1
|
Hu J, Wang J, Muhammad T, Yang T, Li N, Yang H, Yu Q, Wang B. Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato ( Solanum lycopersicum). Int J Mol Sci 2024; 25:6493. [PMID: 38928199 PMCID: PMC11204166 DOI: 10.3390/ijms25126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, β- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Qinghui Yu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| |
Collapse
|
2
|
Hu J, Wang J, Muhammad T, Tuerdiyusufu D, Yang T, Li N, Yang H, Wang B, Yu Q. Functional analysis of fasciclin-like arabinogalactan in carotenoid synthesis during tomato fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108589. [PMID: 38593485 DOI: 10.1016/j.plaphy.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Carotenoids are important pigmented nutrients synthesized by tomato fruits during ripening. To reveal the molecular mechanism underlying carotenoid synthesis during tomato fruit ripening, we analyzed carotenoid metabolites and transcriptomes in six development stages of tomato fruits. A total of thirty different carotenoids were detected and quantified in tomato fruits from 10 to 60 DPA. Based on differential gene expression profiles and WGCNA, we explored several genes that were highly significant and negatively correlated with lycopene, all of which encode fasciclin-like arabinogalactan proteins (FLAs). The FLAs are involved in plant signal transduction, however the functional role of these proteins has not been studied in tomato. Genome-wide analysis revealed that cultivated and wild tomato species contained 18 to 22 FLA family members, clustered into four groups, and mainly evolved by means of segmental duplication. The functional characterization of FLAs showed that silencing of SlFLA1, 5, and 13 were found to contribute to the early coloration of tomato fruits, and the expression of carotenoid synthesis-related genes was up-regulated in fruits that changed phenotypically, especially in SlFLA13-silenced plants. Furthermore, the content of multiple carotenoids (including (E/Z)-phytoene, lycopene, γ-carotene, and α-carotene) was significantly increased in SlFLA13-silenced fruits, suggesting that SlFLA13 has a potential inhibitory function in regulating carotenoid synthesis in tomato fruits. The results of the present study broaden the idea of analyzing the biological functions of tomato FLAs and preliminary evidence for the inhibitory role of SlFLA13 in carotenoid synthesis in fruit, providing the theoretical basis and a candidate for improving tomato fruit quality.
Collapse
Affiliation(s)
- Jiahui Hu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China; College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Tayeb Muhammad
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Diliaremu Tuerdiyusufu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China; College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Haitao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China; College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Venkatachalam K, Lekjing S, Noonim P, Charoenphun N. Extension of Quality and Shelf Life of Tomatoes Using Chitosan Coating Incorporated with Cinnamon Oil. Foods 2024; 13:1000. [PMID: 38611306 PMCID: PMC11011822 DOI: 10.3390/foods13071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This study examined the effects of 2% chitosan (CS) coatings incorporated with varying concentrations of cinnamon oil (CO) (0%, 0.5%, 1.0%, and 1.5%) on the extension of the quality and shelf-life of tomatoes stored under ambient conditions. Control samples were untreated and coated with distilled water. All samples were stored for 14 days at 25 ± 1 °C, with quality assessments conducted every two days. The application of CS-CO treatments was notably effective in controlling weight loss (3.91-5.26%) and firmness loss (10.81-16.51 N), sustaining the color index score (11.98-16.78), and stabilizing the total soluble solids (4.64-4.71 brix), titratable acidity (0.374-0.383%), total phenolic content (75.89-81.54 mg/100 g), ascorbic acid concentration (21.64-33.69 mg/100 g), total antioxidant capacity (85.89-91.54%) and pigment levels, particularly chlorophyll (52.80-63.18 mg/100 g), compared to control samples (p < 0.05). Higher CO concentrations (1.0% and 1.5%) in the CS coating maintained a significant level of phytochemicals in the samples compared to the control group, while CS-CO at 0.5% performed similarly in preserving the other physicochemical qualities. Both CS and CS-CO treatments extended the shelf life of the tomatoes up to 14 days (<6.78 log10 CFU/mL), whereas control samples were only viable for storage for 6 days due to higher microbial growth (>7.8 log10 CFU/mL) (p < 0.05). Overall, CS-CO-treated tomatoes demonstrated superior quality preservation and shelf-life enhancement, with a notable improvement in overall qualities as compared to the CS and control samples.