1
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
2
|
Kim J, Kim B, Kim B, Jeon H, Kim SK. Magnetic-field controlled on-off switchable non-reciprocal negative refractive index in non-Hermitian photon-magnon hybrid systems. Nat Commun 2024; 15:9014. [PMID: 39424832 PMCID: PMC11489656 DOI: 10.1038/s41467-024-53328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Photon-magnon coupling, where electromagnetic waves interact with spin waves, and negative refraction, which bends the direction of electromagnetic waves unnaturally, constitute critical foundations and advancements in the realms of optics, spintronics, and quantum information technology. Here, we explore a magnetic-field-controlled, on-off switchable, non-reciprocal negative refractive index within a non-Hermitian photon-magnon hybrid system. By integrating an yttrium iron garnet film with an inverted split-ring resonator, we discover pronounced negative refractive index driven by the system's non-Hermitian properties. This phenomenon exhibits unique non-reciprocal behavior dependent on the signal's propagation direction. Our analytical model sheds light on the crucial interplay between coherent and dissipative coupling, significantly altering permittivity and permeability's imaginary components, crucial for negative refractive index's emergence. This work pioneers new avenues for employing negative refractive index in photon-magnon hybrid systems, signaling substantial advancements in quantum hybrid systems.
Collapse
Affiliation(s)
- Junyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Bosung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Bojong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Haechan Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
| | - Sang-Koog Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Republic of Korea.
| |
Collapse
|
3
|
Yan Z, Handoko AD, Wu W, Yang C, Wang H, Yilmaz M, Zhang Z, Cheng L, Cheng X, Ho GW, Feng B, Shibata N, Zhao R, Yang JKW, Chong CT, Ikuhara Y, Qiu CW. Atomic-engineered gradient tunable solid-state metamaterials. Proc Natl Acad Sci U S A 2024; 121:e2408974121. [PMID: 39292742 PMCID: PMC11441542 DOI: 10.1073/pnas.2408974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Metamaterial has been captivated a popular notion, offering photonic functionalities beyond the capabilities of natural materials. Its desirable functionality primarily relies on well-controlled conditions such as structural resonance, dispersion, geometry, filling fraction, external actuation, etc. However, its fundamental building blocks-meta-atoms-still rely on naturally occurring substances. Here, we propose and validate the concept of gradient and reversible atomic-engineered metamaterials (GRAM), which represents a platform for continuously tunable solid metaphotonics by atomic manipulation. GRAM consists of an atomic heterogenous interface of amorphous host and noble metals at the bottom, and the top interface was designed to facilitate the reversible movement of foreign atoms. Continuous and reversible changes in GRAM's refractive index and atomic structures are observed in the presence of a thermal field. We achieve multiple optical states of GRAM at varying temperature and time and demonstrate GRAM-based tunable nanophotonic devices in the visible spectrum. Further, high-efficiency and programmable laser raster-scanning patterns can be locally controlled by adjusting power and speed, without any mask-assisted or complex nanofabrication. Our approach casts a distinct, multilevel, and reversible postfabrication recipe to modify a solid material's properties at the atomic scale, opening avenues for optical materials engineering, information storage, display, and encryption, as well as advanced thermal optics and photonics.
Collapse
Affiliation(s)
- Zhiyuan Yan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Albertus Denny Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore138634, Singapore
| | - Weikang Wu
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, 250061, People’s Republic of China
| | - Chuchu Yang
- Institute of Engineering Innovation, The University of Tokyo, Tokyo113-8656, Japan
| | - Hao Wang
- Department of Engineering Product Design, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Meltem Yilmaz
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore138634, Singapore
- Department of Chemistry, University College London, LondonWC1H 0AJ, United Kingdom
| | - Zhiyong Zhang
- Coastal Engineering Department, Surbana Jurong Consultants Pte Ltd., Singapore636741, Singapore
| | - Libo Cheng
- Zhejiang Lab Nanhu Headquarters, Hangzhou, Zhejiang Province31500, People’s Republic of China
| | - Xinbin Cheng
- School of Physics Science and Engineering, Tongji University, Shanghai200092, People's Republic of China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Bin Feng
- Institute of Engineering Innovation, The University of Tokyo, Tokyo113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo113-8656, Japan
| | - Rong Zhao
- Department of Precision Instrument, Center of Brain-Inspired Computing Research, Tsinghua University, Beijing100084, People’s Republic of China
| | - Joel K. W. Yang
- Department of Engineering Product Design, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Chong Tow Chong
- Department of Engineering Product Design, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo113-8656, Japan
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- Nanotech Energy and Environment Platform, National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu215123, People’s Republic of China
| |
Collapse
|
4
|
Liu C, Ma C, Lai Y, Fang NX. Ultra-broadband illusion acoustics for space and time camouflages. Nat Commun 2024; 15:8046. [PMID: 39277584 PMCID: PMC11401955 DOI: 10.1038/s41467-024-49856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/20/2024] [Indexed: 09/17/2024] Open
Abstract
Invisibility cloaks that can suppress wave scattering by objects have attracted a tremendous amount of interest in the past two decades. In comparison to prior methods that were severely limited by narrow bandwidths, here we present a practical strategy to suppress sound scattering across an ultra-broad spectrum by leveraging illusion metamaterials. Consisting of a collection of subwavelength tunnels with precisely crafted internal structures, this illusion metamaterial has the ability to guide acoustic waves around the obstacles and accurately recreate the incoming wavefront on the exit surface. Remarkably, two ultra-broadband illusionary effects are produced, disappearing space and time shift. Sound scatterings are removed at all frequencies below a limit determined by the tunnel width, as confirmed by full-wave simulations and acoustic experiments. Our strategy represents a universal approach to solve the key bottleneck of bandwidth limitation in the field of cloaking in transmission, and establishes a metamaterial platform that enables the long-desired ultra-broadband sound manipulation such as acoustic camouflage and reverberation control, opening up exciting new possibilities in practical applications.
Collapse
Affiliation(s)
- Chenkai Liu
- MOE Key Laboratory of Modern Acoustics, National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chu Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yun Lai
- MOE Key Laboratory of Modern Acoustics, National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
5
|
Yu S, Lee H, Ju C, Han H. Enhanced DBR mirror design via D3QN: A reinforcement learning approach. PLoS One 2024; 19:e0307211. [PMID: 39172969 PMCID: PMC11340974 DOI: 10.1371/journal.pone.0307211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Modern optical systems are important components of contemporary electronics and communication technologies, and the design of new systems has led to many innovative breakthroughs. This paper introduces a novel application based on deep reinforcement learning, D3QN, which is a combination of the Dueling Architecture and Double Q-Network methods, to design distributed Bragg reflectors (DBRs). Traditional design methods are based on time-consuming iterative simulations, whereas D3QN is designed to optimize the multilayer structure of DBRs. This approach enabled the reflectance performance and compactness of the DBRs to be improved. The reflectance of the DBRs designed using D3QN is 20.5% higher compared to designs derived from the transfer matrix method (TMM), and these DBRs are 61.2% smaller in terms of their size. These advancements suggest that deep reinforcement learning, specifically the D3QN methodology, is a promising new method for optical design and is more efficient than traditional techniques. Future research possibilities include expansion to 2D and 3D design structures, where increased design complexities could likely be addressed using D3QN or similar innovative solutions.
Collapse
Affiliation(s)
- Seungjun Yu
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haneol Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Changyoung Ju
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Haewook Han
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
6
|
Shamim S, Mohsin AS, Rahman MM, Hossain Bhuian MB. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024; 10:e33272. [PMID: 39040247 PMCID: PMC11260956 DOI: 10.1016/j.heliyon.2024.e33272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth. Because of their high optical confinement and adjustable optical resonances, these artificially engineered materials appear as a viable photonic platform for biosensing applications. This review paper discusses the recent development of metamaterial and metasurface in biosensing applications based on the gigahertz, terahertz, and optical frequency domains encompassing the whole electromagnetic spectrum. Overlapping features such as material selection, structure, and physical mechanisms were considered during the classification of our biosensing applications. Metamaterials and metasurfaces working in the GHz range provide prospects for better sensing of biological samples, THz frequencies, falling between GHz and optical frequencies, provide unique characteristics for biosensing permitting the exact characterization of molecular vibrations, with an emphasis on molecular identification, label-free analysis, and imaging of biological materials. Optical frequencies on the other hand cover the visible and near-infrared regions, allowing fine regulation of light-matter interactions enabling metamaterials and metasurfaces to offer excellent sensitivity and specificity in biosensing. The outcome of the sensor's sensitivity to an electric or magnetic field and the resonance frequency are, in theory, determined by the frequency domain and features. Finally, the challenges and possible future perspectives in biosensing application areas have been presented that use metamaterials and metasurfaces across diverse frequency domains to improve sensitivity, specificity, and selectivity in biosensing applications.
