1
|
Al-Hazmi HE, Hassan GK, Kurniawan TA, Śniatała B, Joseph TM, Majtacz J, Piechota G, Li X, El-Gohary FA, Saeb MR, Mąkinia J. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120414. [PMID: 38412730 DOI: 10.1016/j.jenvman.2024.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt.
| | | | - Bogna Śniatała
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń, 87-100, Poland
| | - Xiang Li
- School of Environmental Science & Engineering, Donghua Univerisity, Dept Env. Room 4155, 2999 North Renmin Rd, Songjiang District, Shanghai, China
| | - Fatma A El-Gohary
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
2
|
Dhiman S, Khanna K, Kour J, Singh AD, Bhardwaj T, Devi K, Sharma N, Kumar V, Bhardwaj R. Landfill bacteriology: Role in waste bioprocessing elevated landfill gaseselimination and heat management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120364. [PMID: 38387351 DOI: 10.1016/j.jenvman.2024.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This study delves into the critical role of microbial ecosystems in landfills, which are pivotal for handling municipal solid waste (MSW). Within these landfills, a complex interplay of several microorganisms (aerobic/anaerobic bacteria, archaea or methanotrophs), drives the conversion of complex substrates into simplified compounds and complete mineralization into the water, inorganic salts, and gases, including biofuel methane gas. These landfills have dominant biotic and abiotic environments where various bacterial, archaeal, and fungal groups evolve and interact to decompose substrate by enabling hydrolytic, fermentative, and methanogenic processes. Each landfill consists of diverse bio-geochemical environments with complex microbial populations, ranging from deeply underground anaerobic methanogenic systems to near-surface aerobic systems. These kinds of landfill generate leachates which in turn emerged as a significant risk to the surrounding because generated leachates are rich in toxic organic/inorganic components, heavy metals, minerals, ammonia and xenobiotics. In addition to this, microbial communities in a landfill ecosystem could not be accurately identified using lab microbial-culturing methods alone because most of the landfill's microorganisms cannot grow on a culture medium. Due to these reasons, research on landfills microbiome has flourished which has been characterized by a change from a culture-dependent approach to a more sophisticated use of molecular techniques like Sanger Sequencing and Next-Generation Sequencing (NGS). These sequencing techniques have completely revolutionized the identification and analysis of these diverse microbial communities. This review underscores the significance of microbial functions in waste decomposition, gas management, and heat control in landfills. It further explores how modern sequencing technologies have transformed our approach to studying these complex ecosystems, offering deeper insights into their taxonomic composition and functionality.
Collapse
Affiliation(s)
- Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India; Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| | - Vinod Kumar
- Department of Botany, Government College for Women, Gandhi Nagar, Jammu 180004, Jammu & Kashmir, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, 143005, Punjab, India
| |
Collapse
|
3
|
Kumar V, Verma P. Pulp-paper industry sludge waste biorefinery for sustainable energy and value-added products development: A systematic valorization towards waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120052. [PMID: 38244409 DOI: 10.1016/j.jenvman.2024.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
The pulp-paper industry is one of the main industrial sectors that produce massive amounts of residual sludge, constituting an enormous environmental burden for the industries. Traditional sludge management practices, such as landfilling and incineration, are restricted due to mounting environmental pressures, complex regulatory frameworks, land availability, high costs, and public opinion. Valorization of pulp-paper industry sludge (PPS) to produce high-value products is a promising substitute for traditional sludge management practices, promoting their reuse and recycling. Valorization of PPIS for biorefinery beneficiation includes biomethane, biohydrogen, bioethanol, biobutanol, and biodiesel production for renewable energy generation. Additionally, the various thermo-chemical technologies can be utilized to synthesize bio-oil, hydrochar, biochar, adsorbent, and activated carbon, signifying potential for value-added generation. Moreover, PPIS can be recycled as a byproduct by incorporating it into nanocomposites, cardboard, and construction materials development. This paper aims to deliver a comprehensive overview of PPIS management approaches and thermo-chemical technologies utilized for the development of platform chemicals in industry. Substitute uses of PPIS, such as making building materials, developing supercapacitors, and making cardboard, are also discussed. In addition, this article deeply discusses recent developments in biotechnologies for valorizing PPIS to yield an array of valuable products, such as biofuels, lactic acids, cellulose, nanocellulose, and so on. This review serves as a roadmap for future research endeavors in the effective handling of PPIS.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India.
| |
Collapse
|
4
|
Arunkumar T, Wang J, Lee SJ. Efficient solar desalination for clean water production from different wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121759-121769. [PMID: 37953425 DOI: 10.1007/s11356-023-30507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Solar energy is one of the sustainable sources for many fruitful applications. Desalination of wastewater by solar power is a priority research focus and has attracted many researchers and scientists world-wide. However, handling industrial and other wastewater is typically a challenging task for effective treatment and re-use. The presence of contaminants in the effluent is hazardous to the environment and human health. In the present work, an attempt has been made to investigate different wastewaters including (i) garbage wastewater, (ii) waste vegetable water, (iii) landfill leachate, and (iv) pharmaceutical effluent fed into a solar distiller evaporated under natural solar illumination. Herein, different waste waters' pH, chemical oxygen demand (COD), ammoniacal-nitrogen (NH3-N), arsenic (As), Barium (Ba), Cobalt (CO), Chromium (Cr), Iron (Fe), Mercury (Hg), Potassium (K), Manganese (Mn), Magnesium (Mg), Sodium (Na), Nickel (Ni), Phosphate (P), and Zinc (Zn) were investigated by the inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The concentration of NH3-N in the garbage wastewater, vegetables wastewater, landfill leachate, and pharmaceutical effluent were 157 mg/L, 142 mg/L, 161 mg/L, and 164 mg/L, respectively. The evaporated water output of garbage, waste-vegetable water, landfill leachate, and pharmaceutical effluents are 1.7 L/m2.day, 1.8 L/m2.day, 1.9 L/m2.day, and 1.65 L/m2.day, respectively. Finally, the test result reveals that the water quality is greatly improved after consecutive evaporation process by the solar distiller. This is one way to deal with the wastewater through a sustainable process for a better future.
Collapse
Affiliation(s)
- Thirugnanasambantham Arunkumar
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Babu Ponnusami A, Sinha S, Ashokan H, V Paul M, Hariharan SP, Arun J, Gopinath KP, Hoang Le Q, Pugazhendhi A. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. ENVIRONMENTAL RESEARCH 2023; 237:116944. [PMID: 37611785 DOI: 10.1016/j.envres.2023.116944] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Complexity of wastewater is the most challenging phenomenon on successful degradation of pollutant via any wastewater treatment regime. Upon availability of numerous techniques, Advanced Oxidation Processes (AOP) is the most promising technique for treating industrial wastewater. Higher operating cost is the most promising factor that possess challenge for the industrial scale usage of the AOP process. Combination of biological process with AOP helps in achieving sustainable degradation of toxic pollutant in the wastewater. AOP result in complete or partial degradation of toxic emerging pollutants with the help of free radicals like hydroxyl, superoxide, hydroperoxyl and sulphate radicals. In addition to this the presence of bio-enzymes and microorganisms helps in sustainable degradation of pollutant in an economical and environmentally friendly strategy. In this review, a detailed discussion was conducted on various AOP, focusing on catalytic ozonation, electrochemical oxidation, Sono chemical and photocatalytic processes. With the need for sustainable solutions for wastewater treatment, the use of AOP in conjunction with biological process has innumerous opportunities for not only wastewater treatment but also the production of high value by-products. Further, the effect of AOP combined biological processes needs to be analyzed in real time for the different concentration of industrial wastewater and their benefits needs to be explored in future towards achieving SDGs.
Collapse
Affiliation(s)
- A Babu Ponnusami
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Sanyukta Sinha
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Hridya Ashokan
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Mathew V Paul
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Sai Prashant Hariharan
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - J Arun
- Centre for Waste Management, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai (OMR), Jeppiaar Nagar, Chennai, 600119, Tamil Nadu, India
| | - K P Gopinath
- Department of Chemical Engineering, Mohamed Sathak Engineering College, Sathak Nagar, SH 49, Keelakarai, Tamil Nadu 623806
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
6
|
El-Saadony MT, Saad AM, El-Wafai NA, Abou-Aly HE, Salem HM, Soliman SM, Abd El-Mageed TA, Elrys AS, Selim S, Abd El-Hack ME, Kappachery S, El-Tarabily KA, AbuQamar SF. Hazardous wastes and management strategies of landfill leachates: A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 31:103150. [DOI: 10.1016/j.eti.2023.103150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Bhagwat A, Kumar R, Ojha CSP, Sharma MK, Pant A, Sharma B, Tyagi JV. Assessing efficiency and economic viability in treating leachates emanating from the municipal landfill site at Gazipur, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71813-71825. [PMID: 34622409 DOI: 10.1007/s11356-021-16724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The leachates emanating from the landfills are high in organic loads and thus become potential sources of contamination for both surface and groundwater. As the landfill ages, the nature of leachate changes from acidic to alkaline. The change in pH level affects the chemical oxygen demand (COD)/biochemical oxygen demand (BOD) ratio and when it is less than 0.63, chemical treatments are more effective over the biological treatment methods such as upflow anaerobic sludge blankets (UASB). The existing literature suggests coagulation-flocculation and advanced oxidation process (Fenton) as effective methods for treating wastewater but no comparison of the two are available. Thus, the present study attempts to identify the most efficient coagulants out of ferric chloride (FeCl3), ferrous sulphate (FeSO4) and alum [Al2(SO4)3]. Ferric chloride leading to 99% colour removal, 98% COD removal, 99% decrease in total organic carbon, 94.3% removal in NH3-N and 91.4% removal in total Kjeldahl nitrogen is observed to be the most efficient coagulant and surprisingly, proves to be even better than Fenton. To understand the field applicability of the two treatment procedures, coagulation with FeCl3 and Fenton are compared with the UASB method which is currently employed at Gazipur landfill site, Delhi. With lesser operational cost than UASB, both FeCl3 and Fenton perform better on cost-efficiency scale. Switching from in-suit UASB method to the FeCl3 method of treatment may result in decreasing the operational cost by 71.9% and to conventional Fenton may result in decreasing the operational cost by 76.8%.
