 PMCID: PMC6191079 DOI: 10.1007/s10562-018-2506-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022]
Affiliation(s)
- Yuri Suchorski
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
27
|
Schmidt JE, Peng L, Poplawsky JD, Weckhuysen BM. Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography. Angew Chem Int Ed Engl 2018; 57:10422-10435. [PMID: 29718553 PMCID: PMC6519151 DOI: 10.1002/anie.201712952] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Indexed: 11/11/2022]
Abstract
Understanding structure-composition-property relationships in zeolite-based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for, for example, reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom probe tomography (APT) is the only technique so far capable of producing 3D compositional reconstructions with sub-nanometer-scale resolution, and has only recently been applied to zeolite-based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method.
Collapse
Affiliation(s)
- Joel E Schmidt
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Linqing Peng
- Grinnell College, 1115 8th Ave, Grinnell, IA, 50112, USA
| | - Jonathan D Poplawsky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6064, USA
| | - Bert M Weckhuysen
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| |
Collapse
|
28
|
Wang W, Shen H, Moringo NA, Carrejo NC, Ye F, Robinson JT, Landes CF. Super-Temporal-Resolved Microscopy Reveals Multistep Desorption Kinetics of α-Lactalbumin from Nylon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6697-6702. [PMID: 29763567 DOI: 10.1021/acs.langmuir.8b00686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insight into the mechanisms driving protein-polymer interactions is constantly improving due to advances in experimental and computational methods. In this study, we used super-temporal-resolved microscopy (STReM) to study the interfacial kinetics of a globular protein, α-lactalbumin (α-LA), adsorbing at the water-nylon 6,6 interface. The improved temporal resolution of STReM revealed that residence time distributions involve an additional step in the desorption process. Increasing the ionic strength in the bulk solution accelerated the desorption rate of α-LA, attributed to adsorption-induced conformational changes. Ensemble circular dichroism measurements were used to support a consecutive reaction mechanism. Without the improved temporal resolution of STReM, the desorption intermediate was not resolvable, highlighting both STReM's potential to uncover new kinetic mechanisms and the continuing need to push for better time and space resolution.
Collapse
Affiliation(s)
- Wenxiao Wang
- Department of Electrical and Computer Engineering , Rice University , MS 366 , Houston , Texas 77251-1892 , United States
| | - Hao Shen
- Department of Chemistry , Rice University , MS 60 , Houston , Texas 77251-1892 , United States
| | - Nicholas A Moringo
- Department of Chemistry , Rice University , MS 60 , Houston , Texas 77251-1892 , United States
| | - Nicole C Carrejo
- Department of Chemistry , Rice University , MS 60 , Houston , Texas 77251-1892 , United States
| | - Fan Ye
- Department of Electrical and Computer Engineering , Rice University , MS 366 , Houston , Texas 77251-1892 , United States
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering , Rice University , MS 366 , Houston , Texas 77251-1892 , United States
- Department of Bioengineering , Rice University , MS 142 , Houston , Texas 77251-1892 , United States
| | - Christy F Landes
- Department of Electrical and Computer Engineering , Rice University , MS 366 , Houston , Texas 77251-1892 , United States
- Department of Chemistry , Rice University , MS 60 , Houston , Texas 77251-1892 , United States
- Smalley-Curl Institute , Rice University , Houston , Texas 77251 , United States
| |
Collapse
|
29
|
Kosinov N, Liu C, Hensen EJM, Pidko EA. Engineering of Transition Metal Catalysts Confined in Zeolites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3177-3198. [PMID: 29861546 PMCID: PMC5973782 DOI: 10.1021/acs.chemmater.8b01311] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Indexed: 05/09/2023]
Abstract
Transition metal-zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal-zeolite catalysts.
Collapse
Affiliation(s)
- Nikolay Kosinov
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail: (N.K.)
| | - Chong Liu
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Emiel J. M. Hensen
- Schuit
Institute of Catalysis, Laboratory of Inorganic Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail: (E.J.M.H.)