Collapse
Affiliation(s)
- Shadmani Shamim
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Abu S.M. Mohsin
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Md. Mosaddequr Rahman
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Mohammed Belal Hossain Bhuian
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
7
|
Zhang Y, Jia K, Ge H, Ji X, Jiang Y, Bu Y, Zhang Y, Sun Q. A Novel Terahertz Metamaterial Microfluidic Sensing Chip for Ultra-Sensitive Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1150. [PMID: 38998755 PMCID: PMC11243096 DOI: 10.3390/nano14131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
A terahertz metamaterial microfluidic sensing chip for ultrasensitive detection is proposed to investigate the response of substances to terahertz radiation in liquid environments and enhance the molecular fingerprinting of trace substances. The structure consists of a cover layer, a metal microstructure, a microfluidic channel, a metal reflective layer, and a buffer layer from top to bottom, respectively. The simulation results show that there are three obvious resonance absorption peaks in the range of 1.5-3.0 THz and the absorption intensities are all above 90%. Among them, the absorption intensity at M1 = 1.971 THz is 99.99%, which is close to the perfect absorption, and its refractive index sensitivity and Q-factor are 859 GHz/RIU and 23, respectively, showing excellent sensing characteristics. In addition, impedance matching and equivalent circuit theory are introduced in this paper to further analyze the physical mechanism of the sensor. Finally, we perform numerical simulations using refractive index data of normal and cancer cells, and the results show that the sensor can distinguish different types of cells well. The chip can reduce the sample pretreatment time as well as enhance the interaction between terahertz waves and matter, which can be used for early disease screening and food quality and safety detection in the future.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Keke Jia
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongyi Ge
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaodi Ji
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
| | - Yuwei Bu
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yujie Zhang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingcheng Sun
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; (Y.Z.)
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
8
|
Bernard AR, ElSayed MSA. Design, Manufacturing, and Analysis of Periodic Three-Dimensional Cellular Materials for Energy Absorption Applications: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2181. [PMID: 38793248 PMCID: PMC11122817 DOI: 10.3390/ma17102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Cellular materials offer industries the ability to close gaps in the material selection design space with properties not otherwise achievable by bulk, monolithic counterparts. Their superior specific strength, stiffness, and energy absorption, as well as their multi-functionality, makes them desirable for a wide range of applications. The objective of this paper is to compile and present a review of the open literature focusing on the energy absorption of periodic three-dimensional cellular materials. The review begins with the methodical cataloging of qualitative and quantitative elements from 100 papers in the available literature and then provides readers with a thorough overview of the state of this research field, discussing areas such as parent material(s), manufacturing methods, cell topologies, cross-section shapes for truss topologies, analysis methods, loading types, and test strain rates. Based on these collected data, areas of great and limited research are identified and future avenues of interest are suggested for the continued maturation and growth of this field, such as the development of a consistent naming and classification system for topologies; the creation of test standards considering additive manufacturing processes; further investigation of non-uniform and non-cylindrical struts on the performance of truss lattices; and further investigation into the performance of lattice materials under the impact of non-flat surfaces and projectiles. Finally, the numerical energy absorption (by mass and by volume) data of 76 papers are presented across multiple property selection charts, highlighting various materials, manufacturing methods, and topology groups. While there are noticeable differences at certain densities, the graphs show that the categorical differences within those groups have large overlap in terms of energy absorption performance and can be referenced to identify areas for further investigation and to help in the preliminary design process by researchers and industry professionals alike.
Collapse
Affiliation(s)
| | - Mostafa S. A. ElSayed
- Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Bhattacharya A, Chouhan BS, Sharma K, Halawani SM, Ahmad A, Kumar G. Terahertz binary computing in a coupled toroidal metasurface. Sci Rep 2024; 14:8721. [PMID: 38622184 PMCID: PMC11018751 DOI: 10.1038/s41598-024-59069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
The applications of terahertz metamaterials are being actively explored in recent times for applications in high-speed communication devices, miniature photonic circuits, and bio-chemical devices because of their wide advantages. The toroidal resonance, a new type of metasurface resonance, has been examined with great interest to utilize its properties in terahertz metasurface applications. This study reports a proof of concept design of a toroidal metasurface that experimentally demonstrates binary computing operations in the terahertz frequency regime. The analog computing of binary operations is achieved by the passive tuning of distance between the split ring resonators comprising the meta-molecule. The amplitude modulation is utilized as a method of determining the Boolean logic outputs of the system. The proposed metasurface could be further optimized for high amplitude modulations and active logic gate operations using tunable materials including graphene and ITO. The proposed metasurface consists of three split-ring resonators, and the near-field coupling between the adjacent resonators dictates the Boolean operations. A multipole analysis of the scattered powers of terahertz radiation determines the toroidal excitation in the metasurface. The proposed metasurfaces experimentally define AND Boolean logic operation at 0.89 terahertz, and OR Boolean logic operation at 0.97 terahertz. Numerical simulations support the experimentally obtained results. Additionally, we numerically report the excitation of NAND operation at 0.87 THz. Such toroidal analog computing metasurfaces could find applications in digitized terahertz circuits and integrated photonic devices.
Collapse
Affiliation(s)
- Angana Bhattacharya
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bhagwat Singh Chouhan
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kajal Sharma
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sami M Halawani
- Faculty of Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amir Ahmad
- College of Information Technlogy, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Gagan Kumar
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
10
|
Zhu C, Bamidele EA, Shen X, Zhu G, Li B. Machine Learning Aided Design and Optimization of Thermal Metamaterials. Chem Rev 2024; 124:4258-4331. [PMID: 38546632 PMCID: PMC11009967 DOI: 10.1021/acs.chemrev.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.
Collapse
Affiliation(s)
- Changliang Zhu
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
| | - Emmanuel Anuoluwa Bamidele
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80309, United States
| | - Xiangying Shen
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guimei Zhu
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen 518055, P.R. China
| | - Baowen Li
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen 518055, P.R. China
- Department
of Physics, Southern University of Science
and Technology, Shenzhen 518055, P.R. China
- Shenzhen
International Quantum Academy, Shenzhen 518048, P.R. China
- Paul M. Rady
Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder 80309, United States
| |
Collapse
|
11
|
Cheng J, Hu Y, Li B. Non-Hermitian metagrating for perfect absorption of elastic waves. MATERIALS HORIZONS 2024; 11:1658-1667. [PMID: 38372594 DOI: 10.1039/d3mh01866k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Beyond the fashion of Hermitian physics, non-Hermiticity has inspired, most recently, a surge of nontrivial principles and significant applications in both open quantum and classical systems characterized by gain or loss. However, research on elastic wave manipulation is still predominantly focused on conservative Hermitian systems, overlooking the energy interaction with the environment. The unavoidable energy loss, originating from the inherent material properties, is normally ignored. Additionally, most existing materials for elastic wave absorption suffer from complex configurations, sophisticated designs, and large volumes. Achieving highly efficient absorption properties in advanced artificial materials with ultrathin size and easy fabrication is still a challenge. This work proposes a design strategy based on non-Hermitian modulation to address such a challenge. The proposed non-Hermitian metagrating (NHMG), featured with the subwavelength unit cell, achieves the perfect absorption of elastic waves under specific low-loss conditions. The loss-induced non-Hermitian effects for perfect absorption are theoretically elucidated and a design framework is established in the NHMG with irregular and arbitrary shapes. The robust performance of omnidirectional and perfect absorption capabilities with respect to the boundary shape, rotation angle, and wave source location is numerically and experimentally verified. Consequently, a cloaking device based on the NHMG is further designed to avoid arbitrary-shaped targets being detected. Our study enriches the ways to elastic wave manipulation in non-Hermitian materials and provides an ultra-compact solution for wave absorption in engineering applications.
