1
|
Bakouei M, Kalantarifard A, Sundara Raju I, Avsievich T, Rannaste L, Kreivi M, Elbuken C. Facile and versatile PDMS-glass capillary double emulsion formation device coupled with rapid purification toward microfluidic giant liposome generation. MICROSYSTEMS & NANOENGINEERING 2024; 10:183. [PMID: 39632792 PMCID: PMC11618511 DOI: 10.1038/s41378-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 12/07/2024]
Abstract
The exceptional ability of liposomes to mimic a cellular lipid membrane makes them invaluable tools in biomembrane studies and bottom-up synthetic biology. Microfluidics provides a promising toolkit for creating giant liposomes in a controlled manner. Nevertheless, challenges associated with the microfluidic formation of double emulsions, as precursors to giant liposomes, limit the full exploration of this potential. In this study, we propose a PDMS-glass capillary hybrid device as a facile and versatile tool for the formation of double emulsions which not only eliminates the need for selective surface treatment, a well-known problem with PDMS formation chips, but also provides fabrication simplicity and reusability compared to the glass-capillary formation chips. These advantages make the presented device a versatile tool for forming double emulsions with varying sizes (spanning two orders of magnitude in diameter), shell thickness, number of compartments, and choice of solvents. We achieved robust thin shell double emulsion formation by operating the hybrid chip in double dripping mode without performing hydrophilic/phobic treatment a priori. In addition, as an alternative to the conventional, time-consuming density-based separation method, a tandem separation chip is developed to deliver double emulsions free of any oil droplet contamination in a continuous and rapid manner without any need for operator handling. The applicability of the device was demonstrated by forming giant liposomes using the solvent extraction method. This easy-to-replicate, flexible, and reliable microfluidic platform for the formation and separation of double emulsion templates paves the way for the high-throughput microfluidic generation of giant liposomes and synthetic cells, opening exciting avenues for biomimetic research. The presented giant liposome assembly line features a novel treatment-free hybrid chip for double emulsion formation coupled with a high throughput separation chip for sample purification.
Collapse
Affiliation(s)
- Mostafa Bakouei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ali Kalantarifard
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Indraja Sundara Raju
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tatiana Avsievich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Lauri Rannaste
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- VTT Technical Research Centre of Finland, Oulu, Finland
| | - Marjut Kreivi
- VTT Technical Research Centre of Finland, Oulu, Finland
| | - Caglar Elbuken
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
- VTT Technical Research Centre of Finland, Oulu, Finland.
| |
Collapse
|
2
|
Oh Y, Kim SH. Concentric Capillary Microfluidic Devices Designed for Robust Production of Multiple-Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19166-19175. [PMID: 39183643 DOI: 10.1021/acs.langmuir.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple emulsions are used as templates for producing functional microcapsules due to their unique core-shell geometry. Employing glass capillary devices with coaxial channels has proven effective in creating uniform multiple-emulsion droplets. However, the use of partially miscible fluids, crucial for microcapsule production, often results in clogging and disrupts the stability of these devices. Here, we introduce innovative capillary microfluidic devices with concentric capillary channels, specifically designed to optimize the production of multiple-emulsion droplets while mitigating issues of precipitation and clogging. The key aspect of these devices is their configuration of two or three concentrically aligned capillaries, which form separate, coaxial microchannels for fluid injection. This unique alignment, achieved through rotational adjustments that leverage the natural off-center positioning of tapered capillaries, facilitates the simultaneous coaxial injection of various fluids into a droplet-forming junction, significantly reducing fluid contact before emulsification. The devices, featuring double and triple concentric capillary channels, consistently produce highly uniform double-, triple-, and quadruple-emulsion droplets with precisely controlled diameters and layer thicknesses. The minimal contact between fluids prior to emulsification in these devices broadens the usable range of fluid combinations, heralding new possibilities in microcapsule development for pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
