1
|
Szarszoń K, Baran N, Śliwka P, Wiloch M, Janek T, Wątły J. Bioinorganic Chemistry Meets Microbiology: Copper(II) and Zinc(II) Complexes Doing the Cha-Cha with the C-t-CCL-28 Peptide, Dancing till the End of Microbes. Inorg Chem 2024; 63:19105-19116. [PMID: 39352869 PMCID: PMC11483739 DOI: 10.1021/acs.inorgchem.4c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The necessity to move away from conventional antibiotic therapy has sparked interest in antimicrobial peptides (AMPs). One fascinating example is human CCL-28 chemokine produced by acinar epithelial cells in the salivary glands. It can also be released into the oral cavity with saliva, playing a crucial role in oral protection. The C-terminal domain of CCL-28 possesses antifungal and antibacterial properties, which are likely linked to membrane disruption and enzyme leakage. Studies suggest that AMPs can become more potent after they have bound Cu(II) or Zn(II). In many cases, these ions are essential for maximizing effectiveness by altering the peptides' physicochemical properties, such as their local charge or structure. The examined peptide binds Cu(II) and Zn(II) ions very effectively, forming equimolar complexes. Metal ion binding affinity, coordination mode, and antimicrobial activity strongly depend on the pH of the environment. Coordination modes have been proposed based on the results of potentiometric titrations, spectroscopic studies (UV-visible, electron paramagnetic resonance and circular dichroism at different path lengths), and mass spectrometry. The antimicrobial properties of the Cu(II) and Zn(II) complexes with the C-terminal fragment of CCL-28 chemokine have been assessed against fungal and bacterial strains, demonstrating exceptional activity against Candida albicans at pH 5.4. Moreover, the complex with Zn(II) ions shows the same activity against theStreptococcus mutans bacterium as chloramphenicol, a commonly used antibiotic. Cyclic voltammetry proposed a probable antimicrobial mechanism of the studied Cu(II) complex through the formation of reactive oxygen species, which was also confirmed by tests with ascorbic acid in UV-vis and fluorescence spectroscopic studies.
Collapse
Affiliation(s)
- Klaudia Szarszoń
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Natalia Baran
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paulina Śliwka
- Department
of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Magdalena Wiloch
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Janek
- Department
of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Joanna Wątły
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Szarszoń K, Andrä S, Janek T, Wątły J. Insights into the Chemistry, Structure, and Biological Activity of Human Salivary MUC7 Fragments and Their Cu(II) and Zn(II) Complexes. Inorg Chem 2024; 63:11616-11627. [PMID: 38856909 PMCID: PMC11200262 DOI: 10.1021/acs.inorgchem.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mucin 7 (MUC7) is one of the salivary proteins whose role in the innate immune system is widely known, but still, neither its mechanism of action nor the impact of its metal coordination is fully understood. MUC7 and its fragments demonstrate potent antimicrobial activity, serving as a natural defense mechanism for organisms against pathogens. This study delves into the bioinorganic chemistry of MUC7 fragments (L1─EGRERDHELRHRRHHHQSPK; L2─EGRERDHELRHRR; L3─HHHQSPK) and their complexes with Cu(II) and Zn(II) ions. The antimicrobial characteristics of the investigated peptides and their complexes were systematically assessed against bacterial and fungal strains at pH 5.40 and pH 7.40. Our findings highlight the efficacy of these systems against Streptococcus sanguinis, a common oral cavity pathogen. Most interestingly, Zn(II) coordination increased (or triggered) the MUC7 antimicrobial activity, which underscores the pivotal role of metal ion coordination in governing the antimicrobial activity of human salivary MUC7 fragments against S. sanguinis.
Collapse
Affiliation(s)
- Klaudia Szarszoń
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Silke Andrä
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Tomasz Janek
- Department
of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Joanna Wątły
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Kamińska J, Hecel A, Słowik J, Rombel-Bryzek A, Rowińska-Żyrek M, Witkowska D. Characterization of four peptides from milk fermented with kombucha cultures and their metal complexes-in search of new biotherapeutics. Front Mol Biosci 2024; 11:1366588. [PMID: 38638688 PMCID: PMC11024286 DOI: 10.3389/fmolb.2024.1366588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
The most common skin diseases include eczema, psoriasis, acne, and fungal infections. There is often no effective cure for them. Increasing antimicrobial drug resistance prompts us to search for new, safe, and effective therapeutics. Among such interesting candidates are peptides derived from milk fermented with specific lactic acid bacteria or with kombucha cultures, which are a potential treasure trove of bioactive peptides. Four of them are discussed in this article. Their interactions with zinc and copper ions, which are known to improve the well-being of the skin, were characterized by potentiometry, MS, ITC, and spectroscopic methods, and their cytostatic potential was analyzed. The results suggest that they are safe for human cells and can be used alone or in complexes with copper for further testing as potential therapeutics for skin diseases.