Collapse
Affiliation(s)
- Anjali Bhagwat
- Environment Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India.
| | - Rajat Kumar
- Environment Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | | | - Mukesh Kumar Sharma
- Environment Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Apourv Pant
- Environment Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Babita Sharma
- Environment Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Jai Vir Tyagi
- Environment Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| |
Collapse
|
8
|
He H, Zhang C, Yang X, Huang B, Zhe J, Lai C, Liao Z, Pan X. The efficient treatment of mature landfill leachate using tower bipolar electrode flocculation-oxidation combined with electrochemical biofilm reactors. WATER RESEARCH 2023; 230:119544. [PMID: 36603307 DOI: 10.1016/j.watres.2022.119544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Mature landfill leachate contains high concentrations of organic and inorganic compounds that inhibit the performance of conventional biological treatment. Nowadays, few single treatment techniques could fulfill the requirements of cleaning mature landfill leachate. In this study, a tower bipolar electrode flocculation-oxidation (BEF-O) reactor and an electrochemical biofilm reactor (EBR) combine device was constructed to effectively treat mature landfill leachate. And the removal efficiency and mechanism of various pollutants using the BEF-O reactor were investigated. The BEF-O system with the current density of 100 mA/cm2 shows excellent treatment efficiency, which can roundly remove most pollutants (NH4+-N, COD and heavy metals, etc.), and increase the bioavailability of the effluent to facilitate subsequent EBR treatment. Benefiting from the metabolic stimulation and population selection effect of electric current on microorganisms, EBR has a denser biofilm, stronger anti-pollution load capacity, superior, and stable pollution treatment efficiency. More importantly, the combined device can reduce the concentrations of COD and NH4+-N from 6410 to 338 mg/L and 4065 to 4 mg/L, respectively, and has an economical energy consumption of 32.02 kWh/(kg COD) and 54.04 kWh/ (kg NH4+-N). To summarize, this research could provide an innovative and industrial application prospect technology for the mature landfill leachate treatment.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Jiangyun Zhe
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| |
Collapse
|
9
|
de Almeida R, Porto RF, Quintaes BR, Bila DM, Lavagnolo MC, Campos JC. A review on membrane concentrate management from landfill leachate treatment plants: The relevance of resource recovery to close the leachate treatment loop. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:264-284. [PMID: 35924944 PMCID: PMC9972246 DOI: 10.1177/0734242x221116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Membrane filtration processes have been used to treat landfill leachate. On the other hand, closing the leachate treatment loop and finding a final destination for landfill leachate membrane concentrate (LLMC) - residual stream of membrane systems - is challenging for landfill operators. The re-introduction of LLMC into the landfill is typical; however, this approach is critical as concentrate pollutants may accumulate in the leachate treatment facility. From that, leachate concentrate management based on resource recovery rather than conventional treatment and disposal is recommended. This work comprehensively reviews the state-of-the-art of current research on LLMC management from leachate treatment plants towards a resource recovery approach. A general recovery train based on the main LLMC characteristics for implementing the best recovery scheme is presented in this context. LLMCs could be handled by producing clean water and add-value materials. This paper offers critical insights into LLMC management and highlights future research trends.
Collapse
Affiliation(s)
- Ronei de Almeida
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
- Ronei de Almeida, School of Chemistry,
Inorganic Processes Department, Universidade Federal do Rio de Janeiro, 149
Athos da Silveira Ramos Avenue, laboratory I-124, Rio de Janeiro, RJ 21941-909,
Brazil.
| | - Raphael Ferreira Porto
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | | | - Daniele Maia Bila
- Department of Sanitary and Environment
Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Lavagnolo
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
| | - Juacyara Carbonelli Campos
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| |
Collapse
|
10
|
Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
12
|
Xu L, Chen Y, Wang Z, Zhang Y, He Y, Zhang A, Chen H, Xue G. Discovering dominant ammonia assimilation: Implication for high-strength nitrogen removal in full scale biological treatment of landfill leachate. CHEMOSPHERE 2023; 312:137256. [PMID: 36395888 DOI: 10.1016/j.chemosphere.2022.137256] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Landfill leachate containing high-strength nitrogen is generated in domestic waste landfilling. The integration of anoxic and aerobic process (AO) based on nitrification and denitrification, has been a mainstream process of biological nitrogen removal (BNR). But the high-strength organics as well as aerobic effluent reflux might change the biochemical environment designed and operated as AO. In view of the nitrogen balance in a full scale landfill leachate treatment plant with two-stage AO, we found that approximately 90% removal of total nitrogen (TN) and ammonia (NH4+-N) focused on primary anoxic and aerobic stage. Meanwhile, the less nitrate and nitrite in the aerobic effluent were incapable of sustaining denitrification or anaerobic ammonia oxidation (anammox). The high reflux flow from aerobic to anoxic process enabled the similar microbial community and functional genes in anoxic and aerobic process units. However, the functional genes involving ammonia assimilation in all process units showcased the highest abundance compared to those correlated with other BNR pathways, including nitrification and denitrification, assimilatory and dissimilatory nitrate reduction, nitrogen fixation and anammox. The ammonia assimilation dominated the removals of TN and NH4+-N, rather than other BNR mechanism. The insight of dominant ammonia assimilation is favorable for illustrating the authentic BNR mechanism of landfill leachate in AO, thereby guiding the optimization of engineering design and operation.
Collapse
Affiliation(s)
- Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuting Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China.
| |
Collapse
|
13
|
Ricky R, Shanthakumar S, Gothandam KM. A pilot-scale study of the integrated phycoremediation-photolytic ozonation based municipal solid waste leachate treatment process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116237. [PMID: 36115240 DOI: 10.1016/j.jenvman.2022.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Municipal solid waste (MSW) leachate is a highly polluted liquid that accumulates in the landfill and contains a high concentration of toxic pollutants which can pollute the surrounding surface water and groundwater as well, if not treated properly. In this study, an integrated approach of phycoremediation with photolytic ozonation was employed for the leachate collected from the MSW dumpsite which has high Chemical Oxygen Demand (COD) and ammonium (NH4+) levels. Photolytic ozonation treatment was employed as a pre-treatment step under operating parameters of pH: 9.0; Ozone dosage: 5 g/h; UV-C: λ = 254 nm; and contact time: 60 min, in which the COD and NH4+ in the leachate was reduced up to 81% and 95%, respectively. The selected algae Chlorella vulgaris (C.vulgaris) was employed in a lab-scale study to optimize the inoculum conditions in the photolytic ozonated leachate (POL). The specific growth rate of C.vulgaris was observed as 0.14/d in the POL at the optimized condition (inoculum size of 25% (T25)) during the study period of 11 days. High-rate algal pond (HRAP) was employed for the pilot-scale study in controlled environmental conditions as in the T25 experimental run for the assessment of POL treatment and biomass production. C.vulgaris reduced the concentration of pollutants COD, NH4+, and heavy metals (Cu, Fe) in the POL up to 93%, 94%, and 71%, respectively, with the dry biomass productivity of 0.727 g/L/d which is 3 times higher than the biomass productivity of C.vulgaris in freshwater conditions. The biochemical composition (carbohydrates, proteins, and lipids) of the harvested biomass has higher lipid production with lipid productivity of 120 mg/L/d which can be used as a feedstock for the production of value-a dded products.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore-632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore-632014, India; Centre for Clean Environment, Vellore Institute of Technology (VIT), Vellore-632014, India.
| | - K M Gothandam
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| |
Collapse
|
14
|
Díaz AI, Laca A, Díaz M. Approach to a fungal treatment of a biologically treated landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116085. [PMID: 36063693 DOI: 10.1016/j.jenvman.2022.116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
White-rot fungi (WRF) have the ability to synthetize extracellular enzymes that could degrade recalcitrant pollutants. The aim of this work was to evaluate the use of P. chrysosporium to treat a biologically and physically pre-treated landfill leachate which high load of refractory compounds (COD>1000 mg/L, BOD5<50 mg/L) in order to reduce COD and colour. Batch tests were carried out at 26 °C and 135 rpm for 15 days. The soluble chemical oxygen demand (sCOD), soluble biological oxygen demand (sBOD5) and colour, as well as the lignin peroxidase (LiP) and manganese peroxidase (MnP) enzymatic activities were analysed. Besides, the effects of different operating conditions, i.e., pH control, permeate dilution and supplementation, on treatment efficacy were investigated. The control of pH was shown to be key for fungal treatment. In addition, it was found that the addition of carbon and nitrogen sources improved the enzymatic synthesis and the removals of sCOD and colour. Data here obtained open the possibility of using fungi for reducing the amount of recalcitrant pollutants still present in treated landfill leachates or similar effluents.