4
|
Tazikeh Lemeski A, Seyyedi SM, Hashemi-Tilehnoee M, Naeimi AS. Influence of triangular obstacles on droplet breakup dynamics in microfluidic systems. Sci Rep 2024; 14:13324. [PMID: 38858444 PMCID: PMC11164865 DOI: 10.1038/s41598-024-63922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Microfluidic devices with complex geometries and obstacles have attracted considerable interest in biomedical engineering and chemical analysis. Understanding droplet breakup behavior within these systems is crucial for optimizing their design and performance. This study investigates the influence of triangular obstacles on droplet breakup processes in microchannels. Two distinct types of triangular obstructions, positioned at the bifurcation (case I) and aligned with the flow (case II), are analyzed to evaluate their impact on droplet behavior. The investigation considers various parameters, including the Capillary number (Ca), non-dimensional droplet length (L*), non-dimensional height (A*), and non-dimensional base length (B*) of the triangle. Utilizing numerical simulations with COMSOL software, the study reveals that the presence of triangular obstacles significantly alters droplet breakup dynamics. Importantly, the shape and location of the obstacle emerge as key factors governing breakup characteristics. Results indicate faster breakup of the initial droplet when the obstacle is positioned in the center of the microchannel for case I. For case II, the study aims to identify conditions under which droplets either break up into unequal-sized entities or remain intact, depending on various flow conditions. The findings identify five distinct regimes: no breakup, breakup without a tunnel, breakup with a tunnel, droplet fragmentation into unequal-sized parts, and sorting. These regimes depend on the presence or absence of triangular obstacles and the specific flow conditions. This investigation enhances our understanding of droplet behavior within intricate microfluidic systems and provides valuable insights for optimizing the design and functionality of droplet manipulation and separation devices. Notably, the results emphasize the significant role played by triangular obstacles in droplet breakup dynamics, with the obstacle's shape and position being critical determinants of breakup characteristics.
Collapse
Affiliation(s)
- Azadeh Tazikeh Lemeski
- Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran
| | - Seyyed Masoud Seyyedi
- Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran.
| | - Mehdi Hashemi-Tilehnoee
- Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran
| | - Azadeh Sadat Naeimi
- Department of Physics, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran
| |
Collapse
|
5
|
Lashkaripour A, McIntyre DP, Calhoun SGK, Krauth K, Densmore DM, Fordyce PM. Design automation of microfluidic single and double emulsion droplets with machine learning. Nat Commun 2024; 15:83. [PMID: 38167827 PMCID: PMC10761910 DOI: 10.1038/s41467-023-44068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Droplet microfluidics enables kHz screening of picoliter samples at a fraction of the cost of other high-throughput approaches. However, generating stable droplets with desired characteristics typically requires labor-intensive empirical optimization of device designs and flow conditions that limit adoption to specialist labs. Here, we compile a comprehensive droplet dataset and use it to train machine learning models capable of accurately predicting device geometries and flow conditions required to generate stable aqueous-in-oil and oil-in-aqueous single and double emulsions from 15 to 250 μm at rates up to 12000 Hz for different fluids commonly used in life sciences. Blind predictions by our models for as-yet-unseen fluids, geometries, and device materials yield accurate results, establishing their generalizability. Finally, we generate an easy-to-use design automation tool that yield droplets within 3 μm (<8%) of the desired diameter, facilitating tailored droplet-based platforms and accelerating their utility in life sciences.