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Khamong, Thamai, Chanthaburi 22170, Thailand
| |
Collapse
|
4
|
Duduit JR, Kosentka PZ, Miller MA, Blanco-Ulate B, Lenucci MS, Panthee DR, Perkins-Veazie P, Liu W. Coordinated transcriptional regulation of the carotenoid biosynthesis contributes to fruit lycopene content in high-lycopene tomato genotypes. HORTICULTURE RESEARCH 2022; 9:uhac084. [PMID: 35669706 PMCID: PMC9160729 DOI: 10.1093/hr/uhac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Lycopene content in tomato fruit is largely under genetic control and varies greatly among genotypes. Continued improvement of lycopene content in elite varieties with conventional breeding has become challenging, in part because little is known about the underlying molecular mechanisms in high-lycopene tomatoes (HLYs). We collected 42 HLYs with different genetic backgrounds worldwide. High-performance liquid chromatography (HPLC) analysis revealed lycopene contents differed among the positive control wild tomato Solanum pimpinellifolium, HLYs, the normal lycopene cultivar "Moneymaker", and the non-lycopene cultivar NC 1Y at the pink and red ripe stages. Real-time RT-PCR analysis of expression of the 25 carotenoid biosynthesis pathway genes of each genotype showed a significantly higher expression in nine upstream genes (GGPPS1, GGPPS2, GGPPS3, TPT1, SSU II, PSY2, ZDS, CrtISO and CrtISO-L1 but not the well-studied PSY1, PDS and Z-ISO) at the breaker and/or red ripe stages in HLYs compared to Moneymaker, indicating a higher metabolic flux flow into carotenoid biosynthesis pathway in HLYs. Further conversion of lycopene to carotenes may be prevented via the two downstream genes (β-LCY2 and ε-LCY), which had low-abundance transcripts at either or both stages. Additionally, the significantly higher expression of four downstream genes (BCH1, ZEP, VDE, and CYP97C11) at either or both ripeness stages leads to significantly lower fruit lycopene content in HLYs than in the wild tomato. This is the first systematic investigation of the role of the complete pathway genes in regulating fruit lycopene biosynthesis across many HLYs, and enables tomato breeding and gene editing for increased fruit lycopene content.
Collapse
Affiliation(s)
| | | | - Morgan A Miller
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | | | - Marcello S Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Via Prov.le Lecce-Monteroni, Lecce, 73100 Italy
| | - Dilip R Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759, USA
| | - Penelope Perkins-Veazie
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | |
Collapse
|
5
|
In silico analysis of carotenoid biosynthesis pathway in cassava (Manihot esculenta Crantz). J Genet 2022. [DOI: 10.1007/s12041-021-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhang C, Wang Y, Wang W, Cao Z, Fu Q, Bao M, He Y. Functional Analysis of the Marigold (Tagetes erecta) Lycopene ε-cyclase (TeLCYe) Promoter in Transgenic Tobacco. Mol Biotechnol 2019; 61:703-713. [PMID: 31286381 DOI: 10.1007/s12033-019-00197-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lycopene ε-cyclases (LCYEs) are key enzymes in carotenoid biosynthesis converting red lycopene to downstream lutein. The flowers of marigold (Tagetes erecta) have been superior sources to supply lutein. However, the transcriptional regulatory mechanisms of LCYe in lutein synthesis are still unclear in marigold. In this work, the expression pattern of the TeLCYe gene in marigold indicated that TeLCYe mainly expressed in floral organs. To gain a better understanding of the expression and regulatory mechanism of TeLCYe gene, the