Collapse
Affiliation(s)
- Justyna Kamińska
- Institute of Health Sciences, University of Opole, Opole, Poland
| | | | - Joanna Słowik
- Institute of Health Sciences, University of Opole, Opole, Poland
| | | | | | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Opole, Poland
| |
Collapse
|
4
|
Hecel A, Garstka K, Kozłowski H, Rowińska-Żyrek M. -HH and -HAAAH motifs act as fishing nets for biologically relevant metal ions in metallopeptides. J Inorg Biochem 2024; 252:112456. [PMID: 38154408 DOI: 10.1016/j.jinorgbio.2023.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Histidine are one of the most common residues involved in transition metal ion binding in the active sites of metalloenzymes. In order to mimic enzymatic metal binding sites, it is crucial to understand the basic coordination modes of histidine residues, distributed at different positions in the peptide sequence. We show that: (i) the separation of two histidines has a large effect on complex stability - a sequence with adjusting histidine residues forms more stable complexes with Zn(II) than the one in which the residues are separated, while the contrary is observed for Cu(II) complexes, in which amide nitrogens participate in metal binding. No pronounced effect is observed for Ni(II) complexes, where the amides participate in binding at higher pH; (ii) non-coordinating amino acid residues (basic, acidic and aromatic ones) have a significant impact on complex stability; charged and aromatic residues may enhance Zn(II) binding, while the contrary is observed for the amide-binding Cu(II); (iii) cysteine containing sequences are much more effective Zn(II) and Ni(II) binding motifs at pH above 8, while histidine containing ligands are more suitable for effective Zn(II) and Ni(II) binding at lower pH.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland.
| | - Kinga Garstka
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; Faculty of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | | |
Collapse
|
5
|
Szebesczyk A, Słowik J. Heat shock proteins and metal ions - Reaction or interaction? Comput Struct Biotechnol J 2023; 21:3103-3108. [PMID: 37273852 PMCID: PMC10236365 DOI: 10.1016/j.csbj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Heat shock proteins (HSPs) are part of the cell's molecular chaperone system responsible for the proper folding (or refolding) of proteins. They are expressed in cells of a wide variety of organisms, from bacteria and fungi to humans. While some HSPs require metal ions for proper functioning, others are expressed as a response of the organism to either essential or toxic metal ions. Their presence can influence the occurrence of cellular processes, even those as significant as programmed cell death. The development of research methods and structural modeling has enabled increasingly accurate recognition of new HSP functions, including their role in maintaining metal ion homeostasis. Current investigations on the expression of HSPs in response to heavy metal ions include not only the direct effect of these ions on the cell but also analysis of reactive oxygen species (ROS) and the increased production of HSPs with increasing ROS concentration. This minireview contains information about the direct and indirect interactions of heat shock proteins with metal ions, both those of biological importance and heavy metals.