Collapse
Affiliation(s)
- Jiali Cheng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yabin Hu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Bing Li
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| |
Collapse
|
12
|
Sinha P, Mukhopadhyay T. Pneumatic elastostatics of multi-functional inflatable lattices: realization of extreme specific stiffness with active modulation and deployability. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231272. [PMID: 38356869 PMCID: PMC10864784 DOI: 10.1098/rsos.231272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
As a consequence of intense investigation on possible topologies of periodic lattices, the limit of specific elastic moduli that can be achieved solely through unit cell-level geometries in artificially engineered lattice-based materials has reached a point of saturation. There exists a robust rationale to involve more elementary-level mechanics for pushing such boundaries further to develop extreme lightweight multi-functional materials with adequate stiffness. We propose a novel class of inflatable lattice materials where the global-level stiffness can be derived based on a fundamentally different mechanics compared with conventional lattices having beam-like solid members, leading to extreme specific stiffness due to the presence of air in most of the lattice volume. Furthermore, such inflatable lattices would add multi-functionality in terms of on-demand performances such as compact storing, portability and deployment along with active stiffness modulation as a function of air pressure. We have developed an efficient unit cell-based analytical approach therein to characterize the effective elastic properties including the effect of non-rigid joints. The proposed inflatable lattices would open new frontiers in engineered materials and structures that will find critical applications in a range of technologically demanding industries such as aircraft structures, defence, soft robotics, space technologies, biomedical and various other mechanical systems.
Collapse
Affiliation(s)
- P. Sinha
- Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - T. Mukhopadhyay
- School of Engineering, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Gong H, Huang J, Wang J, Zhao P, Guo M, Liang C, Bai D, Jiang Z, Li R. Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4222-4230. [PMID: 38215444 DOI: 10.1021/acsami.3c15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The conventional techniques used to fabricate terahertz metamaterials, such as photolithography and etching, face hindrances in the form of high costs, lengthy processing cycles, and environmental pollution. In contrast, electrohydrodynamic (EHD) drop-on-demand (DOD) printing technology holds promise as an additive manufacturing method capable of producing micrometer- and nanometer-scale patterns rapidly and cost-effectively. However, achieving stable large-area printing proves challenging due to issues related to charge accumulation in insulated substrates and inconsistent meniscus vibration. In this paper, a smooth bipolar waveform driving method is proposed aimed at solving the problems of charge accumulation on insulated substrates and poor print consistency. The method involves utilizing driving waveforms with opposite polarities for neighboring droplets, allowing the charges carried by the printed droplets to neutralize each other. Moreover, extending the duration of the high voltage rise and fall times enhances the consistency of meniscus motion, thereby improving the stability of printing. Through optimization of the printing parameters, droplets with a diameter of 1.37 μm and straight lines with a width of 3 μm were printed. Furthermore, this approach was employed to print terahertz metamaterial surface devices, and the performance of the metamaterial is in good agreement with the simulation results. These findings demonstrate that the method greatly improves the stability of EHD DOD printing, thereby advancing the application of the technology in additive processing at the micro- and nanoscale.
Collapse
Affiliation(s)
- Hongxiao Gong
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Jin Huang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Jianjun Wang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Pengbing Zhao
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Man Guo
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Chaoyu Liang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Dongqiao Bai
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Zhuoyi Jiang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Ruibo Li
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| |
Collapse
|
14
|
Zhu H, Wang G, Wang K, Liu G, Zhou Y, Xie S, Di Y, Xu J, Zhou H, Mou J, Ding C. Grid composite meta-surface absorber with thermal isolation structure for terahertz detection. OPTICS EXPRESS 2024; 32:205-216. [PMID: 38175049 DOI: 10.1364/oe.509580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
This paper specifically focuses on the absorber, the critical component responsible for the detector's response performance. The meta-surface absorber combines two resonant structures and achieves over 80% absorptance around 210 GHz, resulting in a broad operating frequency range. FR-4 is selected as the dielectric layer to be compatible with standard printed circuit board (PCB) technology, which reduces the overall fabrication time and cost. The absorbing unit and array layout are symmetrically designed, providing stable absorptance performance even under incident waves of different polarization angles. The polarization-insensitive absorptance characteristic further enhances the compatibility between the absorber and the detector in the application scenario. Furthermore, the thermal insulation performance of the absorber is ensured by introducing thermal insulation gaps. After completing fabrication through PCB technology, testing revealed that the absorber maintained excellent absorptance performance within its primary operating frequency range. This performance consistency closely matched the simulation results.
Collapse
|
15
|
Zhang X, Zhang X, Duan Y, Zhang L, Ni X. All-optical geometric image transformations enabled by ultrathin metasurfaces. Nat Commun 2023; 14:8374. [PMID: 38102110 PMCID: PMC10724155 DOI: 10.1038/s41467-023-43981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Image processing plays a vital role in artificial visual systems, which have diverse applications in areas such as biomedical imaging and machine vision. In particular, optical analog image processing is of great interest because of its parallel processing capability and low power consumption. Here, we present ultra-compact metasurfaces performing all-optical geometric image transformations, which are essential for image processing to correct image distortions, create special image effects, and morph one image into another. We show that our metasurfaces can realize binary image transformations by modifying the spatial relationship between pixels and converting binary images from Cartesian to log-polar coordinates with unparalleled advantages for scale- and rotation-invariant image preprocessing. Furthermore, we extend our approach to grayscale image transformations and convert an image with Gaussian intensity profile into another image with flat-top intensity profile. Our technique will potentially unlock new opportunities for various applications such as target tracking and laser manufacturing.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojie Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yao Duan
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lidan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Zhao Q, Qin X, Xu C, Zhou H, Wang BX. Broadband tunable terahertz metamaterial absorber having near-perfect absorbance modulation capability based on a patterned vanadium dioxide circular patch. APPLIED OPTICS 2023; 62:9283-9290. [PMID: 38108699 DOI: 10.1364/ao.499641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
A new tunable broadband terahertz metamaterial absorber has been designed based on patterned vanadium dioxide (V O 2). The absorber consists of three simple layers, the top V O 2 pattern layer, the middle media layer, and the bottom metal layer. Based on phase transition properties of V O 2, the designed device has excellent absorption modulation capability, achieving the functional transition from broadband absorption to near-perfect reflection. When V O 2 is in the metallic state, there are two absorption peaks observed at frequencies of 4.16 and 6.05 THz, exhibiting near-perfect absorption characteristics; the combination of these two absorption peaks gives rise to the broadband phenomenon and the absorption bandwidth, where the absorbance exceeds 90% and spans from 3.40 to 7.00 THz, with a corresponding relative absorption bandwidth of 69.23%. The impedance matching theory, near-field patterns, and surface current distributions are provided to analyze the causes of broadband absorption. Furthermore, the broadband absorption could be completely suppressed when V O 2 presents the dielectric phase, and its absorbance could be dynamically adjusted from 100% to less than 0.70%, thereby achieving near-perfect reflection. Owing to its symmetrical structure, it exhibits excellent performance in different polarization directions and at large incidence angles. Our proposed absorber may have a wide range of promising applications and can be applied in a variety of fields such as communications, imaging, sensing, and security detection.
Collapse
|
17
|
Choi YC, Yang S, Murray CB, Kagan CR. Thermally Reconfigurable, 3D Chiral Optical Metamaterials: Building with Colloidal Nanoparticle Assemblies. ACS NANO 2023; 17:22611-22619. [PMID: 37955251 DOI: 10.1021/acsnano.3c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The three-dimensional, geometric handedness of chiral optical metamaterials allows for the rotation of linearly polarized light and creates a differential interaction with right and left circularly polarized light, known as circular dichroism. These three-dimensional metamaterials enable polarization control of optical and spin excitation and detection, and their stimuli-responsive, dynamic switching widens applications in chiral molecular sensing and imaging and spintronics; however, there are few reconfigurable solid-state implementations. Here, we report all-solid-state, thermally reconfigurable chiroptical metamaterials composed of arrays of three-dimensional nanoparticle/metal bilayer heterostructures fabricated from coassemblies of phase change VO2 and metallic Au colloidal nanoparticles and thin films of Ni. These metamaterials show dynamic switching in the mid-infrared as VO2 is thermally cycled through an insulator-metal phase transition. The spectral range of operation is tailored in breadth by controlling the periodicity of the arrays and thus the hybridization of optical modes and in position through the mixing of VO2 and Au nanoparticles.
Collapse
|
18
|
Cai F, Kou Z, Deng G. A tunable broadband terahertz MoS 2 absorber using series-parallel hybrid network design. Phys Chem Chem Phys 2023; 25:30858-30866. [PMID: 37937513 DOI: 10.1039/d3cp04867e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A method for designing a broadband absorber using a series-parallel hybrid network is proposed. The performance of the broadband absorber is improved by using frequency-selective surface patterns based on a series-parallel hybrid equivalent circuit. The results indicate that the tunable single-layered terahertz MoS2 absorber has excellent broadband characteristics. Between 0.84 and 2.34 THz, the absorption and relative absorption bandwidth exceed 90% and 94.3%, respectively. Also, the absorption level can be adjusted from 90% to 10% by applying a bias voltage on the electrodes. The effects of different types of MoS2 layers and surface fluctuations in monolayered MoS2 on the properties of the absorber are demonstrated. In the 60° (TM) and 50° (TE) ranges, the polarization of the terahertz absorber is insensitive to the incidence angle. Overall, this method enables the single-layered absorber to exhibit excellent broadband characteristics comparable to those of multilayered structures, as well as simplifies the structure. Consequently, this method significantly broadens the usefulness of tunable single-layered absorbers for radar stealth, terahertz imaging, and electrically tunable modulation.