TeLCYe promoter was isolated, sequenced, and analyzed through bioinformatics tools. The results suggested that the sequence of TeLCYe promoter contained various putative cis-acting elements responsive to exogenous and endogenous factors. The full-length TeLCYe promoter and three 5'-deletion fragments were fused to the GUS reporter gene and transferred into tobacco to test the promoter activities. A strong GUS activity was observed in stems of seedlings, leaves of seedlings, middle stems, top leaves, petals, stamens, and stigmas in transgenic tobacco containing full-length TeLCYe promoter LP0-2086. Deletion of - 910 to - 429 bp 5' to ATG significantly increased the GUS activity in chloroplast-rich tissues and floral organs, while deletion occurring from 1170 to 910 bp upstream ATG decreased the TeLCYe promoter strength in stems of seedlings, leaves of seedlings, top leaves and sepals. Functional characterization of the full-length TeLCYe promoter and its' deletion fragments in stable transgenic tobacco indicated that the LP0-2086 contains some specific cis-acting elements, which might result in the high-level expression of in floral organs, and LP2-910 might contain some specific cis-acting elements which improved GUS activities in vegetable tissues.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yaqin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhe Cao
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, S7N5A8, Canada
| | - Qiang Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Siddiqui MW, Lara I, Ilahy R, Tlili I, Ali A, Homa F, Prasad K, Deshi V, Lenucci MS, Hdider C. Dynamic Changes in Health-Promoting Properties and Eating Quality During Off-Vine Ripening of Tomatoes. Compr Rev Food Sci Food Saf 2018; 17:1540-1560. [PMID: 33350145 DOI: 10.1111/1541-4337.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022]
Abstract
Tomato (Solanum lycopersicon L.) fruit is rich in various nutrients, vitamins and health-promoting molecules. Fresh tomatoes are an important part of the Mediterranean gastronomy, and their consumption is thought to contribute substantially to the reduced incidence of some chronic diseases in the Mediterranean populations in comparison with those of other world areas. Unfortunately, tomato fruit is highly perishable, resulting in important economic losses and posing a challenge to storage, logistic and supply management. This review summarizes the current knowledge on some important health-promoting and eating quality traits of tomato fruits after harvest and highlights the existence of substantial cultivar-to-cultivar variation in the postharvest evolution of the considered traits according to maturity stage at harvest and in response to postharvest manipulations. It also suggests the need for adapting postharvest procedures to the characteristics of each particular genotype to preserve the optimal quality of the fresh product.
Collapse
Affiliation(s)
- Mohammed Wasim Siddiqui
- Dept. of Food Science and Postharvest Technology, Bihar Agricultural Univ., Sabour - 813210, Bhagalpur, Bihar, India
| | - Isabel Lara
- Dept. de Quı́mica, Unitat de Postcollita-XaRTA, Univ. de Lleida, Rovira Roure 191, 25198 Lleida, Spain
| | - Riadh Ilahy
- Lab. of Horticulture, Natl Agricultural Research Inst. of Tunisia (INRAT), Univ. of Carthage, Tunis, Rue Hédi Karray 2049 Ariana, Tunisia
| | - Imen Tlili
- Lab. of Horticulture, Natl Agricultural Research Inst. of Tunisia (INRAT), Univ. of Carthage, Tunis, Rue Hédi Karray 2049 Ariana, Tunisia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, The Univ. of Nottingham Malaysia Campus, Semenyih 43500, Selangor, Malaysia
| | - Fozia Homa
- Dept. of Statistics, Mathematics, and Computer Appplication, Bihar Agricultural University, Sabour - 813210, Bhagalpur, Bihar, India
| | - Kamlesh Prasad
- Dept. of Food Engineering and Technology, Sant Longowal Inst. of Engineering and Technology, Longowal - 148106, Punjab, India
| | - Vinayak Deshi
- Dept. of Food Science and Postharvest Technology, Bihar Agricultural Univ., Sabour - 813210, Bhagalpur, Bihar, India
| | - Marcello Salvatore Lenucci
- Dipt. di Scienze e Tecnologie Biologiche ed Ambientali, Univ. del Salento (DiSTeBA), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Chafik Hdider