Collapse
|
6
|
Garstka K, Dzyhovskyi V, Wątły J, Stokowa-Sołtys K, Świątek-Kozłowska J, Kozłowski H, Barceló-Oliver M, Bellotti D, Rowińska-Żyrek M. CH vs. HC-Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores. Molecules 2023; 28:molecules28103985. [PMID: 37241727 DOI: 10.3390/molecules28103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys-His and His-Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while similar CC and HH regions are found 348 and 94 times, respectively. Complex stabilities increase in the series Fe(II) < Ni(II) < Zn(II), with Zn(II) complexes dominating at physiological pH, and Ni(II) ones-above pH 9. The stabilities of Zn(II) complexes with Ac-ACHA-NH2 and Ac-AHCA-NH2 are comparable, and a similar tendency is observed for Fe(II), while in the case of Ni(II), the order of Cys and His does matter-complexes in which the metal is anchored on the third Cys (Ac-AHCA-NH2) are thermodynamically stronger than those where Cys is in position two (Ac-ACHA-NH2) at basic pH, at which point amides start to take part in the binding. Cysteine residues are much better Zn(II)-anchoring sites than histidines; Zn(II) clearly prefers the Cys-Cys type of ligands to Cys-His and His-Cys ones. In the case of His- and Cys-containing peptides, non-binding residues may have an impact on the stability of Ni(II) complexes, most likely protecting the central Ni(II) atom from interacting with solvent molecules.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Valentyn Dzyhovskyi
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | - Miquel Barceló-Oliver
- Department of Chemistry, University of Balearic Islands, Cra. de Valldemossa, km 7.5., 07122 Palma de Mallorca, Spain
| | - Denise Bellotti
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | | |
Collapse
|
7
|
Dzień E, Dudek D, Witkowska D, Rowińska-Żyrek M. Thermodynamic surprises of Cu(II)-amylin analogue complexes in membrane mimicking solutions. Sci Rep 2022; 12:425. [PMID: 35013439 PMCID: PMC8748748 DOI: 10.1038/s41598-021-04197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Membrane environment often has an important effect on the structure, and therefore also on the coordination mode of biologically relevant metal ions. This is also true in the case of Cu(II) coordination to amylin analogues—rat amylin, amylin1–19, pramlintide and Ac-pramlintide, which offer N-terminal amine groups and/or histidine imidazoles as copper(II) anchoring sites. Complex stabilities are comparable, with the exception of the very stable Cu(II)–amylin1–19, which proves that the presence of the amylin C-terminus lowers its affinity for copper(II); although not directly involved, its appropriate arrangement sterically prevents early metal binding. Most interestingly, in membrane-mimicking solution, the Cu(II) affinities of amylin analogues are lower than the ones in water, probably due to the crowding effect of the membrane solution and the fact that amide coordination occurs at higher pH, which happens most likely because the α-helical structure, imposed by the membrane-mimicking solvent, prevents the amides from binding at lower pH, requiring a local unwinding of the α-helix.
Collapse
Affiliation(s)
- Emilia Dzień
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Dorota Dudek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060, Opole, Poland.
| | | |
Collapse
|
8
|
Witkowska D, Szebesczyk A, Wątły J, Braczkowski M, Rowińska-Żyrek M. A Comparative Study on Nickel Binding to Hpn-like Polypeptides from Two Helicobacter pylori Strains. Int J Mol Sci 2021; 22:ijms222413210. [PMID: 34948007 PMCID: PMC8704837 DOI: 10.3390/ijms222413210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.
Collapse
Affiliation(s)
- Danuta Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland;
- Correspondence:
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland;
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (J.W.); (M.R.-Ż.)
| | - Michał Braczkowski
- Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Magdalena Rowińska-Żyrek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (J.W.); (M.R.-Ż.)
| |
Collapse
|
9
|
Witkowska D, Słowik J, Chilicka K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021; 26:molecules26196060. [PMID: 34641604 PMCID: PMC8511997 DOI: 10.3390/molecules26196060] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals enter the human body through the gastrointestinal tract, skin, or via inhalation. Toxic metals have proven to be a major threat to human health, mostly because of their ability to cause membrane and DNA damage, and to perturb protein function and enzyme activity. These metals disturb native proteins’ functions by binding to free thiols or other functional groups, catalyzing the oxidation of amino acid side chains, perturbing protein folding, and/or displacing essential metal ions in enzymes. The review shows the physiological and biochemical effects of selected toxic metals interactions with proteins and enzymes. As environmental contamination by heavy metals is one of the most significant global problems, some detoxification strategies are also mentioned.
Collapse
|
10
|
Miller A, Matera-Witkiewicz A, Mikołajczyk A, Wątły J, Wilcox D, Witkowska D, Rowińska-Żyrek M. Zn-Enhanced Asp-Rich Antimicrobial Peptides: N-Terminal Coordination by Zn(II) and Cu(II), Which Distinguishes Cu(II) Binding to Different Peptides. Int J Mol Sci 2021; 22:ijms22136971. [PMID: 34203496 PMCID: PMC8267837 DOI: 10.3390/ijms22136971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens.
Collapse
Affiliation(s)
- Adriana Miller
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.M.); (J.W.)
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.-W.); (A.M.)
| | - Aleksandra Mikołajczyk
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.-W.); (A.M.)