Collapse
Affiliation(s)
- Fei Cai
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, China.
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhifei Kou
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, China.
| | - Guangsheng Deng
- Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electric Technology, Hefei University of Technology, Hefei 230009, China.
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
19
|
Liu M, Wei R, Taplin J, Zhang W. Terahertz Metasurfaces Exploiting the Phase Transition of Vanadium Dioxide. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7106. [PMID: 38005036 PMCID: PMC10672491 DOI: 10.3390/ma16227106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Artificially designed modulators that enable a wealth of freedom in manipulating the terahertz (THz) waves at will are an essential component in THz sources and their widespread applications. Dynamically controlled metasurfaces, being multifunctional, ultrafast, integrable, broadband, high contrasting, and scalable on the operating wavelength, are critical in developing state-of-the-art THz modulators. Recently, external stimuli-triggered THz metasurfaces integrated with functional media have been extensively explored. The vanadium dioxide (VO2)-based hybrid metasurfaces, as a unique path toward active meta-devices, feature an insulator-metal phase transition under the excitation of heat, electricity, and light, etc. During the phase transition, the optical and electrical properties of the VO2 film undergo a massive modification with either a boosted or dropped conductivity by more than four orders of magnitude. Being benefited from the phase transition effect, the electromagnetic response of the VO2-based metasufaces can be actively controlled by applying external excitation. In this review, we present recent advances in dynamically controlled THz metasurfaces exploiting the VO2 phase transition categorized according to the external stimuli. THz time-domain spectroscopy is introduced as an indispensable platform in the studies of functional VO2 films. In each type of external excitation, four design strategies are employed to realize external stimuli-triggered VO2-based THz metasurfaces, including switching the transreflective operation mode, controlling the dielectric environment of metallic microstructures, tailoring the equivalent resonant microstructures, and modifying the electromagnetic properties of the VO2 unit cells. The microstructures' design and electromagnetic responses of the resulting active metasurfaces have been systematically demonstrated, with a particular focus on the critical role of the VO2 films in the dynamic modulation processes.
Collapse
Affiliation(s)
- Meng Liu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
| | - Ruxue Wei
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jasmine Taplin
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Weili Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
20
|
Kanegae S, Okugawa M, Koizumi Y. Martensitic Phase-Transforming Metamaterial: Concept and Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6854. [PMID: 37959452 PMCID: PMC10648936 DOI: 10.3390/ma16216854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
We successfully developed a mechanical metamaterial that displays martensitic transformation for the first time. This metamaterial has a bistable structure capable of transitioning between two stable configurations through shear deformation. The outer shape of the unit cell of this structure is a parallelogram, with its upper and lower sides forming the bases of two solid triangles. The vertices from these triangles within the parallelogram are linked by short beams, while the remaining vertices are linked by long beams. The elastic energy of the essential model of the metamaterial was formulated analytically. The energy barrier between these two stable configurations consists of the elastic strain energy due to the tensile deformation of the short beams, the compressive deformation of the long beams, and the bending deformation of the connecting hinges. One example of a novel metamaterial was additively manufactured via the materials extrusion (MEX) process of thermoplastic polyurethane. The metamaterial exhibited deformation behaviors characteristic of martensitic transformations. This mechanical metamaterial has the potential to obtain properties caused by martensitic transformation in actual materials, such as the shape memory effect and superelasticity.
Collapse
Affiliation(s)
| | - Masayuki Okugawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Yuichiro Koizumi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
21
|
Macis S, Paolozzi MC, D'Arco A, Piccirilli F, Stopponi V, Rossi M, Moia F, Toma A, Lupi S. Extraordinary optical transmittance generation on Si 3N 4 membranes. NANOSCALE 2023; 15:16002-16009. [PMID: 37779505 PMCID: PMC10568977 DOI: 10.1039/d3nr02834h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Metamaterials are attracting increasing attention due to their ability to support novel and engineerable electromagnetic functionalities. In this paper, we investigate one of these functionalities, i.e. the extraordinary optical transmittance (EOT) effect based on silicon nitride (Si3N4) membranes patterned with a periodic lattice of micrometric holes. Here, the coupling between the incoming electromagnetic wave and a Si3N4 optical phonon located around 900 cm-1 triggers an increase of the transmitted infrared intensity in an otherwise opaque spectral region. Different hole sizes are investigated suggesting that the mediating mechanism responsible for this phenomenon is the excitation of a phonon-polariton mode. The electric field distribution around the holes is further investigated by numerical simulations and nano-IR measurements based on a Scattering-Scanning Near Field Microscope (s-SNOM) technique, confirming the phonon-polariton origin of the EOT effect. Being membrane technologies at the core of a broad range of applications, the confinement of IR radiation at the membrane surface provides this technology platform with a novel light-matter interaction functionality.
Collapse
Affiliation(s)
- Salvatore Macis
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
- INFN - Laboratori Nazionali di Frascati, via Enrico Fermi 54, 00044, Frascati, Rome, Italy
| | - Maria Chiara Paolozzi
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Annalisa D'Arco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Federica Piccirilli
- Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 km-163, 5 in Area Science Park, I-34149 Basovizza, Trieste, Italy
| | - Veronica Stopponi
- IOM-CNR, Area Science Park, Strada Statale 14, km 163, 5, 34149 Basovizza, TS, Italy
| | - Marco Rossi
- SBAI, Department of Basic and Applied Sciences for Engineering, University of Rome "La Sapienza", Via Scarpa 16, 00161 Rome, Italy
| | - Fabio Moia
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Andrea Toma
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Stefano Lupi
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
- IOM-CNR, Area Science Park, Strada Statale 14, km 163, 5, 34149 Basovizza, TS, Italy
| |
Collapse
|
22
|
Shi L, Lu L, Chen W, Chen G, He Y, Ren G, Zhu L. Si-Based Polarizer and 1-Bit Phase-Controlled Non-Polarizing Beam Splitter-Based Integrated Metasurface for Extended Shortwave Infrared. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2592. [PMID: 37764619 PMCID: PMC10535877 DOI: 10.3390/nano13182592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Metasurfaces, composed of micro-nano-structured planar materials, offer highly tunable control over incident light and find significant applications in imaging, navigation, and sensing. However, highly efficient polarization devices are scarce for the extended shortwave infrared (ESWIR) range (1.7~2.5 μm). This paper proposes and demonstrates a highly efficient all-dielectric diatomic metasurface composed of single-crystalline Si nanocylinders and nanocubes on SiO2. This metasurface can serve as a nanoscale linear polarizer for generating polarization-angle-controllable linearly polarized light. At the wavelength of 2172 nm, the maximum transmission efficiency, extinction ratio, and linear polarization degree can reach 93.43%, 45.06 dB, and 0.9973, respectively. Moreover, a nonpolarizing beam splitter (NPBS) was designed and deduced theoretically based on this polarizer, which can achieve a splitting angle of ±13.18° and a phase difference of π. This beam splitter can be equivalently represented as an integration of a linear polarizer with controllable polarization angles and an NPBS with one-bit phase modulation. It is envisaged that through further design optimization, the phase tuning range of the metasurface can be expanded, allowing for the extension of the operational wavelength into the mid-wave infrared range, and the splitting angle is adjustable. Moreover, it can be utilized for integrated polarization detectors and be a potential application for optical digital encoding metasurfaces.
Collapse
Affiliation(s)
- Leidong Shi
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.S.); (W.C.); (G.C.); (Y.H.)
- Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Guangzhou 511462, China
| | - Lidan Lu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.S.); (W.C.); (G.C.); (Y.H.)
- Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Guangzhou 511462, China
| | - Weiqiang Chen
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.S.); (W.C.); (G.C.); (Y.H.)
- Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Guangzhou 511462, China
| | - Guang Chen
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.S.); (W.C.); (G.C.); (Y.H.)
- Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Guangzhou 511462, China
| | - Yanlin He
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.S.); (W.C.); (G.C.); (Y.H.)
- Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Guangzhou 511462, China
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia;
| | - Lianqing Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.S.); (W.C.); (G.C.); (Y.H.)
- Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Guangzhou 511462, China
| |
Collapse
|
23
|
Ebrahimi S, Muravitskaya A, Adawi AM, Baudrion AL, Adam PM, Bouillard JSG. Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas. J Phys Chem Lett 2023; 14:7824-7832. [PMID: 37624618 PMCID: PMC10494229 DOI: 10.1021/acs.jpclett.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in detail the magnetic and electric dipolar modes supported by a hyperbolic bowtie meta-antenna and clearly demonstrate the existence of two magnetic coupling regimes in such hyperbolic systems. The coupling nature is shown to depend on the interplay of the magnetic dipole moments, controlled by the meta-antenna effective permittivity and nanogap size. In parallel, the meta-antenna effective permittivity offers fine control over the electrical field spatial distribution. Our work highlights new coupling mechanisms between hyperbolic systems that have not been reported before, with a detailed study of the magnetic coupling nature, as a function of the structural parameters of the hyperbolic meta-antenna, which opens the route toward a range of applications from magnetic nanolight sources to chiral quantum optics and quantum interfaces.
Collapse
Affiliation(s)
- Sema Ebrahimi
- Light,
Nanomaterials, and Nanotechnologies Laboratory, CNRS EMR 7004, University of Technology of Troyes, F-10004 Troyes
Cedex, France
- Department
of Physics and Mathematics, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- G.W.
Gray Centre for Advanced Materials, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Alina Muravitskaya
- Department
of Physics and Mathematics, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- G.W.
Gray Centre for Advanced Materials, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Ali M. Adawi
- Department
of Physics and Mathematics, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- G.W.
Gray Centre for Advanced Materials, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Anne-Laure Baudrion
- Light,
Nanomaterials, and Nanotechnologies Laboratory, CNRS EMR 7004, University of Technology of Troyes, F-10004 Troyes
Cedex, France
| | - Pierre-Michel Adam
- Light,
Nanomaterials, and Nanotechnologies Laboratory, CNRS EMR 7004, University of Technology of Troyes, F-10004 Troyes
Cedex, France
| | - Jean-Sebastien G. Bouillard
- Department
of Physics and Mathematics, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
- G.W.
Gray Centre for Advanced Materials, University
of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
24
|
Ndukaife TA, Yang S. Slot driven dielectric electromagnetically induced transparency metasurface. OPTICS EXPRESS 2023; 31:27324-27331. [PMID: 37710811 DOI: 10.1364/oe.488704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
The control of resonant metasurface for electromagnetically induced transparency (EIT) offers unprecedented opportunities to tailor lightwave coupling at the nanoscale leading to many important applications including slow light devices, optical filters, chemical and biosensors. However, the realization of EIT relies on the high degree of structural asymmetry by positional displacement of optically resonant structures, which usually lead to low quality factor (Q-factor) responses due to the light leakage from structural discontinuity from asymmetric displacements. In this work, we demonstrate a new pathway to create high quality EIT metasurface without any displacement of constituent resonator elements. The mechanism is based on the detuning of the resonator modes which generate dark-bright mode interference by simply introducing a slot in metasurface unit cells (meta-atoms). More importantly, the slot diameter and position on the meta-atom can be modulated to tune the transmittance and quality factor (Q-factor) of the metasurface, leading to a Q-factor of 1190 and near unity transmission at the same time. Our work provides a new degree of freedom in designing optically resonant elements for metamaterials and metasurfaces with tailored wave propagation and properties.
Collapse
|
25
|
Ali M, Lin IN. Developing tiny-sized particles, different modification behaviors of gold atoms, and nucleating distorted particles. NANOSCALE ADVANCES 2023; 5:3871-3878. [PMID: 37496626 PMCID: PMC10367953 DOI: 10.1039/d3na00346a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
The study of tiny-sized particles is beneficial in many ways. This has been the subject of many studies. The development of a tiny-sized particle depends on the attained dynamics of the atoms. In the development process of a tiny-sized particle, gold atoms must deal with different modification behaviors. Photons traveling along the air-solution interface also alter the characteristics of a developing tiny-sized particle. The electronic structures, modification behaviors, and attained dynamics of the atoms mainly contribute toward the development of tiny-sized particles. Energy under the supplied source and the local resulting forces collectively bind gold atoms. Both internally and externally driven dynamics influence the development process of different tiny-sized particles. Atoms in such developed tiny-sized particles do not experience the collective oscillations upon photons traveling along the air-solution interface. In the study of binding atoms, it is essential to consider the roles of both energy and force. Here, the development of tiny particles having different sizes presents a convincing discussion. Nucleating a distorted particle from the non-uniform amalgamation of tiny-sized particles is also discussed.
Collapse
Affiliation(s)
- Mubarak Ali
- Department of Physics, COMSATS University Islamabad Islamabad Campus, Park Road 45550 Pakistan
| | - I-Nan Lin
- Department of Physics, Tamkang University Tamsui District New Taipei City 25137 Taiwan
| |
Collapse
|
26
|
Pan Q, Zhou S, Chen S, Yu C, Guo Y, Shuai Y. Deep learning-based inverse design optimization of efficient multilayer thermal emitters in the near-infrared broad spectrum. OPTICS EXPRESS 2023; 31:23944-23951. [PMID: 37475234 DOI: 10.1364/oe.490228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
This study proposes a deep learning architecture for automatic modeling and optimization of multilayer thin film structures to address the need for specific spectral emitters and achieve rapid design of geometric parameters for an ideal spectral response. Multilayer film structures are ideal thermal emitter structures for thermophotovoltaic application systems because they combine the advantages of large area preparation and controllable costs. However, achieving good spectral response performance requires stacking more layers, which makes it more difficult to achieve fine spectral inverse design using forward calculation of the dimensional parameters of each layer of the structure. Deep learning is the main method for solving complex data-driven problems in artificial intelligence and provides an efficient solution for the inverse design of structural parameters for a target waveband. In this study, an eight-layer thin film structure composed of SiO2/Ti and SiO2/W is rapidly reverse engineered using a deep learning method to achieve a structural design with an emissivity better than 0.8 in the near-infrared band. Additionally, an eight-layer thin film structure composed of 3 × 3 cm SiO2/Ti is experimentally measured using magnetron sputtering, and the emissivity in the 1-4 µm band was better than 0.68. This research provides implications for the design and application of micro-nano structures, can be widely used in the fields of thermal imaging and thermal regulation, and will contribute to developing a new paradigm for optical nanophotonic structures with a fast target-oriented inverse design of structural parameters, such as required spectral emissivity, phase, and polarization.
Collapse
|
27
|
McPolin CPT, Vila YN, Krasavin AV, Llorca J, Zayats AV. Multimode hybrid gold-silicon nanoantennas for tailored nanoscale optical confinement. NANOPHOTONICS 2023; 12:2997-3005. [PMID: 37457505 PMCID: PMC10344444 DOI: 10.1515/nanoph-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023]
Abstract
High-index dielectric nanoantennas, which provide an interplay between electric and magnetic modes, have been widely used as building blocks for a variety of devices and metasurfaces, both in linear and nonlinear regimes. Here, we investigate hybrid metal-semiconductor nanoantennas, consisting of a multimode silicon nanopillar core coated with a gold layer, that offer an enhanced degree of control over the mode selection and confinement, and emission of light on the nanoscale exploiting high-order electric and magnetic resonances. Cathodoluminescence spectra revealed a multitude of resonant modes supported by the nanoantennas due to hybridization of the Mie resonances of the core and the plasmonic resonances of the shell. Eigenmode analysis revealed the modes that exhibit enhanced field localization at the gold interface, together with high confinement within the nanopillar volume. Consequently, this architecture provides a flexible means of engineering nanoscale components with tailored optical modes and field confinement for a plethora of applications, including sensing, hot-electron photodetection and nanophotonics with cylindrical vector beams.
Collapse
Affiliation(s)
- Cillian P. T. McPolin
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
| | - Yago N. Vila
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
- Universitat Politècnica de Catalunya, Escola Tècnica Superior d’Enginyeria de Telecomunicacions de Barcelona, Barcelona, Spain
| | - Alexey V. Krasavin
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
| | - Jordi Llorca
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, Spain
| | - Anatoly V. Zayats
- Department of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, UK
| |
Collapse
|
28
|
Ma RM, Luan HY, Zhao ZW, Mao WZ, Wang SL, Ouyang YH, Shao ZK. Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion. FUNDAMENTAL RESEARCH 2023; 3:537-543. [PMID: 38933544 PMCID: PMC11197626 DOI: 10.1016/j.fmre.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Simultaneous localization of light to extreme spatial and spectral scales is of high importance for testing fundamental physics and various applications. However, there is a longstanding trade-off between localizing a light field in space and in frequency. Here we discover a new class of twisted lattice nanocavities based on mode locking in momentum space. The twisted lattice nanocavity hosts a strongly localized light field in a 0.048 λ3 mode volume with a quality factor exceeding 2.9 × 1011 (∼250 μs photon lifetime), which presents a record high figure of merit of light localization among all reported optical cavities. Based on the discovery, we have demonstrated silicon-based twisted lattice nanocavities with quality factor over 1 million. Our result provides a powerful platform to study light-matter interaction in extreme conditions for tests of fundamental physics and applications in nanolasing, ultrasensing, nonlinear optics, optomechanics and quantum-optical devices.