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- TheoMAT
group, ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia
- E-mail: (E.A.P.)
| |
Collapse
|
30
|
|
31
|
|
32
|
Chen T, Zhang Y, Xu W. Size-dependent catalytic kinetics and dynamics of Pd nanocubes: a single-particle study. Phys Chem Chem Phys 2018; 18:22494-502. [PMID: 27465438 DOI: 10.1039/c6cp02719a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the well-known significant effect of the size on the catalytic activity of nanocatalysts, here we use single-molecule fluorescence microscopy to study the size-dependent catalytic kinetics and dynamics of individual Pd nanocubes. A series of size-dependent catalytic properties were revealed in both product formation and product desorption processes. It was found that, due to the different adsorption mechanisms of substrate molecules on Pd nanocubes, H2 adsorption is independent of the size of Pd nanocubes, while the large flat resazurin molecules show stronger adsorption on larger sized Pd nanocubes. Apparently, the Pd nanocubes can be divided into three types: when the size of the Pd nanocube is small, substrate binding can prohibit product desorption and product desorption prefers the direct pathway; when the size is in an appropriate range, the product desorption process could be independent of substrate binding and shows no selectivity between two parallel desorption pathways; if the size is large enough, substrate binding can promote product desorption and product desorption prefers the indirect pathway. We also observed the surface-restructuring-induced dynamic heterogeneity of individual Pd nanocubes in both product formation and desorption processes with timescales of about tens to one hundred seconds. The activity fluctuation of individual Pd nanocubes was found to be mainly due to the spontaneous surface-restructuring rather than the catalysis. Furthermore, we estimated the size-dependent activation energies and time scales of spontaneous dynamic surface restructuring, which are fundamental to heterogeneous catalysis. The work presented here reveals new insight into nanocatalysis and exemplifies the advantages of the single-molecule approach in probing the catalytic properties of nanocatalysts.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P. R. China. and Graduate University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P. R. China.
| |
Collapse
|
33
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
34
|
Fujita Y, Aubert R, Walke P, Yuan H, Kenens B, Inose T, Steuwe C, Toyouchi S, Fortuni B, Chamtouri M, Janssen KPF, De Feyter S, Roeffaers MBJ, Uji-I H. Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. NANOSCALE 2017; 9:13025-13033. [PMID: 28832041 DOI: 10.1039/c7nr04299j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A highly reproducible and controllable deposition procedure for gold nanostructures on a titanium dioxide (TiO2) surface using femtosecond laser light has been demonstrated. This is realized by precisely focusing onto the TiO2 surface in the presence of a pure gold ion solution. The deposition is demonstrated both in dot arrays and line structures. Thanks to the multi-photon excitation, we observe that the deposition area of the nanostructures can be confined to a degree far greater than the diffraction limited focal spot. Finally, we demonstrate that catalytic activity with visible light irradiation is enhanced, proving the applicability of our new deposition technique to the catalytic field.
Collapse
Affiliation(s)
- Y Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Van Loon J, Janssen KPF, Franklin T, Kubarev AV, Steele JA, Debroye E, Breynaert E, Martens JA, Roeffaers MBJ. Rationalizing Acid Zeolite Performance on the Nanoscale by Correlative Fluorescence and Electron Microscopy. ACS Catal 2017; 7:5234-5242. [PMID: 28824822 PMCID: PMC5557613 DOI: 10.1021/acscatal.7b01148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Indexed: 01/15/2023]
Abstract
The performance of zeolites as solid acid catalysts is strongly influenced by the accessibility of active sites. However, synthetic zeolites typically grow as complex aggregates of small nanocrystallites rather than perfect single crystals. The structural complexity must therefore play a decisive role in zeolite catalyst applicability. Traditional tools for the characterization of heterogeneous catalysts are unable to directly relate nanometer-scale structural properties to the corresponding catalytic performance. In this work, an innovative correlative super-resolution fluorescence and scanning electron microscope is applied, and the appropriate analysis procedures are developed to investigate the effect of small-port H-mordenite (H-MOR) morphology on the catalytic performance, along with the effects of extensive acid leaching. These correlative measurements revealed catalytic activity at the interface between intergrown H-MOR crystallites that was assumed inaccessible, without compromising the shape selective properties. Furthermore, it was found that extensive acid leaching led to an etching of the originally accessible microporous structure, rather than the formation of an extended mesoporous structure. The associated transition of small-port to large-port H-MOR therefore did not render the full catalyst particle functional for catalysis. The applied characterization technique allows a straightforward investigation of the zeolite structure-activity relationship beyond the single-particle level. We conclude that such information will ultimately lead to an accurate understanding of the relationship between the bulk scale catalyst behavior and the nanoscale structural features, enabling a rationalization of catalyst design.