Collapse
Affiliation(s)
- Ana Isabel Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| |
Collapse
|
15
|
Kurniawan TA, Lo W, Othman MHD, Goh HH, Chong KK. Biosorption of heavy metals from aqueous solutions using activated sludge, Aeromasss hydrophyla, and Branhamella spp based on modeling with GEOCHEM. ENVIRONMENTAL RESEARCH 2022; 214:114070. [PMID: 35988827 DOI: 10.1016/j.envres.2022.114070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This work tests the technical applicability of sewage sludge and isolated dead cells of Aeromasss hydrophyla and Branhamella spp for the elimination of inorganic pollutants such as Zn(II), Pb(II), Cd(II), and/or Cu(II) using synthetic wastewater with their initial concentrations of 100 mg/L, respectively. The sludge samples were collected from local sewage treatment plants. The effects of dose and pH on heavy metals removal were evaluated in batch studies and their removal performances were compared to those of previous studies. Both the Freundlich and the Langmuir models were plotted to study their biosorption using activated sludge and the bacteria. Isotherm data, resulting from the batch studies, were compared to the modeling results of Geochem. It was evident that the activated sludge could achieve 99% of Zn(II), Cd(II), Cu(II) and Pb(II) removal with 100 mg/L of concentration at pH 6.0 and 3 g/L of dose. Under the same conditions, 97% of Cd(II), Cu(II) and/or Pb(II) was removed by Aeromasss hydrophyla and Branhamella spp, as indicated by their adsorption capacities (activated sludge: 99.07 mg Pb2+/g; dewatered sludge: 57.15 mg Pb2+/g; digested sludge: 83.58 mg Pb2+/g; 24.47 mg Cd2+/g; Aeromasss hydrophylla: 71.91 mg Pb2+/g; Branhamella spp: 37.52 mg Cu2+/g). Of the four heavy metals studied, Pb(II) had the highest metal adsorption capacity for all adsorbents studied (Pb2+>Cu2+> Cd2+>Zn2+). The modeling results of the Geochem fitted well with the isotherm data of the batch studies at varying concentrations from 20 to 100 mg/L. The thermodynamic constant at pH 4 were comparable to those obtained from previous works. This indicates a reliable prediction over varying metal concentrations and pHs of the batch studies. In spite of the promising results, the treated effluents still could not meet the required effluent limits set by local legislation. Therefore, it is necessary to subsequently treat the samples using biological processes such as activated sludge.
Collapse
Affiliation(s)
| | - Waihung Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor Baru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kok-Keong Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
16
|
Ilmasari D, Sahabudin E, Riyadi FA, Abdullah N, Yuzir A. Future trends and patterns in leachate biological treatment research from a bibliometric perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115594. [PMID: 35759967 DOI: 10.1016/j.jenvman.2022.115594] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Leachate has become a great deal of concern due to its complex properties which are primarily caused by the high concentrations of organics and ammonia. Thus, proper leachate treatment is required prior to its discharge. Leachate can be treated in various ways, and biological treatment is one of the approaches. This treatment has been shown to be both effective and cost-efficient while offering the possibility of resource recovery in the form of bioenergy. In this study, the underlying patterns in publications related to leachate biological treatment were uncovered through bibliometric analysis. This study also lays the groundwork for a deeper understanding of the past, current, and future trends of the leachate biological treatment. Research publications from 1974 to 2021 were retrieved from the Scopus database, and it was identified that 2013 articles were published in the span of 47 years. From the analyzed publications, China played a leading role in publishing leachate biological treatment research articles as well as having the most productive institutions and authors. Meanwhile, the USA was found to be the most active country in initiating international collaborations with 33 countries. The research hotspots were also successfully identified using keyword co-occurrences analysis. Anaerobic digestion and constructed wetland were revealed to be the research hotspots. The critical role of biological treatment in removing nitrogen from leachate was also highlighted. Besides, numerous research gaps were identified in the application of aerobic granular sludge (AGS) for leachate treatment. This can be a potential area for research in the future. Finally, future research should be encouraged to focus on the use of sustainable treatment systems in which energy recovery in the form of biogases is promoted.
Collapse
Affiliation(s)
- Dhaneswara Ilmasari
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Eri Sahabudin
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Fatimah Azizah Riyadi
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Norhayati Abdullah
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; UTM International, Aras 8 Menara Razak, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Zhang H, Chen Y, Liu Y, Bowden JA, Townsend TG, Solo-Gabriele HM. Do PFAS changes in landfill leachate treatment systems correlate with changes in physical chemical parameters? WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:49-59. [PMID: 35926281 DOI: 10.1016/j.wasman.2022.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found at relatively elevated concentrations in landfill leachates. Some landfill facilities treat physical-chemical parameters of their leachates using on-site leachate treatment systems before discharge. The objective of this study was to evaluate whether changes in physical-chemical parameters of leachate at on-site treatment systems (including bulk measurements, oxygen demanding components, and metals) were associated with concentration changes in PFAS. Leachates were evaluated at 15 on-site treatment facilities which included pond systems, aeration tanks, powdered activated carbon (PAC), sand filtration, reverse osmosis (RO) and combination treatment processes. Results show that most physical-chemical parameters and PFAS were significantly reduced in RO systems (over 90 %). For pond systems, statistically significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and the changes in pH, alkalinity, ammonia, and some metals. Significant correlations were also found between ∑8PFAAs precursors changes and specific conductivity (SPC), pH, alkalinity, ammonia, and metals changes. For aeration tank systems, significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and changes in total dissolved solids and zinc, and between the changes of ∑8PFAAs precursors and field pH. These correlations are believed to be associated with rainfall dilution and precipitation of calcium carbonate and other metals as leachate is introduced to the atmosphere.
Collapse
Affiliation(s)
- Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
18
|
Ilmasari D, Kamyab H, Yuzir A, Riyadi FA, Khademi T, Al-Qaim FF, Kirpichnikova I, Krishnan S. A Review of the Biological Treatment of Leachate: Available Technologies and Future Requirements for the Circular Economy Implementation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Treatment of whitewater from pulp and paper industry using membrane filtrations. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Tripathy BK, Kumar M. Leachate treatment using sequential microwave and algal photo-bioreactor: Effect of pretreatment on reactor performance and biomass productivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114830. [PMID: 35279493 DOI: 10.1016/j.jenvman.2022.114830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The present study aims to design a lab-scale hybrid reactor, primarily focused on the removal of organics, nutrients, heavy metal and other toxic compounds, thereby, minimizing risk associated with the disposal of landfill leachate. The potential of a designed hybrid treatment system (i.e., sequential microwave (MW) with algal bioreactor) with and without pretreatment, i.e., coagulation-flocculation (CF), was evaluated based on several parameters. The CF pretreatment under optimized conditions has resulted in 90% turbidity and 76% COD removals from leachate; furthermore, the MW treatment achieved 91% ammonia removal from raw leachate. As a result, substantial algal growth was observed in the preliminary algal batch experiment conducted with MW and MW-CF treated samples. Subsequently, leachate treatment was carried out using sequencing batch reactor (SBR) systems, i.e., MW-algal SBR and CF-MW-algal SBR. Algal biomass growth and increment in DO level were observed in algal-SBR experiments. Under the optimized reactor conditions, TN and TP removal rates in the algal-SBR were found to be 1.67-20 mg/L/d and 0.6-9.6 mg/L/d, respectively. The majority of heavy metals present in the leachate were removed due to algal-uptake (mainly Zn2+) and bio-sorption (total-Fe, Cu2+ and Pb2+). Meanwhile, some amount of energy can be recovered from algal biomass as inferred from the cost benefit analysis. Overall, the hybrid treatment combining MW and algal-SBR has shown immense potential for sustainable leachate treatment.
Collapse
Affiliation(s)
- Binay Kumar Tripathy
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036, India
| | - Mathava Kumar
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036, India.
| |
Collapse
|
21
|
Maal-Bared R, Li R, Suarez A. Evaluating the impacts of leachate co-treatment on a full-scale municipal wastewater treatment plant in Canada. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:19-29. [PMID: 34847466 DOI: 10.1016/j.wasman.2021.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to evaluate the impacts of leachate co-treatment on a full-scale municipal WWTPby comparing plant performance at varying levels of leachate contributions and hydraulic loadings.Leachate BOD:COD ratio was 0.08 ± 0.07 and indicated a stabilized, old matrix and concentrations of zinc, iron, aluminum, chloride and sulfate were 0.174, 38, 1.47, 1803 and 119.1 mg/L, respectively. The average volumetric leachate ratio (VLR%) was approximately 0.01% corresponding to a daily volume of 30 m3 but reaching a maximum of 270 m3(VLR% = 0.1%) and fluctuating on a daily-basis. A cluster analysis revealed 5 VLR% groupings that were used for subsequent analyses:no leachate, 0 < Low ≤ 0.001, 0.001 < Medium ≤ 0.02, 0.02 < High ≤ 0.05, 0.05 < Very high ≤ 0.2. Treated effluent concentrations of TKN, ammonia, fecal coliforms (FC),E. coli(EC), TSS and TP experienced atrend where effluent quality was improved at low and medium VLR%compared to no leachate addition, but deteriorated in high and very high VLR%.Treated effluent UVT% and EC were not statistically significantly different at varying VLR%, but FC was.Plant hydraulic had a significant impact on removal rates.Ammonia removals and nitrite concentrations improved inhigh flow conditions, whileTP, BOD and cBODremovals deteriorated. Finally,VLR%, leachate COD, TKN ammonia, chloride and arsenic had significant relationships with plant performance. Thus,for leachate with comparable age and strength, VLR% should not exceedlow to medium contributions(0 and 0.02%)during co-treatment at this WWTP.