- Lab. of Horticulture, Natl Agricultural Research Inst. of Tunisia (INRAT), Univ. of Carthage, Tunis, Rue Hédi Karray 2049 Ariana, Tunisia
| |
Collapse
|
8
|
Cuong DM, Arasu MV, Jeon J, Park YJ, Kwon SJ, Al-Dhabi NA, Park SU. Medically important carotenoids from Momordica charantia and their gene expressions in different organs. Saudi J Biol Sci 2017; 24:1913-1919. [PMID: 29551944 PMCID: PMC5851905 DOI: 10.1016/j.sjbs.2017.11.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
Carotenoids, found in the fruit and different organs of bitter melon (Momordica charantia), have attracted great attention for their potential health benefits in treating several major chronic diseases. Therefore, study related to the identification and quantification of the medically important carotenoid metabolites is highly important for the treatment of various disorderes. The present study involved in the identification and quantification of the various carotenoids present in the different organs of M. charantia and the identification of the genes responsible for the accumulation of the carotenoids with respect to the transcriptome levels were investigated. In this study, using the transcriptome database of bitter melon, a partial-length cDNA clone encoding geranylgeranyl pyrophosphate synthase (McGGPPS2), and several full-length cDNA clones encoding geranylgeranyl pyrophosphate synthase (McGGPPS1), zeta-carotene desaturase (McZDS), lycopene beta-cyclase (McLCYB), lycopene epsilon cyclases (McLCYE1 and McLCYE2), beta-carotene hydroxylase (McCHXB), and zeaxanthin epoxidase (McZEP) were identified in bitter melon. The expression levels of the mRNAs encoding these eight putative biosynthetic enzymes, as well as the accumulation of lycopene, α-carotene, lutein, 13Z-β-carotene, E-β-carotene, 9Z-β-carotene, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin were investigated in different organs from M. charantia as well as in the four different stages of its fruit maturation. Transcripts were found to be constitutively expressed at high levels in the leaves where carotenoids were also found at the highest levels. Collectively, these results indicate that the putative McGGPPS2, McZDS, McLCYB, McLCYE1, McLCYE2, and McCHXB enzymes might be key factors in controlling carotenoid content in bitter melon. In conclusion, the over expression of the carotenoid biosynthetic genes from M. charantia crops to increase the yield of these medically important carotenoids.
Collapse
Affiliation(s)
- Do Manh Cuong
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mariadhas Valan Arasu
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jin Jeon
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yun Ji Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Soon-Jae Kwon
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Corresponding authors.
| |
Collapse
|
9
|
Liu H, Mao J, Yan S, Yu Y, Xie L, Hu JG, Li T, Abbasi AM, Guo X, Liu RH. Evaluation of carotenoid biosynthesis, accumulation and antioxidant activities in sweetcorn (Zea mays
L.) during kernel development. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Haiying Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jihua Mao
- Crop Research Institute; Guangdong Academy of Agricultural Sciences; Guangzhou 510640 China
- Key Laboratory of Crops Genetics Improvement of Guangdong Province; Guangzhou 510640 China
| | - Shijuan Yan
- Agro-Biological Gene Research Center; Guangdong Academy of Agricultural Sciences; Guangzhou 510640 China
| | - Yongtao Yu
- Crop Research Institute; Guangdong Academy of Agricultural Sciences; Guangzhou 510640 China
- Key Laboratory of Crops Genetics Improvement of Guangdong Province; Guangzhou 510640 China
| | - Lihua Xie
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jian Guang Hu
- Crop Research Institute; Guangdong Academy of Agricultural Sciences; Guangzhou 510640 China
- Key Laboratory of Crops Genetics Improvement of Guangdong Province; Guangzhou 510640 China
| | - Tong Li
- Department of Food Science; Stocking Hall; Cornell University; Ithaca NY 14853 USA
| | - Arshad Mehmood Abbasi
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
- Department of Environmental Sciences; COMSATS Institute of Information Technology; Abbottabad 22060 Pakistan
| | - Xinbo Guo