Collapse
Affiliation(s)
- Jordi Van Loon
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| | - Kris P. F. Janssen
- Department
of Chemistry, Faculty of Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Thomas Franklin
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| | - Alexey V. Kubarev
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| | - Julian A. Steele
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| | - Elke Debroye
- Department
of Chemistry, Faculty of Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| | - Johan A. Martens
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| | - Maarten B. J. Roeffaers
- Center
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
36
|
Kim D, Zhang Z, Xu K. Spectrally Resolved Super-Resolution Microscopy Unveils Multipath Reaction Pathways of Single Spiropyran Molecules. J Am Chem Soc 2017; 139:9447-9450. [DOI: 10.1021/jacs.7b04602] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Doory Kim
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhengyang Zhang
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Xu
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Division
of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Scaiano JC, Lanterna AE. Is Single-Molecule Fluorescence Spectroscopy Ready To Join the Organic Chemistry Toolkit? A Test Case Involving Click Chemistry. J Org Chem 2017; 82:5011-5019. [DOI: 10.1021/acs.joc.6b03010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan C. Scaiano
- Department of Chemistry and
Biomolecular Sciences and Centre for Catalysis Research and Innovation
(CCRI), University of Ottawa. 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Anabel E. Lanterna
- Department of Chemistry and
Biomolecular Sciences and Centre for Catalysis Research and Innovation
(CCRI), University of Ottawa. 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
38
|
Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Optical Super-Resolution Imaging of Surface Reactions. Chem Rev 2017; 117:7510-7537. [DOI: 10.1021/acs.chemrev.6b00673] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Chen
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Bin Dong
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuangcai Chen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Fei Zhao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaodong Cheng
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Seungah Lee
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Peng Zhang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Dahak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Weilin Xu
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ning Fang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
39
|
Hendriks FC, Valencia D, Bruijnincx PCA, Weckhuysen BM. Zeolite molecular accessibility and host–guest interactions studied by adsorption of organic probes of tunable size. Phys Chem Chem Phys 2017; 19:1857-1867. [DOI: 10.1039/c6cp07572j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent probe molecules of different sizes were synthesized and applied to study the molecular accessibility of zeolite materials.
Collapse
Affiliation(s)
- F. C. Hendriks
- Inorganic Chemistry and Catalysis Group
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - D. Valencia
- Inorganic Chemistry and Catalysis Group
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - P. C. A. Bruijnincx
- Inorganic Chemistry and Catalysis Group
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - B. M. Weckhuysen
- Inorganic Chemistry and Catalysis Group
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
40
|
Ristanović Z, Kubarev AV, Hofkens J, Roeffaers MBJ, Weckhuysen BM. Single Molecule Nanospectroscopy Visualizes Proton-Transfer Processes within a Zeolite Crystal. J Am Chem Soc 2016; 138:13586-13596. [PMID: 27709925 PMCID: PMC5089756 DOI: 10.1021/jacs.6b06083] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 12/27/2022]
Abstract
Visualizing proton-transfer processes at the nanoscale is essential for understanding the reactivity of zeolite-based catalyst materials. In this work, the Brønsted-acid-catalyzed oligomerization of styrene derivatives was used for the first time as a single molecule probe reaction to study the reactivity of individual zeolite H-ZSM-5 crystals in different zeolite framework, reactant and solvent environments. This was accomplished via the formation of distinct dimeric and trimeric fluorescent carbocations, characterized by their different photostability, as detected by single molecule fluorescence microscopy. The oligomerization kinetics turned out to be very sensitive to the reaction conditions and the presence of the local structural defects in zeolite H-ZSM-5 crystals. The remarkably photostable trimeric carbocations were found to be formed predominantly near defect-rich crystalline regions. This spectroscopic marker offers clear prospects for nanoscale quality control of zeolite-based materials. Interestingly, replacing n-heptane with 1-butanol as a solvent led to a reactivity decrease of several orders and shorter survival times of fluorescent products due to the strong chemisorption of 1-butanol onto the Brønsted acid sites. A similar effect was achieved by changing the electrophilic character of the para-substituent of the styrene moiety. Based on the measured turnover rates we have established a quantitative, single turnover approach to evaluate substituent and solvent effects on the reactivity of individual zeolite H-ZSM-5 crystals.