Collapse
Affiliation(s)
- Rasha Maal-Bared
- Wastewater Treatment Specialist, Scientific Services, EPCOR Water, Canada.
| | - Rui Li
- Operations Engineer, Regina Wastewater Treatment Plant, EPCOR Water Prairies, Treatment Plant, 100 Fleming Road, Regina, SK S4M 0A1, Canada.
| | - Alfredo Suarez
- Senior Manager Operations, Gold Bar Wastewater Treatment Plant, EPCOR Tower, 2000 10423 101 Street, Edmonton, AB T5H 0E8, Canada.
| |
Collapse
|
22
|
Daud Z, Detho A, Rosli MA, Awang H, Ridzuan MBB, Tajarudin HA. Optimization of mixing ratio, shaking speed, contact time, and pH on reduction of Chemical Oxygen Demand (COD) and Ammoniacal Nitrogen (NH3-N) in leachate treatment. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:24-33. [PMID: 33320054 DOI: 10.1080/10962247.2020.1862362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
When the inevitable generation of waste is considered as hazardous to health, damaging ecosystem to our environment, it is important to develop an innovative technologies to remediate pollutant sources for the safety and environmental protection. The development of adsorption technique for the reduction of extremely effective pollutants in this regard. Green mussel and zeolite mixing media were investigated for the reduction of the concentration of organic constituents (COD) and ammoniacal nitrogen from leachate. The leachate treatability was analyzed under various stages of treatment parameter, namely mixing ratio, shaking speed, contact time, and pH. Both adsorbent were sieve values in between 2.00-3.35 mm particle size. The optimum pH, shaking speed, contact time, and mixing ratio were determined. Leachate samples were collected from influent untreated detention pond at Simpang Renggam landfill site in Johor, Malaysia. The result of leachate characterization properties revealed that non-biodegradability leachate with higher concentrations of COD (1829 mg/L), ammoniacal nitrogen (406.68 mg/L) and biodegradability value (0.08) respectively. The optimal reduction condition of COD and ammoniacal nitrogen was obtained at 200 rpm shaken speed, 120 minute shaken time, optimum green mussel and zeolite mix ratio was 2.0:2.0, and pH 7. The isothermic study of adsorption shows that Langmuir is best suited for experimental results in terms of Freundlich model. The mixing media also provided promising results to treating leachate. This would be greatly applicable in conventionally minimizing zeolite use and thereby lowering the operating cost of leachate treatment.Implications: The concentration of organic constituents (COD) and ammoniacal nitrogen in stabilized landfill leachate have significant strong influences of human health and environmental. The combination of mixing media green mussel and zeolite adsorbent COD and ammoniacal nitrogen reduction efficiency from leachate. This would be greatly applicable in future research era as well as conventionally minimizing high cost materials like zeolite use and thereby lowering the operating cost of leachate treatment.
Collapse
Affiliation(s)
- Zawawi Daud
- Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Malaysia
| | - Amir Detho
- Energy & Environment Engineering Department, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Mohd Arif Rosli
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Malaysia
| | - Halizah Awang
- Faculty of Technical and Vocational Education, Universiti Tun Hussein Onn Malaysia, Malaysia
| | | | | |
Collapse
|
23
|
Li H, Li Z, Song B, Gu Z. Microbial community response of the full-scale MBR system for mixed leachates treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1677. [PMID: 34897880 DOI: 10.1002/wer.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
In practice, mature landfill leachate and incineration (young) leachate are mixed to improve the biodegradability and enhance biological treatment performance. However, the ratio of mature-to-young leachates greatly influences MBR treatment efficiency and microbial community structure. This study investigated the treatment efficiency and microbial community structure of full-scale MBR systems operated under two mix ratios, mature leachate: young leachate = 7:3 (v/v, denoted as LL) and 3:7 (v/v, denoted as IL). LL group showed lower Cl- and COD concentrations but a higher aromatic organic content comparing to IL group, and the COD and UV254 removals for LL were significantly lower than those for IL by MBR treatment. Microbial community structures were similar in both groups at phylum level, with dominant phyla being Proteobacteria (23.8%-32.3%), Bacteroidetes (15.25%-20.7%), Chloroflexi (10.5%-23.1%), and Patescibacteria (9.9%-13.2%). However, the richness and diversity of LL group were lower, and differences were observed at lower taxonomy levels. Results indicated that salinity mainly changed the structure of microbial community, resulting in greater abundance of salt-tolerant microbials, while refractory organics affected microbial community structure, and also led to decreased diversity and metabolic activity. Therefore, in mixed leachates biological treatment, a higher young leachate ratio is recommended for better organics removal performance. PRACTITIONER POINTS: The trade-off between refractory organics and salinity in mixed leachate treatment should be paid attention. Refractory organics reduced alpha and functional diversities of microorganisms. Mixed leachate with a higher young leachate ratio reached a better organic removal.
Collapse
Affiliation(s)
- Huan Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhiheng Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
24
|
Kurniawan TA, Singh D, Avtar R, Othman MHD, Hwang GH, Albadarin AB, Rezakazemi M, Setiadi T, Shirazian S. Resource recovery from landfill leachate: An experimental investigation and perspectives. CHEMOSPHERE 2021; 274:129986. [PMID: 33979934 DOI: 10.1016/j.chemosphere.2021.129986] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This work investigates the performances of coconut shell waste-based activated carbon (CSWAC) adsorption in batch studies for removal of ammoniacal nitrogen (NH3-N) and refractory pollutants (as indicated by decreasing COD concentration) from landfill leachate. To valorize unused resources, coconut shell, recovered and recycled from agricultural waste, was converted into activated carbon, which can be used for leachate treatment. The ozonation of the CSWAC was conducted to enhance its removal performance for target pollutants. The adsorption mechanisms of refractory pollutants by the adsorbent are proposed. Perspectives on nutrient recovery technologies from landfill leachate from the view-points of downstream processing are presented. Their removal efficiencies for both recalcitrant compounds and ammoniacal nitrogen were compared to those of other techniques reported in previous work. It is found that the ozonated CSWAC substantially removed COD (i.e. 76%) as well as NH3-N (i.e. 75%), as compared to the CSWAC without pretreatment (i.e. COD: 44%; NH3-N: 51%) with NH3-N and COD concentrations of 2750 and 8500 mg/L, respectively. This reveals the need of ozonation for the adsorbent to improve its performance for the removal of COD and NH3-N at optimized reactions: 30 g/L of CSWAC, pH 8, 200 rpm of shaking speed and 20 min of reaction time. Nevertheless, treatment of the leachate samples using the ozonated CSWAC alone was still unable to result in treated effluents that could meet the COD and NH3-N discharge standards below 200 and 5 mg/L, respectively, set by legislative requirements. This reveals that another treatment is necessary to be undertaken to comply with the requirement of their effluent limit.
Collapse
Affiliation(s)
| | - Deepak Singh
- Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, University Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Goh Hui Hwang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, PR China
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tjandra Setiadi
- Center for Environmental Studies, Bandung Institute of Technology, Bandung, 40135, Indonesia
| | - Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Laboratory of Computational Modeling of Drugs, South Ural State University, 454080, Chelyabinsk, Russia
| |
Collapse
|
25
|
Kurniawan TA, Singh D, Xue W, Avtar R, Othman MHD, Hwang GH, Setiadi T, Albadarin AB, Shirazian S. Resource recovery toward sustainability through nutrient removal from landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112265. [PMID: 33730674 DOI: 10.1016/j.jenvman.2021.112265] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the feasibility of integrated ammonium stripping and/or coconut shell waste-based activated carbon (CSWAC) adsorption in treating leachate samples. To valorize unused biomass for water treatment application, the adsorbent originated from coconut shell waste. To enhance its performance for target pollutants, the adsorbent was pretreated with ozone and NaOH. The effects of pH, temperature, and airflow rate on the removal of ammoniacal nitrogen (NH3-N) and refractory pollutants were studied during stripping alone. The removal performances of refractory compounds in this study were compared to those of other treatments previously reported. To contribute new knowledge to the field of study, perspectives on nutrients removal and recovery like phosphorus and nitrogen are presented. It was found that the ammonium stripping and adsorption treatment using the ozonated CSWAC attained an almost complete removal (99%) of NH3-N and 90% of COD with initial NH3-N and COD concentrations of 2500 mg/L and 20,000 mg/L, respectively, at optimized conditions. With the COD of treated effluents higher than 200 mg/L, the combined treatments were not satisfactory enough to remove target refractory compounds. Therefore, further biological processes are required to complete their biodegradation to meet the effluent limit set by environmental legislation. As this work has contributed to resource recovery as the driving force of landfill management, it is important to note the investment and operational expenses, engineering applicability of the technologies, and their environmental concerns and benefits. If properly managed, nutrient recovery from waste streams offers environmental and socio-economic benefits that would improve public health and create jobs for the local community.