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.M.); (J.W.)
| | - Dean Wilcox
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, NH 03755, USA;
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
- Correspondence: (D.W.); (M.R.-Ż.)
| | - Magdalena Rowińska-Żyrek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.M.); (J.W.)
- Correspondence: (D.W.); (M.R.-Ż.)
| |
Collapse
|
11
|
Zn(II)-alloferon complexes - Similar sequence, different coordination modes, no antibacterial activity. J Inorg Biochem 2020; 213:111275. [PMID: 33091731 DOI: 10.1016/j.jinorgbio.2020.111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 11/23/2022]
Abstract
Often, in the search for a highly defined scientific phenomenon, a different one becomes apparent. This was also the case of this work, in the scope of which we planned to search for metal-enhanced, novel antibacterial/antifungal compounds. Instead, we denied the existence of such and revealed the details of the bioinorganic chemistry of Zn(II)-alloferon complexes. Zinc(II) complexes of alloferon 1 and 2, ligands with a sequential difference of one amino acid only, show a substantially different coordination pattern at physiological pH. In the case of Zn(II)-alloferon 1 species, a histamine-like binding mode is observed (N-terminal amine and imidazole of His-1) and the coordination sphere is completed with the imidazole nitrogens of His-6 and His-9; His-12 is not involved in binding. In the case of Zn(II)-alloferon 2, the N-terminal amine and all the three imidazoles present in the sequence participate in the coordination, however, with the chemical shift of His-5 being less affected than those of other imidazoles. The histamine-like binding in Zn(II)-alloferon 1 complex strongly enhances its thermodynamic stability in comparison to the His-1 lacking alloferon 2 analogue. Despite previous reports on the antibacterial and antifungal activity of alloferon 1, no such activity was detected, neither for alloferon 1 and 2 nor for their Zn(II) complexes.
Collapse
|
12
|
Guo H, Wang X, Wu N, Xu M, Wang M, Zhang L, Yang W. One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu 2+ sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4058-4063. [PMID: 32760936 DOI: 10.1039/d0ay01121e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel composite (CDs@ZIF-8) based on carbon dots (CDs) and zeolitic imidazolate framework (ZIF-8) was successfully synthesized by encapsulating CDs into the pores of ZIF-8 through a simple one-pot solvothermal method. The as-synthesized CDs@ZIF-8 inherited simultaneously the strong adsorption capacity of ZIF-8 and the excellent optical properties of CDs. The composite exhibited excellent dispersibility and high structural and fluorescence stability in aqueous solution, which could be employed as an excellent turn-off mode fluorescent probe to detect Cu2+. The large specific surface area and strong adsorption properties of ZIF-8 enabled the resultant composite to effectively enrich Cu2+ for further improving the analytical sensitivity. The possible fluorescence quenching mechanism has also been discussed in detail and it was found that the effective fluorescence quenching of Cu2+ to CDs@ZIF-8 could be attributed to the strong ability of Cu2+ to combine with the carboxyl group or amino group on the CD surface and the strong adsorption capacity of ZIF-8; their synergistic effect resulted in effective fluorescence quenching.
Collapse
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, P R China.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Kołkowska P, Hecel A, Kędzierska D, Ostrowska M, Walencik PK, Wątły J, Zdyb K, Spodzieja M, Rodziewicz-Motowidło S, Potocki S, Łuczkowski M, Gumienna-Kontecka E, Rowińska-Żyrek M. HENRYK - An endless source of metal coordination surprises. J Inorg Biochem 2016; 163:258-265. [PMID: 26952650 DOI: 10.1016/j.jinorgbio.2016.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
The basic knowledge about biological inorganic chemistry, thermodynamics and metal binding sites of metalloproteins is crucial for the understanding of their metal binding-structure-function relationship. Metal-peptide complexes are useful and commonly used models of metal-enzyme active sites, among which copper and zinc models are one of the most extensively studied. HENRYK is a peptide sequence present in numerous proteins, and serves as a potentially tempting binding site for Cu2+ and Zn2+. Maybe more importantly, HENRYK also happens to be the first name of our group leader. The results of this work, which, at the first glance, might seem to be a 'chemical scrabble', went far beyond our expectations and surprised us with a novel, uncommon behavior of a Cu2+ complex with a peptide with a histidine in position one. At low pH, the binding is a typical histamine-like coordination, but with the increase of pH, the imidazole nitrogen is moved to the axial position and replaced with an amide; at basic pH, the binding mode is a {NH2, 3N-} one in the equatorial plane. It is important to note, that no dimeric species are formed in between. Such binding is thermodynamically much more stable than a simple complex with histamine, and quite comparable to complexes with several possible imidazole anchoring sites.