Collapse
Affiliation(s)
- Zoran Ristanović
- Inorganic
Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Alexey V. Kubarev
- Centre for Surface Chemistry and
Catalysis and Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Centre for Surface Chemistry and
Catalysis and Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - Maarten B. J. Roeffaers
- Centre for Surface Chemistry and
Catalysis and Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
41
|
|
42
|
Opel J, Wimmer FP, Kellermeier M, Cölfen H. Functionalisation of silica-carbonate biomorphs. NANOSCALE HORIZONS 2016; 1:144-149. [PMID: 32260636 DOI: 10.1039/c5nh00094g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biomorphs are a unique class of self-organised silica-carbonate mineral structures with elaborate shapes. Here we report first approaches to modify these complex inorganic architectures through silane chemistry, binding of nanoparticles, and organic polymerisation. This leads to functional nanostructures in which the complexity of the originally inorganic template is preserved, and offers new diagnostic tools to study the mechanisms underlying their formation.
Collapse
Affiliation(s)
- J Opel
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany.
| | | | | | | |
Collapse
|
43
|
Tachikawa T, Ochi T, Kobori Y. Crystal-Face-Dependent Charge Dynamics on a BiVO4 Photocatalyst Revealed by Single-Particle Spectroelectrochemistry. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00234] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Takashi Tachikawa
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- PRESTO, Japan
Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Tomoya Ochi
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
44
|
Chen T, Chen S, Zhang Y, Qi Y, Zhao Y, Xu W, Zeng J. Catalytic Kinetics of Different Types of Surface Atoms on Shaped Pd Nanocrystals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory of Electroanalytical Chemistry and; Jilin Province Key Laboratory of Low Carbon Chemical Power; Changchun Institute of Applied Chemistry; Chinese Academy of Science; 5625 Renmin Street Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yuwei Zhang
- State Key Laboratory of Electroanalytical Chemistry and; Jilin Province Key Laboratory of Low Carbon Chemical Power; Changchun Institute of Applied Chemistry; Chinese Academy of Science; 5625 Renmin Street Changchun 130022 P.R. China
| | - Yifeng Qi
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yuzhou Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and; Jilin Province Key Laboratory of Low Carbon Chemical Power; Changchun Institute of Applied Chemistry; Chinese Academy of Science; 5625 Renmin Street Changchun 130022 P.R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
45
|
Chen T, Chen S, Zhang Y, Qi Y, Zhao Y, Xu W, Zeng J. Catalytic Kinetics of Different Types of Surface Atoms on Shaped Pd Nanocrystals. Angew Chem Int Ed Engl 2016; 55:1839-43. [DOI: 10.1002/anie.201509165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory of Electroanalytical Chemistry and; Jilin Province Key Laboratory of Low Carbon Chemical Power; Changchun Institute of Applied Chemistry; Chinese Academy of Science; 5625 Renmin Street Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yuwei Zhang
- State Key Laboratory of Electroanalytical Chemistry and; Jilin Province Key Laboratory of Low Carbon Chemical Power; Changchun Institute of Applied Chemistry; Chinese Academy of Science; 5625 Renmin Street Changchun 130022 P.R. China
| | - Yifeng Qi
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yuzhou Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and; Jilin Province Key Laboratory of Low Carbon Chemical Power; Changchun Institute of Applied Chemistry; Chinese Academy of Science; 5625 Renmin Street Changchun 130022 P.R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Suzhou Nano Science and Technology; Center of Advanced Nanocatalysis (CAN-USTC) and; Department of Chemical Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
46
|
Bolivar JM, Eisl I, Nidetzky B. Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Schneider D, Mehlhorn D, Zeigermann P, Kärger J, Valiullin R. Transport properties of hierarchical micro–mesoporous materials. Chem Soc Rev 2016; 45:3439-67. [DOI: 10.1039/c5cs00715a] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work provides an overview of different experimental techniques of diffusion measurements in porous materials and discusses transport properties of several classes of hierarchically organized micro-mesoporous materials.