Collapse
Affiliation(s)
- Tonni Agustiono Kurniawan
- College of the Environment and Ecology, Xiamen University (XMU), Xiamen 361102, Fujian Province, PR China; Department of Energy, Environment, and Climate Change, School of Environment, Resources, and Development, Asian Institute of Technology, PO Box 4, Klong Luang, Pathumthani 12120, Thailand.
| | - Deepak Singh
- Research Institute for Humanity and Nature (RIHN), Kamigamo, Kita-ku, Kyoto 603-8047, Japan
| | - Wenchao Xue
- Department of Energy, Environment, and Climate Change, School of Environment, Resources, and Development, Asian Institute of Technology, PO Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, University Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Goh Hui Hwang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, PR China
| | - Tjandra Setiadi
- Center for Environmental Studies, Bandung Institute of Technology, Bandung 40135, Indonesia
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, Chelyabinsk 454080, Russia
| |
Collapse
|
26
|
Abstract
Aloe vera plant offers a sustainable solution for the removal of various pollutants from water. Due to its chemical composition, Aloe vera has been explored as coagulant/flocculant and biosorbent for water treatment. Most of the used materials displayed significant pollutants removals depending on the used preparation methods. AV-based materials have been investigated and successfully used as coagulant/flocculant for water treatment at laboratory scale. Selected AV-based materials could reduce the solids (total suspended solids (TSS), suspended solids (SS), total dissolved solids (TDS), and dissolved solids (DS)), turbidity, chemical oxygen demand (COD), biochemical oxygen demand (BOD), heavy metals, and color, with removal percentages varied depending on the coagulant/flocculant materials and on the wastewater characteristics. In the same context, AV materials can be used as biological flocculant for wastewater sludge treatment, allowing good solid–liquid separation and promoting sludge settling. Moreover, using different methods, AV material-based biosorbents were prepared and successfully used for pollutants (heavy metal dyes and phenol) elimination from water. Related results showed significant pollutant removal efficiency associated with an interesting adsorption capacity comparable to other biosorbents derived from natural products. Interestingly, the enzymatic system of Aloe vera (carboxypeptidase, glutathione peroxidase, and superoxide dismutase) has been exploited to degrade textile dyes. The obtained results showed high promise for removal efficiencies of various kinds of pollutants. However, results varied depending on the methodology used to prepare the Aloe vera based materials. Because of its valuable properties (composition, abundance, ecofriendly and biodegradable), Aloe vera may be useful for water treatment.
Collapse
|
27
|
Mengting Z, Kurniawan TA, Avtar R, Othman MHD, Ouyang T, Yujia H, Xueting Z, Setiadi T, Iswanto I. Applicability of TiO 2(B) nanosheets@hydrochar composites for adsorption of tetracycline (TC) from contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123999. [PMID: 33288338 DOI: 10.1016/j.jhazmat.2020.123999] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
We test the feasibility of TiO2(B)@carbon composites as adsorbents, derived from wheat straws, for tetracycline (TC) adsorption from aqueous solutions. Hydrochar (HC), biochar (BC), and hydrochar-derived pyrolysis char (HDPC) are synthesized hydrothermally from the waste and then functionalized with TiO2(B), named as 'Composite-1', 'Composite-2', and 'Composite-3', respectively. A higher loading of TiO2(B) into the HC was also synthesized for comparison, named as 'Composite-4'. To compare their physico-chemical changes before and after surface modification, the composites are characterized using FESEM-EDS, XRD, BET, FRTEM, and FTIR. The effects of H2O2 addition on TC removal are investigated. Adsorption kinetics and isotherms of TC removal are studied, while TC adsorption mechanisms are elaborated. We found that the Composite-4 has the highest TC removal (93%) at pH 7, 1 g/L of dose, and 4 h of reaction time at 50 mg/L of TC after adding H2O2 (10 mM). The TC adsorption capacities of the Composite-1 and Composite-4 are 40.65 and 49.26 mg/g, respectively. The TC removal by the Composite-1 follows the pseudo-second order. Overall, this suggests that converting the wheat straw into HC and then functionalizing its surface with TiO2(B) as a composite has added values to the waste as an adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Zhu Mengting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Department of Energy, Environment, and Climate Change, School of Environment Resources and Development (SERD), Asian Institute of Technology (AIT), Pathumthani 12120, Thailand.
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo 060-0810, Japan.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, University Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Tong Ouyang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Huang Yujia
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhang Xueting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Tjandra Setiadi
- Center for Environment Studies, Bandung Institute of Technology (ITB), Bandung 40135, Indonesia
| | | |
Collapse
|
28
|
Bagastyo AY, Hidayati AS, Herumurti W, Nurhayati E. Application of boron-doped diamond, Ti/IrO 2, and Ti/Pt anodes for the electrochemical oxidation of landfill leachate biologically pretreated by moving bed biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1357-1368. [PMID: 33767042 DOI: 10.2166/wst.2021.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional biological treatments used in most Indonesian landfill sites are mostly ineffective in treating stabilized landfill leachates to meet the standard regulation. Thus, a combination of biological and electrochemical process is offered to successfully treat leachates containing a high concentration of organic and nitrogenous compounds. In this study, a moving bed biofilm reactor (MBBR) was applied prior to electrochemical oxidation by using boron-doped diamond (BDD), Ti/IrO2, and Ti/Pt anodes with applied current of 350, 400 and 450 mA. The objectives were to investigate the effect of anode type and the applied current on the removal of organics as well as total nitrogen from the MBBR-treated leachate with electrochemical oxidation. The optimum removal of chemical oxygen demand (COD) observed on the Ti/Pt anode was 78% by applying 400 mA, with an estimated energy of 56.7 Wh g L-1. In the case of Ti/IrO2 and BDD anodes, the optimum removal of COD was 76 and 85% with an energy consumption of 58.9 and 36.9 Wh g L-1, respectively, both achieved at 350 mA. Although all anodes showed less-satisfactory performances for total nitrogen reduction, around 46-95% removal of nitrogenous compounds was achieved by MBBR, with their partial conversion to nitrates.
Collapse
Affiliation(s)
- Arseto Yekti Bagastyo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| | - Arum Sofiana Hidayati
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| | - Welly Herumurti
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| | - Ervin Nurhayati
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| |
Collapse
|
29
|
Okurowska K, Karunakaran E, Al-Farttoosy A, Couto N, Pandhal J. Adapting the algal microbiome for growth on domestic landfill leachate. BIORESOURCE TECHNOLOGY 2021; 319:124246. [PMID: 33254468 DOI: 10.1016/j.biortech.2020.124246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
We aimed to improve algal growth rate on leachate by optimising the algal microbiome. An algal-bacterial consortium was enriched from landfill leachate and subjected to 24 months of adaptive laboratory evolution, increasing the growth rate of the dominant algal strain, Chlorella vulgaris, almost three-fold to 0.2 d-1. A dramatic reduction in nitrate production suggested a shift in biological utilisation of ammoniacal-N, supported by molecular 16S rRNA taxonomic analyses, where Nitrosomonas numbers were not detected in the adapted consortium. A PICRUSt approach predicted metagenomic functional content and revealed a high number of sequences belonging to bioremediation pathways, including degradation of aromatic compounds, benzoate and naphthalene, as well as pathways known to be involved in algal-bacterial symbiosis. This study enhances our understanding of beneficial mechanisms in algal-bacterial associations in complex effluents, and ultimately enables the bottom-up design of optimised algal microbiomes for exploitation within industry.
Collapse
Affiliation(s)
- Katarzyna Okurowska
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Alaa Al-Farttoosy
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Narciso Couto
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
30
|
Makhatova A, Mazhit B, Sarbassov Y, Meiramkulova K, Inglezakis VJ, Poulopoulos SG. Effective photochemical treatment of a municipal solid waste landfill leachate. PLoS One 2020; 15:e0239433. [PMID: 32960913 PMCID: PMC7508382 DOI: 10.1371/journal.pone.0239433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/06/2020] [Indexed: 11/19/2022] Open
Abstract
This work aimed at studying the photochemical treatment of a landfill leachate using ultraviolet light, hydrogen peroxide, and ferrous or ferric ions, in a batch recycle photoreactor. The effect of inorganic carbon presence, pH, initial H2O2 amount (0-9990 mg L-1) as well as Fe(II) (200-600 ppm) and Fe(III) (300-700 ppm) concentrations on the total carbon removal and color change was studied. Prior to the photochemical treatment, a pretreatment process was applied; inorganic nitrogen and inorganic carbon were removed by means of air stripping and initial pH regulation, respectively. The leachate sent subsequently for photochemical treatment was free of inorganic carbon and contained only organic carbon with concentration 1200±100 mg L-1 at pH 5.1-5.3. The most favorable concentrations of H2O2 and ferric ions for carbon removal were 6660 mg L-1 and 400 ppm, respectively. Adjusting the initial pH value in the range of 2.2-5.3 had a significant effect on the organic carbon removal. The photo-Fenton-like process was more advantageous than the photo-Fenton one for leachate treatment. By applying the most favorable operating conditions, 88.7% removal of total organic carbon, 100% removal of total inorganic carbon, 96.5% removal of total nitrogen, and 98.2% color removal were achieved.
Collapse
Affiliation(s)
- Ardak Makhatova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Environmental Science & Technology Group (ESTg), The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Birzhan Mazhit
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Environmental Science & Technology Group (ESTg), The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yerbol Sarbassov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Environmental Science & Technology Group (ESTg), The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kulyash Meiramkulova
- Department of Environmental Engineering and Management, Faculty of Natural Sciences, L.N.Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Vassilis J. Inglezakis
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Environmental Science & Technology Group (ESTg), The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Stavros G. Poulopoulos
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Environmental Science & Technology Group (ESTg), The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
31
|
Kurniawan TA, Mengting Z, Fu D, Yeap SK, Othman MHD, Avtar R, Ouyang T. Functionalizing TiO 2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110871. [PMID: 32721315 DOI: 10.1016/j.jenvman.2020.110871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/22/2023]
Abstract
Methylene blue is a refractory pollutant commonly present in textile wastewater. This study tests the feasibility of TiO2/graphene oxide (GO) composite in enhancing photocatalytic degradation of MB in synthetic wastewater with respect to scientific and engineering aspects. To enhance its removal, we vary the composition of the composite based on the TiO2 weight. Under UV-vis irradiation, the effects of photocatalyst's dose, pH, and reaction time on MB removal by the composites are evaluated under optimum conditions, while any changes in their physico-chemical properties before and after treatment are analyzed by using TEM, SEM, XRD, FTIR and BET. The photodegradation pathways of the target pollutant by the composite and its removal mechanisms are also elaborated. It is found that the same composite with a 1:2 wt ratio of GO/TiO2 has the largest surface area of 104.51 m2/g. Under optimum reactions (0.2 g/L of dose, pH 10, and 5 mg/L of pollutant's concentration), an almost complete MB removal could be attained within 4 h. This result is higher than that of the TiO2 alone (30%) under the same conditions. Since the treated effluents could meet the strict discharge standard limit of ≤0.2 μg/L set by China's regulation, subsequent biological treatments are unnecessary for completing biodegradation of remaining oxidation by-products in the wastewater effluents.