Collapse
Affiliation(s)
- Paulina Kołkowska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Dorota Kędzierska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Małgorzata Ostrowska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Paulina K Walencik
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Karolina Zdyb
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marta Spodzieja
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Sławomir Potocki
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marek Łuczkowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | |
Collapse
|
15
|
Watly J, Simonovsky E, Wieczorek R, Barbosa N, Miller Y, Kozlowski H. Insight into the coordination and the binding sites of Cu(2+) by the histidyl-6-tag using experimental and computational tools. Inorg Chem 2014; 53:6675-83. [PMID: 24905906 DOI: 10.1021/ic500387u] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
His-tags are specific sequences containing six to nine subsequent histydyl residues, and they are used for purification of recombinant proteins by use of IMAC chromatography. Such polyhistydyl tags, often used in molecular biology, can be also found in nature. Proteins containing histidine-rich domains play a critical role in many life functions in both prokaryote and eukaryote organisms. Binding mode and the thermodynamic properties of the system depend on the specific metal ion and the histidine sequence. Despite the wide application of the His-tag for purification of proteins, little is known about the properties of metal-binding to such tag domains. This inspired us to undertake detailed studies on the coordination of Cu(2+) ion to hexa-His-tag. Experiments were performed using the potentiometric, UV-visible, CD, and EPR techniques. In addition, molecular dynamics (MD) simulations and density functional theory (DFT) calculations were applied. The experimental studies have shown that the Cu(2+) ion binds most likely to two imidazoles and one, two, or three amide nitrogens, depending on the pH. The structures and stabilities of the complexes for the Cu(2+)-Ac-(His)6-NH2 system using experimental and computational tools were established. Polymorphic binding states are suggested, with a possibility of the formation of α-helix structure induced by metal ion coordination. Metal ion is bound to various pairs of imidazole moieties derived from the tag with different efficiencies. The coordination sphere around the metal ion is completed by molecules of water. Finally, the Cu(2+) binding by Ac-(His)6-NH2 is much more efficient compared to other multihistidine protein domains.
Collapse
Affiliation(s)
- Joanna Watly
- Faculty of Chemistry, University of Wroclaw , 50-383 Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
16
|
Potocki S, Valensin D, Kozlowski H. The specificity of interaction of Zn(2+), Ni(2+) and Cu(2+) ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans 2014; 43:10215-23. [PMID: 24874820 DOI: 10.1039/c4dt00903g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Zrt/Irt-like protein (ZIP) family contributes to the metal homeostasis by regulating the transport of divalent metal cations such as Fe(2+), Zn(2+), Mn(2+), Cd(2+) and sometimes even Cu(2+). Most ZIP members have a long variable loop between transmembrane domains (TMDs) III and IV; this region is predicted to be located in the cytoplasm and is postulated to be the metal ion binding site. In this study, we looked at the thermodynamic behavior and coordination chemistry of Zn(2+), Ni(2+) and Cu(2+) complexes with the histidine-rich domain, Ac-(185)RAHAAHHRHSH(195)-NH2 (HRD), from the yeast TjZNT1 protein, located between TMDs III and IV. The sequence is conserved also in higher species like Thlaspi japonicum. The stability of complexes increases in the series Ni(2+) < Zn(2+)≪ Cu(2+). The geometry of complexes is very different for each metal and in the case of Zn(2+) complexes, high specificity in binding is observed. Moreover, the stability of HRD-Cu(2+) complexes was compared with the five His residues containing peptide from Hpn protein (Helicobacter pylori). The results suggest a high ability of HRD in the binding of all three studied metals.
Collapse
Affiliation(s)
- Slawomir Potocki
- Faculty of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | | |
Collapse
|
17
|
Wang X, He L, Zhao C, Du W, Lin J. Gold complexes inhibit the aggregation of prion neuropeptides. J Biol Inorg Chem 2013; 18:767-78. [DOI: 10.1007/s00775-013-1030-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022]
|
18
|
Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
|