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
- Department of Food Science; Stocking Hall; Cornell University; Ithaca NY 14853 USA
| | - Rui Hai Liu
- Department of Food Science; Stocking Hall; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
10
|
Jittham O, Fu X, Xu J, Chander S, Li J, Yang X. Genetic dissection of carotenoids in maize kernels using high-density single nucleotide polymorphism markers in a recombinant inbred line population. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Binduheva U, Negi P. Efficacy of cinnamon oil to prolong the shelf-life of pasteurised, acidified, and ambient stored papaya pulp. ACTA ALIMENTARIA 2014. [DOI: 10.1556/aalim.43.2014.3.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. THE NEW PHYTOLOGIST 2013; 198:442-452. [PMID: 23406468 DOI: 10.1111/nph.12175] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/06/2013] [Indexed: 05/17/2023]
Abstract
As a primary source of lycopene in the human diet, fleshy fruits synthesize this compound both de novo and via chlorophyll metabolism during ripening. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. We report that SlSGR1 can regulate tomato (Solanum lycopersicum) lycopene accumulation through direct interaction with a key carotenoid synthetic enzyme SlPSY1, and can inhibit its activity. This interaction with SlSGR1 mediates lycopene accumulation during tomato fruit maturation. We confirmed this inhibitory activity in bacteria engineered to produce lycopene, where the introduction of SlSGR1 reduced dramatically lycopene biosynthesis. The repression of SlSGR1 in transgenic tomato fruits resulted in altered accumulation patterns of phytoene and lycopene, whilst simultaneously elevating SlPSY1 mRNA accumulation and plastid conversion at the early stages of fruit ripening, resulting in increased lycopene and β-carotene (four- and nine-fold, respectively) in red ripe fruits. SlSGR1 influences ethylene signal transduction via the altered expression of ethylene receptor genes and ethylene-induced genes. Fruit shelf-life is extended significantly in SlSGR1-repressed tomatoes. Our results indicate that SlSGR1 plays a pivotal regulatory role in color formation and fruit ripening regulation in tomato, and further suggest that SlSGR1 activity is mediated through direct interaction with PSY1.
Collapse
Affiliation(s)
- Zhidan Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinhua Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - James Giovannoni
- United States Department of Agriculture and Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Shrihari RY, Singh NP. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus. J Food Sci 2012; 77:M95-101. [PMID: 22250603 DOI: 10.1111/j.1750-3841.2011.02542.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus survives well in different stress conditions. The ability of this organism to adapt to various stresses is the result of a complex regulatory response, which is attributed to regulation of multiple genes. The aims of the present study were (1) to develop a multiplex PCR for the detection of genes which are involved in stress adaptation (asp23, dnaK, and groEL); alternative sigma factor (sigB) and virulence determination (entB and spa) and (2) to study the expression of these genes during stress conditions for S. aureus culture collection strains (FRI 722 and ATCC 6538) and S. aureus food isolates at mRNA level using multiplex reverse transcription polymerase chain reaction (RT-PCR). During heat shock treatment groEL, dnaK, asp23, sodA, entB, spa, and sigB genes were up regulated up to 2.58, 2.07, 2.76, 2.55, 3.55, 2.71, and 2.62- folds, respectively, whereas in acid shock treatment, sodA and groEL were up regulated; dnaK was downregulated; and entB and sigB genes were not expressed in food isolates. Multiplex PCR assay standardized in this study offers an inexpensive alternative to uniplex PCR for detection of various virulence and stress response genes. This study is relevant to rapid and accurate detection of potential pathogenic S. aureus in foods.
Collapse
Affiliation(s)
- Rohinishree Yadahalli Shrihari
- Human Resource Development Central Food Technological Research Inst, Council of Scientific and Industrial Research, Mysore 570 020, India
| | | |
Collapse
|