Collapse
Affiliation(s)
- Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of Ecology and the Environment, Xiamen University, Xiamen, Fujian, 361102, PR China; China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Zhu Mengting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of Ecology and the Environment, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Dun Fu
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, PR China.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Tong Ouyang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of Ecology and the Environment, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
32
|
Mengting Z, Kurniawan TA, Yanping Y, Dzarfan Othman MH, Avtar R, Fu D, Hwang GH. Fabrication, characterization, and application of ternary magnetic recyclable Bi 2WO 6/BiOI@Fe 3O 4 composite for photodegradation of tetracycline in aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110839. [PMID: 32721303 DOI: 10.1016/j.jenvman.2020.110839] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
We aim at fabricating a ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite that could be applied for photodegradation of tetracycline (TC) from synthetic wastewater. To identify any changes with respect to the composite's morphology and crystal structure properties, ΧRD, FTIR, FESEM-EDS, PL and VSM analyses are carried out. The effects of Fe3O4 loading ratio on the Bi2WO6/BiOI for TC photodegradation are evaluated, while operational parameters such as pH, reaction time, TC concentration, and photocatalyst's dose are optimized. Removal mechanisms of the TC by the composite and its photodegradation pathways are elaborated. With respect to its performance, under the same optimized conditions (1 g/L of dose; 5 mg/L of TC; pH 7; 3 h of reaction time), the Bi2WO6/BiOI@5%Fe3O4 composite has the highest TC removal (97%), as compared to the Bi2WO6 (63%). After being saturated, the spent photocatalyst could be magnetically separated from solution for subsequent use. In spite of three consecutive cycles with 71% of efficiency, the spent composite still has reasonable photocatalytic activities for reuse. Overall, this suggests that the composite is a promising photocatalyst for TC removal from aqueous solutions.
Collapse
Affiliation(s)
- Zhu Mengting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of Ecology and Environment, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of Ecology and Environment, Xiamen University, Xiamen, 361102, Fujian, China; China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, Sepang, 43900, Malaysia.
| | - You Yanping
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of Ecology and Environment, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ram Avtar
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Dun Fu
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Goh Hui Hwang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| |
Collapse
|
33
|
Caroline Baettker E, Kozak C, Knapik HG, Aisse MM. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. CHEMOSPHERE 2020; 251:126414. [PMID: 32443252 DOI: 10.1016/j.chemosphere.2020.126414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The disposal of municipal solid waste (MSW) in landfills generates leachate, a highly polluting liquid to the aquatic environment. Leachate composition become a challenge to choose the best treatment process. Then, detailed techniques to determine the organic content, in terms of refractability, composition, sources and biodegradability in landfill leachate can help to choose the appropriate treatment and improve landfill management. In this sense, the aim of this study is to apply conventional and non-conventional parameters through inert chemical oxygen demand (COD) analyses and spectroscopic techniques of fluorescence and UV-vis absorbance for the characterization of municipal landfill leachate. Results indicated that physicochemical characterization cannot provided enough detailed information about leachate composition, which becomes the treatment process fragile. Inert COD, besides have high time to execution (∼30 days), presented additional information on potential of biological treatability in anaerobic conditions. Dissolved organic matter (DOM) characterization showed transitions between labile and refractory organic matter compounds. Moreover, the cost estimated showed that non-conventional parameters analysis have lower investment than conventional, being their implementation feasible. In conclusion, the synergy between conventional and non-conventional parameters, and the detailed information provided by inert COD and DOM characterization, shown a useful tool to the landfill management and, consequently, improving treatment process and its efficiency.
Collapse
Affiliation(s)
- Ellen Caroline Baettker
- Graduate Program of Water Resources and Environmental Engineering (PPGERHA), Federal University of Paraná (UFPR), Curitiba, 81531-980, Brazil.
| | - Caroline Kozak
- Graduate Program of Water Resources and Environmental Engineering (PPGERHA), Federal University of Paraná (UFPR), Curitiba, 81531-980, Brazil.
| | - Heloise Garcia Knapik
- Graduate Program of Water Resources and Environmental Engineering (PPGERHA), Federal University of Paraná (UFPR), Curitiba, 81531-980, Brazil; Hydraulic and Sanitation Department (DHS), UFPR, Curitiba, 81531-980, Brazil.
| | - Miguel Mansur Aisse
- Graduate Program of Water Resources and Environmental Engineering (PPGERHA), Federal University of Paraná (UFPR), Curitiba, 81531-980, Brazil.
| |
Collapse
|
34
|
Pellenz L, Borba FH, Daroit DJ, Lassen MFM, Baroni S, Zorzo CF, Guimarães RE, Espinoza-Quiñones FR, Seibert D. Landfill leachate treatment by a boron-doped diamond-based photo-electro-Fenton system integrated with biological oxidation: A toxicity, genotoxicity and by products assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110473. [PMID: 32250900 DOI: 10.1016/j.jenvman.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 05/21/2023]
Abstract
A photo-electro-Fenton (PEF) reactor employing boron-doped diamond (BDD) and soft iron anodes was studied in landfill leachate (LL) treatment. The reactor operation parameters (ROP) H2O2 concentration, current intensity and flow rate were investigated in the removal of Abs 254 nm. The PEF process with BDD anode, operating at the best operational conditions, was used as a pre-treatment and enabled biological oxidation (BO). The treatment strategy of PEF followed by BO showed to be the most efficient, reaching reductions of 77.9% chemical oxygen demand (COD), 71.5% total carbon (TC) and 76.3% radiation absorbance in 254 nm (Abs 254 nm), as well as a significant reduction in the genotoxicity (Allium cepa), observed by an increase in the mitotic index (MI) (131.5%) and decrease in the abnormalities (47.8%). The reduction of the toxic potential of LL using the integration of processes was also observed in the gas chromatography-mass spectrometry (GC-MS) byproducts analysis, which indicated the removal of emerging contaminants, such as Bisphenol-A (BPA), N,N-Diethyl-3-methylbenzamide (DEET) and Diisooctyl phthalate (DIOP). Thus, the PEF process integrated with BO presented a considerable efficiency in the removal of contaminants present in LL, becoming an alternative for the minimization of the environmental impacts caused by the discharge of this effluent in the environment.
Collapse
Affiliation(s)
- Leandro Pellenz
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil.
| | - Fernando Henrique Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil
| | - Daniel Joner Daroit
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil
| | - Manoel Francisco Mendes Lassen
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil
| | - Suzymeire Baroni
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil
| | - Camila Fernanda Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil
| | - Raíssa Engroff Guimarães
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580, 97900-000, Cerro Largo, RS, Brazil
| | - Fernando Rodolfo Espinoza-Quiñones
- Postgraduate Program of Chemical Engineering, West Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, 85903-000, Toledo, PR, Brazil
| | - Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa, UEM, Av. Colombo, 5790, Maringa, Parana, CEP: 87020-900, Brazil
| |
Collapse
|
35
|
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135468. [PMID: 31753496 DOI: 10.1016/j.scitotenv.2019.135468] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, sanitary landfilling is the most common approach to eliminate municipal solid waste, but a major drawback is the generation of heavily polluted leachates. These leachates must be appropriately treated before being discharged into the environment. Generally, the leachate characteristics such as COD, BOD/COD ratio, and landfill age are necessary determinants for selection of suitable treatment technologies. Rapid, sensitive and cost-effective bioassays are required to evaluate the toxicity of leachate before and after the treatment. This review summarizes extensive studies on leachate treatment methods and leachate toxicity assessment. It is found that individual biological or physical-chemical treatment is unable to meet strict effluent guidelines, whereas a combination of biological and physical-chemical treatments can achieve satisfactory removal efficiencies of both COD and ammonia nitrogen. In order to assess the toxic effects of leachate on different trophic organisms, we need to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants and a multispecies approach using organisms representing different trophic levels. In this regard, a reduction in toxicity of the treated leachate will contribute to assessing the effectiveness of a specific remediation strategy.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
36
|
Podder A, Reinhart D, Goel R. Integrated leachate management approach incorporating nutrient recovery and removal. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:420-431. [PMID: 31734553 DOI: 10.1016/j.wasman.2019.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
This manuscript presents an integrated management scheme for leachate which employed struvite precipitation to recover ammonia nitrogen and phosphorus, aerobic granular sludge process for carbon oxidation (in the form of BOD and sCOD) and single stage anaerobic ammonia oxidation (ANAMMOX) for nitrogen management. The influent fed to the integrated treatment scheme was a mixture of anaerobic digester centrate and real leachate in 4:1 ratio. Almost 77% recovery of phosphorus and 25% removal of NH4+-N were accomplished through struvite precipitation at an optimum pH of 9. High pH contributed to free ammonia loss during struvite precipitation experiments. In the aerobic granular sludge reactor overall, BOD5, COD and NH4+-N removal percentages were 74%, 45% and 35% and in the PN/A reactor, overall 35% removal of total inorganic nitrogen (TIN) was observed. More than 80% BOD removal was recorded in the granular reactor with soluble COD (sCOD) removal fluctuating between 28 and 57% depending on the operational phase. High-throughput amplicon sequencing of 16S rRNA gene targeting V4 region revealed a dominance of phylum Planctomycetes, in the PN/A reactor system. Presence of Rhodobacteraceae, Xanthomonadaceae, Flavobacteriaceae in the granular biomass confirmed the defined redox zones inside mature granules indicating simultaneous removal of nitrogen (N) and organics in aerobic granular sludge technology. Exposing the synthetically cultured aerobic granules directly to the mixture of leachate and centrate unveiled an alteration in physical characteristics of granules; however, reactor operational data and microbial community analysis ascertain the effectiveness of the treatment scheme treating two urban waste-streams.