Collapse
Affiliation(s)
- Ren-Min Ma
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Hong-Yi Luan
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zi-Wei Zhao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Wen-Zhi Mao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Shao-Lei Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yun-Hao Ouyang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zeng-Kai Shao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Chittur Subramanianprasad P, Ma Y, Ihalage AA, Hao Y. Active Learning Optimisation of Binary Coded Metasurface Consisting of Wideband Meta-Atoms. SENSORS (BASEL, SWITZERLAND) 2023; 23:5546. [PMID: 37420713 DOI: 10.3390/s23125546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/15/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The design of a metasurface array consisting of different unit cells with the objective of minimizing its radar cross-section is a popular research topic. Currently, this is achieved by conventional optimisation algorithms such as genetic algorithm (GA) and particle swarm optimisation (PSO). One major concern of such algorithms is the extreme time complexity, which makes them computationally forbidden, particularly at large metasurface array size. Here, we apply a machine learning optimisation technique called active learning to significantly speed up the optimisation process while producing very similar results compared to GA. For a metasurface array of size 10 × 10 at a population size of 106, active learning took 65 min to find the optimal design compared to genetic algorithm, which took 13,260 min to return an almost similar optimal result. The active learning optimisation strategy produced an optimal design for a 60 × 60 metasurface array 24× faster than the approximately similar result generated by GA technique. Thus, this study concludes that active learning drastically reduces computational time for optimisation compared to genetic algorithm, particularly for a larger metasurface array. Active learning using an accurately trained surrogate model also contributes to further lowering of the computational time of the optimisation procedure.
Collapse
Affiliation(s)
| | - Yihan Ma
- School of Electronics Engineering and Computer Science, Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, UK
| | - Achintha Avin Ihalage
- School of Electronics Engineering and Computer Science, Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, UK
| | - Yang Hao
- School of Electronics Engineering and Computer Science, Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, UK
| |
Collapse
|
30
|
Jin S, Zu H, Qian W, Luo K, Xiao Y, Song R, Xiong B. A Quad-Band and Polarization-Insensitive Metamaterial Absorber with a Low Profile Based on Graphene-Assembled Film. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114178. [PMID: 37297312 DOI: 10.3390/ma16114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
A quad-band metamaterial absorber using a periodically arranged surface structure placed on an ultra-thin substrate is demonstrated in this paper. Its surface structure consists of a rectangular patch and four L-shaped structures distributed symmetrically. The surface structure is able to have strong electromagnetic interactions with incident microwaves, thereby generating four absorption peaks at different frequencies. With the aid of the near-field distributions and impedance matching analysis of the four absorption peaks, the physical mechanism of the quad-band absorption is revealed. The usage of graphene-assembled film (GAF) provides further optimization to increase the four absorption peaks and promotes the low-profile characteristic. In addition, the proposed design has good tolerance to the incident angle in vertical polarization. The proposed absorber in this paper has the potential for filtering, detection, imaging, and other communication applications.
Collapse
Affiliation(s)
- Shiyi Jin
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Haoran Zu
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Qian
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Kaolin Luo
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Xiao
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Rongguo Song
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Bo Xiong
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
31
|
Gonçalves Dalkiranis G, Costa Basílio F, Nobuyasu RS, de Fátima Curcino da Silva S, Lucia Dias Nogueira S, Moreira Therézio E, Serein-Spirau F, Silva RA, Marletta A. Photoluminescent ellipsometric circular dichroism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122437. [PMID: 36758363 DOI: 10.1016/j.saa.2023.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
A novel spectroscopic technique, photoluminescent ellipsometric circular dichroism (PECD), which distinguishes all radiative electronic transitions related to molecular chiral centers. Additionally, it is proposed as complementary to the ellipsometric Raman spectroscopy (ERS) technique, thus establishing a relationship between vibrational modes and electronic transitions, associated with molecular chiral centers. In this way, PECD turns into a powerful technique for chiral material characterization. The PECD technique was performed on a chiral oligomer (1R,2R)-diiminocyclohexane, and its derivative polymer. A complete photophysical characterization in solution was performed to corroborate the new PECD technique.
Collapse
Affiliation(s)
- Gustavo Gonçalves Dalkiranis
- Physics Institute of São Carlos, University of São Paulo, 13560-970 São Carlos, SP, Brazil; Catalan Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | | | - Roberto S Nobuyasu
- Physics and Chemistry Institute, Federal University of Itajubá, CEP 37500-903 Itajubá, MG, Brazil
| | | | | | | | - Françoise Serein-Spirau
- Institut Charles Gerhardt, Ecole Nationale Superieure de Chimie de Montpellier, 34296 Montpellier, France
| | - Raigna A Silva
- Physics Institute, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Alexandre Marletta
- Physics Institute, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
32
|
Jiang XX, Xiao ZY, Wang XW, Cheng P. Integrated metamaterial with the functionalities of an absorption and polarization converter. APPLIED OPTICS 2023; 62:3519-3527. [PMID: 37706964 DOI: 10.1364/ao.484368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 09/15/2023]
Abstract
A switchable and tunable dual-function absorber/polarization converter is presented in this work. The constitution of the structure, which incorporates patterned graphene and photosensitive silicon (Si), can minimize undesired optical losses. Simulated results show that when the Si is metallic, the structure behaves as a broadband absorption of more than 90% in the range of 1.45-3.36 THz. Its peak absorption can be tuned from 22% to 99.8% by changing the Fermi energy of graphene. Furthermore, the interference theory analyzes the physical mechanism for broadband absorption. When the Si is in the dielectric state, the structure has a transmission polarization conversion function, which realizes the conversion from linear to cross-polarized waves. The polarization conversion ratio (PCR) is greater than 90% in the 3.82-4.43 THz range. Meanwhile, the cross-polarization transmission can be dynamically tuned from 28% to 97%, and the PCR can also be tuned from 17% to 99.9% by adjusting the conductivity of the Si. The reason for realizing polarization conversion is explained by the polarization decomposition method. This study provides a design opinion of high-performance multifunctional tunable terahertz devices.
Collapse
|
33
|
Wu LT, Zhang XZ, Luo RZ, Chen J. Non-Hermitian guided modes and exceptional points using loss-free negative-index materials. OPTICS EXPRESS 2023; 31:14109-14118. [PMID: 37157281 DOI: 10.1364/oe.487278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We analyze the guided modes in coupled waveguides made of negative-index materials without gain or loss. We show that it supports non-Hermitian phenomenon on the existence of guided mode versus geometric parameters of the structure. The non-Hermitian effect is different from parity-time (P T) symmetry, and can be explained by a simple coupled-mode theory with an anti-P T symmetry. The existence of exceptional points and slow-light effect are discussed. This work highlights the potential of loss-free negative-index materials in the study of non-Hermitian optics.
Collapse
|
34
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
35
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
36
|
Sänger JC, Pauw BR, Riechers B, Zocca A, Rosalie J, Maaß R, Sturm H, Günster J. Entering a New Dimension in Powder Processing for Advanced Ceramics Shaping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208653. [PMID: 36445940 DOI: 10.1002/adma.202208653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Filigree structures can be manufactured via two-photon polymerization (2PP) operating in the regime of nonlinear light absorption. For the first time, it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect sizes responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which are diametrically opposed to the usually completely opaque ceramic resins and slurries. Here a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ) is presented. Due to the extremely well-dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm are obtained. Even at reduced densities of 1-4 g cm-3 , the resulting compressive strength with 4.5 GPa is equivalent or even exceeding bulk monolithic yttria-stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria-stabilized zirconia are altered by changing geometrical parameters, and gives access to a new class of ceramic materials.