Collapse
Affiliation(s)
- Daniel Schneider
- Faculty of Physics and Earth Sciences
- University of Leipzig
- Leipzig
- Germany
| | - Dirk Mehlhorn
- Faculty of Physics and Earth Sciences
- University of Leipzig
- Leipzig
- Germany
| | - Philipp Zeigermann
- Faculty of Physics and Earth Sciences
- University of Leipzig
- Leipzig
- Germany
| | - Jörg Kärger
- Faculty of Physics and Earth Sciences
- University of Leipzig
- Leipzig
- Germany
| | - Rustem Valiullin
- Faculty of Physics and Earth Sciences
- University of Leipzig
- Leipzig
- Germany
| |
Collapse
|
48
|
Wiedemann SCC, Ristanović Z, Whiting GT, Reddy Marthala VR, Kärger J, Weitkamp J, Wels B, Bruijnincx PCA, Weckhuysen BM. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis. Chemistry 2015; 22:199-210. [DOI: 10.1002/chem.201503551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Indexed: 11/09/2022]
|
49
|
Hodgson GK, Impellizzeri S, Scaiano JC. Dye synthesis in the Pechmann reaction: catalytic behaviour of samarium oxide nanoparticles studied using single molecule fluorescence microscopy. Chem Sci 2015; 7:1314-1321. [PMID: 29910889 PMCID: PMC5975723 DOI: 10.1039/c5sc03214h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
Photochemically prepared samarium oxide nanoparticles (Sm2O3NP) efficiently catalyze the formation of coumarin 153 via the Pechmann trans-esterification and condensation process. The formation of the fluorescent coumarin allowed the catalytic process to be monitored in real time at the single molecule level using Total Internal Reflection Fluorescence Microscopy (TIRFM). Benchtop experiments conducted in parallel demonstrated that the observed catalysis occurred in solution rather than by pure heterogeneous catalysis and is due to a mobile population of small Sm2O3NP released from a polydisperse original sample containing larger particles. TIRFM provided unique insights by demonstrating that catalysis by these smaller colloidal particles is in fact a surface process, while the larger particles are merely suppliers of the small catalytic nanostructures. We refer to this behaviour as a semi-heterogeneous catalytic system. This work showcases the opportunity that single molecule fluorescence techniques can offer in terms of understanding and ultimately improving benchtop and scaled-up synthesis. This specific example highlights the general applicability of this approach to the study of widely-utilized chemical reactions and lays the groundwork for researchers to adopt similar strategies in other systems.
Collapse
Affiliation(s)
- Gregory K Hodgson
- Department of Chemistry , Centre for Catalysis Research and Innovation , University of Ottawa , 10-Marie-Curie , Ottawa , Ontario K1N 6N5 , Canada .
| | - Stefania Impellizzeri
- Department of Chemistry , Centre for Catalysis Research and Innovation , University of Ottawa , 10-Marie-Curie , Ottawa , Ontario K1N 6N5 , Canada .
| | - Juan C Scaiano
- Department of Chemistry , Centre for Catalysis Research and Innovation , University of Ottawa , 10-Marie-Curie , Ottawa , Ontario K1N 6N5 , Canada .
| |
Collapse
|
50
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|