Collapse
Affiliation(s)
- Aditi Podder
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Debra Reinhart
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Sackey LNA, Kočí V, van Gestel CAM. Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134295. [PMID: 31505355 DOI: 10.1016/j.scitotenv.2019.134295] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Management of leachates generated by solid waste disposal is a very challenging aspect of landfill management in most parts of the world. In most developing countries, the leachates generated are discharged into the environment without treatment, leading to contamination of ground and surface waters and causing human health problems. Even though its potential risk has been established through chemical analyses, less work has been conducted on its effect on ecosystems. This study assessed the toxicity of leachates from three landfill sites of different ages from Ghana, namely Tema, Mallam and Oblogo, to aquatic organisms. Duckweed (Lemna minor) and crustaceans (Daphnia magna) toxicity tests were performed using exposures to concentrations of 6.25, 12.5, 25, 50 and 100 mL/L of the landfill leachates in control growth media. Physico-chemical properties of the leachates were also determined. The leachates from all the sites were toxic with IC 50 values ranging from 2.8 to 29.5%. The Oblogo landfill leachate (the oldest site) being most toxic to duckweed and Tema landfill leachate (the youngest site) most toxic to D. magna. Leachates characterized had varying concentrations of heavy metals (0.2-42.3 mg/L) with Cu and Cd below detectable limit. The organic component COD was below the permissible level (110-541 mg/L) and the TOC exceeded the permissible level (350-6920 mg/L). These results indicate that the age and other characteristics of the landfill sites contribute to the difference in the toxicity of the Ghana landfill leachates.
Collapse
Affiliation(s)
- Lyndon N A Sackey
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology,Technická 5, 166 28 Praha 6 - Dejvice, Prague, Czech Republic
| | - Vladimir Kočí
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology,Technická 5, 166 28 Praha 6 - Dejvice, Prague, Czech Republic.
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
38
|
Zarghi MH, Jaafarzadeh N, Roudbari A, Zahedi A. Application of surface response method (RSM) to optimize ammonia nitrogen removal from fresh leachate using combination of ultrasound and ultraviolet. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:358-366. [PMID: 32333668 DOI: 10.2166/wst.2020.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ammonia nitrogen levels are very high in leachate. This study was conducted to optimize the removal of ammonia nitrogen from fresh landfill leachate using a combination of ultrasound waves and ultraviolet irradiation. A sample of fresh landfill leachate was obtained from a municipal landfill site, located in Shahroud (Semnan, Iran) and its ammonia nitrogen was measured by spectrophotometric method. Ultrasound and ultraviolet irradiation were simultaneously used to remove ammonia nitrogen. Box-Behnken design (BBD) based on response surface method (RSM) was applied to analyze and optimize ammonia nitrogen removal by different variables, including pH, contact time, ultrasound frequency and UV intensity. Based on this method, 29 samples with three replications were tested. The analysis of variance indicated quadratic model was significant for removal of ammonia nitrogen from leachate. According to the model, 99.7% removal efficiency (%) of ammonia nitrogen was obtained in the optimal conditions (pH at 9.7, contact time of 59.1 min, ultrasound frequency of 54 kHz and UV intensity of 40 W). The removal efficiency of ammonia nitrogen was obtained 98.6% from the laboratory experiment in these conditions, which agrees well with the predicted response value.
Collapse
Affiliation(s)
- Mohammad Hasan Zarghi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran E-mail: ;
| | - Neamat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran E-mail: ;
| | - Aliakbar Roudbari
- Center for Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Zahedi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran E-mail: ;
| |
Collapse
|
39
|
Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, Shirazian S. Applicability of BaTiO 3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV-vis irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113182. [PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 05/27/2023]
Abstract
Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
Collapse
Affiliation(s)
- Zhu Mengting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| | - Song Fei
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Tong Ouyang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
40
|
Collado S, Oulego P, Suárez-Iglesias O, Díaz M. Leachates and natural organic matter. A review of their biotreatment using fungi. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:108-120. [PMID: 31376954 DOI: 10.1016/j.wasman.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Leachates have different concentrations of organic matter and levels of biodegradability, depending on the age of the landfill and they must be treated using appropriate techniques, such as fungal degradation, in order to protect the environment and water resources. Natural organic matter contains the same type of organic species as old and medium age leachates, but at lower concentrations. The present study compiles and assesses all the available literature on the biotreatment of these compounds, mainly humic acids, by fungi. It was found that the efficiency of the fungal biodegradation of these wastewaters depends on the characteristics and concentration of the organic matter in the leachate, the microorganisms selected and whether they were immobilized or not, the nutrients present in the medium and their concentrations, the experimentation time, the temperature and the pH. The influence of the mode of inoculation has only been studied in natural organic matter, but similar effects are expected in the treatment of the leachates. The interactions between these parameters are complex and the optimal conditions have to be determined by laboratory and pilot testing, employing multivariate statistical techniques and experimental design.
Collapse
Affiliation(s)
- Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Octavio Suárez-Iglesias
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Clavería s/n, E-33071 Oviedo, Spain.
| |
Collapse
|
41
|
Tripathy BK, Ramesh G, Debnath A, Kumar M. Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters. ULTRASONICS SONOCHEMISTRY 2019; 54:210-219. [PMID: 30770274 DOI: 10.1016/j.ultsonch.2019.01.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 05/16/2023]
Abstract
The suitability of stand-alone ultrasound (US) system, coagulation pre-treatment followed by US, hydrogen peroxide added US system (US-H2O2) and persulfate added US system (US-PS) for the treatment of matured landfill leachate was investigated. With US system, around 67% COD removal and an increase in BOD/COD ratio were observed (from 0.033 to 0.142) after 15 min at 30% US amplitude. However, the energy input required for landfill leachate treatment in US system was found to be very high due to the presence of fixed solids. Coagulation pretreatment using alum was carried out to improve the overall COD removal and reduce the cost of treatment. As a result, the COD removal was increased to 78% (42% in pretreatment and 36% in US) in 15 min. On the other hand, US-H2O2 and US-PS hybrid systems have shown significant improvement in COD removals (93% and 86%, respectively) from raw leachate after 15 min. Subsequently, a three factor (i.e. PS dose (mg/L), H2O2 dose (mol/L), and US amplitude (%)) 5-level design of experiment was used to maximize the COD removal efficiency by response surface methodology (RSM). The RSM model generated a quadratic equation to accurately analyze the influence of input variables on COD removal efficiency (R2 of 0.92). A maximum COD removal of 98.3% was predicted using the model and the corresponding optimal experimental condition were identified as follows: PS dose ∼4700 mg/L, H2O2 dose ∼0.7 mol/L and US amplitude ∼49%. The overall observations reveals that PS and H2O2 coupled with US system has a great prospective to treat mature landfill leachate.
Collapse
Affiliation(s)
- Binay Kumar Tripathy
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamilnadu, India
| | - Gayathri Ramesh
- Department of Civil Engineering, National Institute of Technology Trichy, Tamilnadu, India
| | - Animesh Debnath
- Department of Civil Engineering, National Institute of Technology Agartala, Tripura, India
| | - Mathava Kumar
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamilnadu, India.
| |
Collapse
|
42
|
Iskander SM, Novak JT, He Z. Reduction of reagent requirements and sludge generation in Fenton's oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery. WATER RESEARCH 2019; 151:310-317. [PMID: 30616043 DOI: 10.1016/j.watres.2018.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Applications of Fenton's oxidation of landfill leachate is limited by both high reagent requirements and a large amount of sludge generation. To address those issues, forward osmosis (FO) and humic acid (HA) recovery were incorporated with Fenton's treatment. In the FO, leachate was concentrated by 3.2 times in 10 hours using a 5-M NaCl draw solution. The HA recovery increased from 1.86 to 2.45 g L-1 at pH 2 after FO concentration, mainly because of the replacement of O in the HA structure by other inorganics (i.e., Cl, Na, K) with higher molecular weights. Due to the movement of alkalinity causing species (i.e., HCO3-, CO32-) to the draw side driven by a concentration gradient, the H2SO4 requirement per g of recovered HA and per g of removed COD decreased by 46.4% and 17.1%, respectively. The HA recovery also decreased sludge generation by 30%. At a dimensionless oxidant dose of 0.5, the proposed system reduced the overall requirement of H2SO4 by 25.2%, NaOH by 34.6%, and both FeSO4.7H2O and H2O2 by 35%, compared to the standalone Fenton's treatment of raw leachate. Those results have demonstrated that the proposed system could greatly decrease the leachate volume, lower the reagent requirements, and reduce the sludge production towards sustainable leachate treatment.