Collapse
Affiliation(s)
- Johanna Christiane Sänger
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Brian Richard Pauw
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Birte Riechers
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Andrea Zocca
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Julian Rosalie
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Robert Maaß
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Heinz Sturm
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- IWF, Technical University Berlin, Pascalstr. 8-9, 10587, Berlin, Germany
| | - Jens Günster
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Institute of Non-Metallic Materials, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
37
|
Arinze C, Stern M, Nagel SR, Murugan A. Learning to self-fold at a bifurcation. Phys Rev E 2023; 107:025001. [PMID: 36932611 DOI: 10.1103/physreve.107.025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/23/2022] [Indexed: 02/10/2023]
Abstract
Disordered mechanical systems can deform along a network of pathways that branch and recombine at special configurations called bifurcation points. Multiple pathways are accessible from these bifurcation points; consequently, computer-aided design algorithms have been sought to achieve a specific structure of pathways at bifurcations by rationally designing the geometry and material properties of these systems. Here, we explore an alternative physical training framework in which the topology of folding pathways in a disordered sheet is changed in a desired manner due to changes in crease stiffnesses induced by prior folding. We study the quality and robustness of such training for different "learning rules," that is, different quantitative ways in which local strain changes the local folding stiffness. We experimentally demonstrate these ideas using sheets with epoxy-filled creases whose stiffnesses change due to folding before the epoxy sets. Our work shows how specific forms of plasticity in materials enable them to learn nonlinear behaviors through their prior deformation history in a robust manner.
Collapse
Affiliation(s)
- Chukwunonso Arinze
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Menachem Stern
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sidney R Nagel
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
38
|
Rashid A, Murtaza M, Zaidi SAA, Zaki H, Tahir FA. A single-layer, wideband and angularly stable metasurface based polarization converter for linear-to-linear cross-polarization conversion. PLoS One 2023; 18:e0280469. [PMID: 36662794 PMCID: PMC9858438 DOI: 10.1371/journal.pone.0280469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
In this article, a single-layer metasurface based reflector design is proposed for linear-to-linear cross-polarization conversion in microwave frequency range. The unit-cell of the proposed design consists of triple-arrow resonant design printed on a grounded FR4 substrate. Excellent cross-conversion is achieved over a broad frequency range (8.0-18.50 GHz) with polarization conversion efficiency higher than 90%. The proposed design has a large fractional bandwidth (FBW) of 80% due to three resonances occurring in the band. The polarization response is angularly stable with respect to oblique incidences with incidence angles up to 45°. The proposed design has been fabricated and experimentally validated. The measurement results are in good agreement with the simulation results.
Collapse
Affiliation(s)
- Aamir Rashid
- Electronics Engineering Department, Faculty of Electronics and Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Mudassir Murtaza
- Electronics Engineering Department, Faculty of Electronics and Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Syed Azhar Ali Zaidi
- Electronics Engineering Department, Faculty of Electronics and Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Hammad Zaki
- Electronics Engineering Department, Faculty of Electronics and Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Farooq A. Tahir
- Research Institute of Microwave and Millimetre-Wave Studies, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
39
|
Jiao P, Zhang H, Li W. Origami Tribo-Metamaterials with Mechanoelectrical Multistability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2873-2880. [PMID: 36595717 DOI: 10.1021/acsami.2c16681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emerging mechanical functional metamaterials reported with promising mechanoelectrical characteristics bring increasing attention to structurally functional materials. It is essential to deploy mechanical metamaterials in energy materials for effective triggering and controllable mechanoelectrical response. This study reports origami tribo-metamaterials (OTMs) that design triboelectric materials in the origami-enabled, tubular metamaterials. The octagonal, hexagonal, and conical origami units are deployed as the metamaterial substrates to trigger the triboelectric pairs for mechanoelectrical multistability. For the octagonal OTM configuration with the triboelectric pair of fluorinated ethylene propylene-paper, the peak open-circuit voltage, short-circuit current, and transferred charge are obtained as 206.4 V, 4.66 μA, and 0.38 μC, respectively, and the maximum instantaneous output power density is 0.96 μW/cm2 with the load resistance of 20 MΩ. The OTM takes advantage of the origami metamaterials to obtain the multistable force-displacement response as effective stimuli for the triboelectric materials, which leads to tunable mechanoelectrical performance for speed and weight sensing and energy harvesting. The proposed OTM not only offers a strategy to structurally design energy materials to achieve desirable mechanoelectrical response, but also provides a guideline for the applications of mechanical functional metamaterials in practice.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan316021, Zhejiang, P. R. China
- Donghai Laboratory, Zhoushan316021, Zhejiang, P. R. China
- Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Hangzhou, Zhejiang310000, P. R. China
| | - Hao Zhang
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan316021, Zhejiang, P. R. China
| | - Wentao Li
- Interdisciplinary Student Training Platform for Marine Areas, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| |
Collapse
|
40
|
Guo W, Tan P, Wang J, Li L, Li S, Wang G, Zhou Z, Tian H. Multifunctional transmission polarization conversion metasurface based on dislocation-induced anisotropy at the terahertz frequency. OPTICS EXPRESS 2023; 31:2029-2038. [PMID: 36785225 DOI: 10.1364/oe.479912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
Manipulating the polarization state of terahertz waves is critical for terahertz communication systems. This study proposes a terahertz band polarization conversion metasurface based on dislocation-induced anisotropy. Numerical simulation results revealed that the polarization conversion of orthogonal linearly polarized light, orthogonal circularly polarized light, linearly polarized light to circularly polarized light, and circularly polarized light to linearly polarized light can be realized. Furthermore, the simulation revealed that multifunctional polarization conversion could be achieved by various structures of the bilayer metasurface. Thus, the proposed design can be generalized. The proposed metasurface exhibits considerable potential for applications in terahertz communications.
Collapse
|
41
|
Han Z, Wang F, Sun J, Wang X, Tang Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206141. [PMID: 36284479 DOI: 10.1002/adma.202206141] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Pashaei Adl H, Gorji S, Gualdrón-Reyes AF, Mora-Seró I, Suárez I, Martínez-Pastor JP. Enhanced Spontaneous Emission of CsPbI 3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:11. [PMID: 36615920 PMCID: PMC9824778 DOI: 10.3390/nano13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In this work, we demonstrate, theoretically and experimentally, a hybrid dielectric-plasmonic multifunctional structure able to provide full control of the emission properties of CsPbI3 perovskite nanocrystals (PNCs). The device consists of a hyperbolic metamaterial (HMM) composed of alternating thin metal (Ag) and dielectric (LiF) layers, covered by TiO2 spherical MIE nanoresonators (i.e., the nanoantenna). An optimum HMM leads to a certain Purcell effect, i.e., an increase in the exciton radiative rate, but the emission intensity is reduced due to the presence of metal in the HMM. The incorporation of TiO2 nanoresonators deposited on the top of the HMM is able to counteract such an undesirable intensity reduction by the coupling between the exciton and the MIE modes of the dielectric nanoantenna. More importantly, MIE nanoresonators result in a preferential light emission towards the normal direction to the HMM plane, increasing the collected signal by more than one order of magnitude together with a further increase in the Purcell factor. These results will be useful in quantum information applications involving single emitters based on PNCs together with a high exciton emission rate and intensity.
Collapse
Affiliation(s)
- Hamid Pashaei Adl
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Setatira Gorji
- Instituto de Ciencia de Materiales, Universidad de Valencia (ICMUV), 46071 Valencia, Spain
| | - Andrés F. Gualdrón-Reyes
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castello de la Plana, Spain
- Facultad de Ciencias Instituto de Ciencias Químicas, Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castello de la Plana, Spain
| | - Isaac Suárez
- Escuela Técnica Superior de Ingeniería, Universidad de Valencia, 46100 Valencia, Spain
| | | |
Collapse
|
43
|
Zhuo S, Liu Z, Zhou F, Qin Y, Luo X, Ji C, Yang G, Yang R, Xie Y. THz broadband and dual-channel perfect absorbers based on patterned graphene and vanadium dioxide metamaterials. OPTICS EXPRESS 2022; 30:47647-47658. [PMID: 36558688 DOI: 10.1364/oe.476858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a novel and perfect absorber based on patterned graphene and vanadium dioxide hybrid metamaterial, which can not only achieve wide-band perfect absorption and dual-channel absorption in the terahertz band, but also realize their conversion by adjusting the temperature to control the metallic or insulating phase of VO2. Firstly, the absorption spectrum of the proposed structure is analyzed without graphene, where the absorption can reach as high as 100% at one frequency point (f = 5.956 THz) when VO2 is in the metal phase. What merits attention is that the addition of graphene above the structure enhances the almost 100% absorption from one frequency point (f = 5.956 THz) to a wide frequency band, in which the broadband width records 1.683 THz. Secondly, when VO2 is the insulating phase, the absorption of the metamaterial structure with graphene outperforms better, and two high absorption peaks are formed, logging 100% and 90.7% at f3 = 5.545 THz and f4 = 7.684 THz, respectively. Lastly, the adjustment of the Fermi level of graphene from 0.8 eV to 1.1 eV incurs an obvious blueshift of the absorption spectra, where an asynchronous optical switch can be achieved at fK1 = 5.782 THz and fK2 = 6.898 THz. Besides, the absorber exhibits polarization sensitivity at f3 = 5.545 THz, and polarization insensitivity at f4 = 7.684 THz with the shift in the polarization angle of incident light from 0° to 90°. Accordingly, this paper gives insights into the new method that increases the high absorption width, as well as the great potential in the multifunctional modulator.
Collapse
|
44
|
Ultra-sensitive terahertz metamaterials biosensor based on luxuriant gaps structure. iScience 2022; 26:105781. [PMID: 36594037 PMCID: PMC9804134 DOI: 10.1016/j.isci.2022.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Fast, simple, and label-free detections and distinctions are desirable in cell biology analysis and diagnosis. Here, a biosensor based on terahertz metamaterial has luxuriant gaps, which can excite dipole resonance is designed. Filling the gaps with various analytes can change the biosensor's capacitance resulting in electromagnetic properties changing. The idea is verified by simulations and experiments. The theoretical sensitivity of the biosensor approaches 290 GHz/RIU, and the experimental concentration sensitivity of the biosensor is ≥ 275 kHz mL/cell. Candida Albicans, Escherichia Coli, and Shigella Dysenteriae were selected as analytes, and the measurement frequency shift is 270 GHz, 290 GHz, and 310 GHz, respectively, which indicates that the biosensor can detect and distinguish these bacteria. Successfully detection of low-concentration glioblastoma (200 cells/mL), showing great potential for the early diagnosis of glioblastoma of the biosensor. This biosensor supplies a new horizon for cell detection, which will significantly benefit cell biology investigation.
Collapse
|
45
|
Han Y, Bian X, Liang M, Li T, Zhu L, Zhao X, You R. Terahertz Enhanced Sensing of Uric Acid Based on Metallic Slot Array Metamaterial. MICROMACHINES 2022; 13:1902. [PMID: 36363923 PMCID: PMC9694246 DOI: 10.3390/mi13111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
An enzyme-free terahertz uric acid sensor based on a metallic slot array metamaterial was proposed and realized both theoretically and experimentally. The sensing model was verified in simulation and femtosecond laser processing technology was employed to ablate slots in the copper plate to fabricate metamaterials. Analytes were tested with liquid phase deposition on the metamaterial by a terahertz frequency domain spectroscopy system. Gradient concentrations of uric acid, ascorbic acid, and a mixture of them were measured separately with a good linear response. A significant decrease in sensitivity was observed in the ascorbic acid assay compared with the uric acid assay. The test results of the mixture also proved that our device is resistant to ascorbic acid. It is a simple and effective method for monitoring uric acid concentrations and the strategy of eliminating interference while modulating the resonance peak location mentioned here can be rationally projected for the development of other sensors.
Collapse
Affiliation(s)
- Yuke Han
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Xiaomeng Bian
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Misheng Liang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Tianshu Li
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Xiaoguang Zhao
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Rui You
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100015, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
46
|
Learning the stress-strain fields in digital composites using Fourier neural operator. iScience 2022; 25:105452. [PMID: 36388999 PMCID: PMC9663908 DOI: 10.1016/j.isci.2022.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
Increased demands for high-performance materials have led to advanced composite materials with complex hierarchical designs. However, designing a tailored material microstructure with targeted properties and performance is extremely challenging due to the innumerable design combinations and prohibitive computational costs for physics-based solvers. In this study, we employ a neural operator-based framework, namely Fourier neural operator (FNO), to learn the mechanical response of 2D composites. We show that the FNO exhibits high-fidelity predictions of the complete stress and strain tensor fields for geometrically complex composite microstructures with very few training data and purely based on the microstructure. The model also exhibits zero-shot generalization on unseen arbitrary geometries with high accuracy. Furthermore, the model exhibits zero-shot super-resolution capabilities by predicting high-resolution stress and strain fields directly from low-resolution input configurations. Finally, the model also provides high-accuracy predictions of equivalent measures for stress-strain fields, allowing realistic upscaling of the results. Predict stress and strain tensors directly from the microstructure Demonstrate material and pixel-wise super-resolution of the FNO model Zero-shot generalization to unseen arbitrary geometries Measuring equivalent quantities such as von-mises stress and equivalent strains
Collapse
|
47
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
48
|
Xiong B, Ma W, Wang W, Hu X, Chu T. Compact vertical grating coupler with an achromatic in-plane metalens on a 220-nm silicon-on-insulator platform. OPTICS EXPRESS 2022; 30:36254-36264. [PMID: 36258558 DOI: 10.1364/oe.467418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
We proposed a new type of vertical grating couplers (VGCs) with a compact footprint on the 220-nm silicon-on-insulator platform. The overall size of the device containing the L-shaped coupling grating and the taper with achromatic in-plane metalens is only 45 × 15 µm2, and the measured coupling efficiency at 1550 nm is -5.2 dB with a 1 dB bandwidth of 38 nm, around 1.6 dB higher than the VGC without metalens. The incidence angle mismatch has a 1 dB bandwidth of roughly 4°, whereas the displacement mismatch along the x-/y- axis has a bandwidth of around 3/4 µm. Furthermore, we experimentally show that such a design is compatible with VGCs operating in the S, C, and L bands.
Collapse
|
49
|
Shafqat MD, Mahmood N, Zubair M, Mehmood MQ, Massoud Y. Highly Efficient Perfect Vortex Beams Generation Based on All-Dielectric Metasurface for Ultraviolet Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3285. [PMID: 36234413 PMCID: PMC9565325 DOI: 10.3390/nano12193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Featuring shorter wavelengths and high photon energy, ultraviolet (UV) light enables many exciting applications including photolithography, sensing, high-resolution imaging, and optical communication. The conventional methods of UV light manipulation through bulky optical components limit their integration in fast-growing on-chip systems. The advent of metasurfaces promised unprecedented control of electromagnetic waves from microwaves to visible spectrums. However, the availability of suitable and lossless dielectric material for the UV domain hindered the realization of highly efficient UV metasurfaces. Here, a bandgap-engineered silicon nitride (Si3N4) material is used as a best-suited candidate for all-dielectric highly efficient UV metasurfaces. To demonstrate the wavefront manipulation capability of the Si3N4 for the UV spectrum, we design and numerically simulate multiple all-dielectric metasurfaces for the perfect vortex beam generation by combing multiple phase profiles into a single device. For different numerical apertures (NA =0.3 and 0.7), it is concluded that the diffracted light from the metasurfaces with different topological charges results in an annular intensity profile with the same ring radius. It is believed that the presented Si3N4 materials and proposed design methodology for PV beam-generating metasurfaces will be applicable in various integrated optical and nanophotonic applications such as information processing, high-resolution spectroscopy, and on-chip optical communication.
Collapse
|
50
|
Hu S, Chen J, Liang J, Luo J, Shi W, Yuan J, Chen Y, Chen L, Chen Z, Liu GS, Luo Y. Hyperbolic-Metamaterials-Based SPR Temperature Sensor Enhanced by a Nanodiamond-PDMS Hybrid for High Sensitivity and Fast Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42412-42419. [PMID: 36070359 DOI: 10.1021/acsami.2c10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A high-performance surface plasmon resonance (SPR) fiber sensor is proposed with hyperbolic metamaterials (HMMs), nanodiamonds (NDs), and polydimethylsiloxane (PDMS) to enhance the temperature sensitivity and response time. The HMM with tunable dispersion can break through the structural limitations of the optical fiber to improve the refractive index (RI) sensitivity, while NDs and PDMS with large thermo-optic coefficients enable to induce significant RI change under varied thermal fields. The ternary composite endows the sensor with a high temperature sensitivity of -9.021 nm/°C, which is 28.6 times higher than that of the conventional gold film-based SPR sensor. Furthermore, NDs with high thermal conductivity (2200 W/mK) effectively expedite the thermal response of PDMS, which reduces the response time from 80 to 6 s. It is believed that the proposed sensors with high sensitivity, fast response time, and compact size have great potential for applications in industrial production, healthcare, environmental monitoring, etc.
Collapse
Affiliation(s)
- Shiqi Hu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Jiayao Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Junhao Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiajia Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Weicheng Shi
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jinming Yuan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|