Collapse
Affiliation(s)
- Syeed Md Iskander
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - John T Novak
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
43
|
Brito GCB, Lange LC, Santos VL, Amaral MCS, Moravia WG. Long-term evaluation of membrane bioreactor inoculated with commercial baker's yeast treating landfill leachate: pollutant removal, microorganism dynamic and membrane fouling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:398-410. [PMID: 30865611 DOI: 10.2166/wst.2019.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, commercial baker's yeast (Saccharomyces cerevisiae) was employed as a novel inoculum for a membrane bioreactor (MBRy). It was applied to landfill leachate (LFL) treatment to remove recalcitrant organic compounds as well as for the assimilation of recalcitrant compounds, since yeasts have a high ability to break such compounds down. The MBR was inoculated with 10 g L-1 of commercial baker's yeast and was operated at a hydraulic retention time of 48 h and pH of 3.5. The specific air demand based on the membrane area (SADm) was maintained at 0.6 m3 h-1 m-2. The MBRy achieved chemical oxygen demand (COD), color, NH3, and humic substances removal of 68, 79, 68, and 50%, respectively. Furthermore, the MBRy showed lower fouling potential, which can be attributed to the low extracellular polymeric substances production, as the formation of a cake layer was the major mechanism of membrane fouling. The work demonstrated that novel MBR is a promising technology for treating recalcitrant landfill leachate.
Collapse
Affiliation(s)
- Gabriela C B Brito
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Antônio Carlos Av. 6627, ZIP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Liséte C Lange
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Antônio Carlos Av. 6627, ZIP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Vera L Santos
- Department of Microbiology, Universidade Federal de Minas Gerais, Antônio Carlos Av. 6627, ZIP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Míriam C S Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Antônio Carlos Av. 6627, ZIP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Wagner G Moravia
- Departments of Environmental Science and Technology, Federal Center of Technological Education of Minas Gerais, Amazonas Av. 5253, ZIP 30421-169, Belo Horizonte, Minas Gerais, Brazil E-mail:
| |
Collapse
|
44
|
Yanyan L, Kurniawan TA, Zhu M, Ouyang T, Avtar R, Dzarfan Othman MH, Mohammad BT, Albadarin AB. Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO 3, ozone, and/or chitosan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:365-376. [PMID: 30138836 DOI: 10.1016/j.jenvman.2018.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 05/06/2023]
Abstract
Acetaminophen (Ace) is a trace pollutant widely found in sewage treatment plant (STP) wastewater. We test the feasibility of coconut shell waste, a low cost adsorbent from coconut industry, for removing Ace from synthetic solution in a fixed-bed column adsorption. To enhance its performance, the surface of granular activated carbon (GAC) was pre-treated with NaOH, HNO3, ozone, and/or chitosan respectively. The results show that the chemical modification of the GAC's surface with various chemicals has enhanced its Ace removal during the column operations. Among the modified adsorbents, the ozone-treated GAC stands out for the highest Ace adsorption capacity (38.2 mg/g) under the following conditions: 40 mg/L of Ace concentration, 2 mL/min of flow rate, 45 cm of bed depth. Both the Thomas and the Yoon-Nelson models are applicable to simulate the experimental results of the column operations with their adsorption capacities: ozone-treated GAC (20.88 mg/g) > chitosan-coated GAC (16.67 mg/g) > HNO3-treated GAC (11.09 mg/g) > NaOH-treated GAC (7.57 mg/g) > as-received GAC (2.84 mg/g). This suggests that the ozone-treated GAC is promising and suitable for Ace removal in a fixed-bed reactor.
Collapse
Affiliation(s)
- Lin Yanyan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China.
| | - Mengting Zhu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China
| | - Tong Ouyang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University (XMU), Xiamen, 361102, Fujian Province, China
| | - Ram Avtar
- Faculty of Environment and Earth Science, Hokkaido University, Sapporo, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Balsam T Mohammad
- Pharmaceutical and Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland
| |
Collapse
|
45
|
Spina F, Tigini V, Romagnolo A, Varese GC. Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains. Life (Basel) 2018; 8:E27. [PMID: 29973501 PMCID: PMC6161071 DOI: 10.3390/life8030027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/05/2022] Open
Abstract
Autochthonous fungi from contaminated wastewater are potential successful agents bioremediation thanks to their adaptation to pollutant toxicity and to competition with other microorganisms present in wastewater treatment plant. Biological treatment by means of selected fungal strains could be a potential tool to integrate the leachate depuration process, thanks to their fungal extracellular enzymes with non-selective catalytical activity. In the present work, the treatability of two real samples (a crude landfill leachate and the effluent coming from a traditional wastewater treatment plant) was investigated in decolorization experiments with fungal biomasses. Five autochthonous fungi, Penicillium brevicompactum MUT 793, Pseudallescheria boydii MUT 721, P. boydii MUT 1269, Phanerochaete sanguinea MUT 1284, and Flammulina velutipes MUT 1275, were selected in a previous miniaturized decolorization screening. Their effectiveness in terms of decolorization, enzymatic activity (laccases and peroxidases), biomass growth and ecotoxicity removal was compared with that of five allochthonous fungal strains, Pleurotus ostreatus MUT 2976, Porostereum spadiceum MUT 1585, Trametespubescens MUT 2400, Bjerkanderaadusta MUT 3060 and B. adusta MUT 2295, selected for their well known capability to degrade recalcitrant pollutants. Moreover, the effect of biomass immobilization on polyurethane foam (PUF) cube was assessed. The best decolorization (60%) was achieved by P. spadiceum MUT 1585, P. boydii MUT 721 and MUT 1269. In the first case, the DP was achieved gradually, suggesting a biodegradation process with the involvement of peroxidases. On the contrary, the two autochthonous fungi seem to bioremediate the effluent mainly by biosorption, with the abatement of the toxicity (up to 100%). The biomass immobilization enhanced enzymatic activity, but not the DP. Moreover, it limited the biomass growth for the fast growing fungi, MUT 721 and MUT 1269. In conclusion, robust and versatile strains coming from well-characterized collections of microorganisms can obtain excellent results comparing and even exceeding the bioremediation yields of strains already adapted to pollutants.
Collapse
Affiliation(s)
- Federica Spina
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| | - Valeria Tigini
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| | - Alice Romagnolo
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy.
| |
Collapse
|
46
|
El-Fadel M, Sleem F, Hashisho J, Saikaly PE, Alameddine I, Ghanimeh S. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:165-180. [PMID: 29249308 DOI: 10.1016/j.wasman.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/24/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
This study examines the performance and fouling potential of flat sheet (FS) and hollow fiber (HF) membrane bioreactors (MBRs) during the treatment of high strength landfill leachate under varying solid retention times (SRT = 5-20 days). Mixed-liquor bacterial communities were examined over time using 16S rRNA gene sequence analysis in an attempt to define linkages between the system performance and the microbial community composition. Similarly, biofilm samples were collected at the end of each SRT to characterize the microbial communities that evolved on the surface of the FS and HF membranes. In general, both systems exhibited comparable removal efficiencies that dropped significantly as SRT was decreased down to 5 days. Noticeably, ammonia and nitrite oxidizing bacteria were not detected at the tested SRTs. This suggests that the nitrifiers were not enriched, possibly due to the high organic and ammonium content of the leachate that led to low TN and NH3 removal efficiency. The steady-state fouling rate of both membranes increased linearly with the decrease in SRT at an estimated factor of 1.1 and 1.2 for the FS- and HF-MBR, respectively, when the SRT was reduced from 15 to 10 days and from 10 to 5 days. Similar dominant genera were detected in both MBRs, including Pseudomonas, Aequorivita, Ulvibacter, Taibaiella, and Thermus. Aequorivita, Taibaiella; Thermus were the dominant genera in the biofilms. Hierarchical clustering and non-metric multidimensional scaling revealed that while the mixed liquor communities in the FS-MBR and HF-MBRs were dynamic, they clustered separately. Similarly, biofilm communities on the FS and HF membranes differed in the dynamic bacterial community structure, especially for the FS-MBR; however this was less dynamic than the mixed liquor community.
Collapse
Affiliation(s)
- M El-Fadel
- Department of Civil and Environmental Engineering, American University of Beirut, Lebanon.
| | - F Sleem
- Department of Civil and Environmental Engineering, American University of Beirut, Lebanon
| | - J Hashisho
- Department of Civil and Environmental Engineering, American University of Beirut, Lebanon
| | - P E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Saudi Arabia
| | - I Alameddine
- Department of Civil and Environmental Engineering, American University of Beirut, Lebanon
| | - S Ghanimeh
- Department of Civil and Environmental Engineering, Notre Dame University-Louaize, Lebanon
| |
Collapse
|
47
|
Yanyan L, Kurniawan TA, Albadarin AB, Walker G. Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Dadrasnia A, Azirun MS, Ismail SB. Optimal reduction of chemical oxygen demand and NH 3-N from landfill leachate using a strongly resistant novel Bacillus salmalaya strain. BMC Biotechnol 2017; 17:85. [PMID: 29179747 PMCID: PMC5704540 DOI: 10.1186/s12896-017-0395-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
Background When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH. Results Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH3–N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI. Conclusions Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH3–N content of landfill leachate. Graphical abstract Leachate treatment by B. salmalaya strain 139SI within 11 days.![]()
Collapse
Affiliation(s)
- Arezoo Dadrasnia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Institute of Research Management & Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Sofian Azirun
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Salmah Binti Ismail
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Yanyan L, Kurniawan TA, Ying Z, Albadarin AB, Walker G. Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV–VIS irradiation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.092] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Fleck E, Gewehr AG, Cybis LFA, Gehling GR, Juliano VB. EVALUATION OF THE TREATABILITY OF MUNICIPAL WASTE LANDFILL LEACHATE IN A SBR AND BY COAGULATION-FLOCCULATION ON A BENCH SCALE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160334s20150126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E. Fleck
- Universidade Federal do Rio Grande do Sul, Brazil
| | - A. G. Gewehr
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|