Collapse
Affiliation(s)
- Ali Lashkaripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - David P McIntyre
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | | | - Karl Krauth
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Douglas M Densmore
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
K V S C, Singeetham PK, Thampi SP. Active compound particles in a quadratic flow: hydrodynamics and morphology. SOFT MATTER 2023; 19:7963-7978. [PMID: 37818659 DOI: 10.1039/d3sm01225e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Generating core-shell particles with a well-controlled morphology is of great interest due to the interdependence between the morphology and different properties of these structures. These particles are often generated in microfluidic devices in a background quadratic flow. Therefore, in this study, we investigate the hydrodynamics and morphology of a concentric active compound particle, an active particle encapsulated in a fluid droplet, in an imposed quadratic flow. Governing equations for fluid flow are analytically solved in the inertia-less limit assuming that the surface tension force dominates the viscous forces (capillary number, Ca ≪ 1). Poiseuille flow deforms the compound particle into a three-lobe structure governed by the hexapolar component of the Poiseuille flow. Activity deforms the compound particle into a prolate shape owing to the velocity field of a force dipole. For an active compound particle in a Poiseuille flow, morphology is sensitive to the orientations and relative strengths of the activity and Poiseuille flow. Primarily, the presence of activity breaks the three-lobe symmetry of the drop shape and makes it more asymmetric and elongated. Moreover, the active compound particle becomes more susceptible to breakup in a quadratic flow when (i) the strength of activity is much stronger than the imposed flow strength, (ii) the active particle is oriented along the symmetry axes of the quadratic flow, (iii) the size ratio of the confining droplet to the encapsulated active particle is small and (iv) the viscosity ratio of the outer fluid to the inner fluid is small. Finally, we demonstrate that imposing the pulsatile quadratic flow prevents the breakup of an active compound particle during its generation and transport, and further assists in tuning the morphology.
Collapse
Affiliation(s)
- Chaithanya K V S
- School of Science and Engineering (Physics), University of Dundee, Dundee, DD14HN, UK.
| | - Pavan Kumar Singeetham
- Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-64, India.
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-36, India.
| |
Collapse
|
7
|
Kayirangwa Y, Mohibullah M, Easley CJ. Droplet-based μChopper device with a 3D-printed pneumatic valving layer and a simple photometer for absorbance based fructosamine quantification in human serum. Analyst 2023; 148:4810-4819. [PMID: 37605899 PMCID: PMC10530610 DOI: 10.1039/d3an01149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The development of microfluidic systems for biological assays presents challenges, particularly in adapting traditional optical absorbance assays to smaller volumes or to microfluidic formats. This often requires assay modification or translation to a fluorescence version, which can be impractical. To address this issue, our group has developed the μChopper device, which uses microfluidic droplet formation as a surrogate for an optical beam chopper, allowing for lock-in analysis and improved limits of detection with both absorbance and fluorescence optics without modifying the optical path length. Here, we have adapted the μChopper to low-cost optics using a light-emitting diode (LED) source and photodiode detector, and we have fabricated the pnuematically valved devices entirely by 3D printing instead of traditional photolithography. Using a hybrid device structure, fluidic channels were made in polydimethylsiloxane (PDMS) by moulding onto a 3D-printed master then bonding to a prefabricated thin layer, and the pneumatic layer was directly made of 3D-printed resin. This hybrid structure allowed an optical slit to be fabricated directly under fluidic channels, with the LED interfaced closely above the channel. Vacuum-operated, normally closed valves provided precise temporal control of droplet formation from 0.6 to 2.0 Hz. The system was validated against the standard plate reader format using a colorimetric fructosamine assay and by quantifying fructosamine in human serum from normal and diabetic patients, where strong correlation was shown. Showing a standard benefit of microfluidics in analysis, the device required 6.4-fold less serum volume for each assay. This μChopper device and lower cost optical system should be applicable to various absorbance based assays in low volumes, and the reliance on inexpensive 3D printers makes it more accessible to users without cleanroom facilities.
Collapse
Affiliation(s)
- Yvette Kayirangwa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | | |
Collapse
|
8
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
9
|
On Classification of Water-in-Oil and Oil-in-Water Droplet Generation Regimes in Flow-Focusing Microfluidic Devices. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The objective of this research work is to propose a phase diagram that can be used to find a proper operating condition for generating droplets of different types. It is found that the phase diagram of QR versus CaD can effectively classify the droplet generation into three vivid regimes: dripping, jetting and tubing. For the dripping regime, its operating condition is in the range of either CaD < 10−4 and QR < 50 or 10−3 < CaD < 10−4 and QR < 1. For the jetting regime, its operating condition is in the range of either CaD < 1.35 × 10−2 and QR > 100 or CaD > 1.35 × 10−2 and QR > 1. For the tubing regime, its operating condition is in the range of CaD > 1.35 × 10−2 and QR < 1.
Collapse
|
10
|
Experimental study on dynamics of double emulsion droplets flowing through the Y-shaped bifurcation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Numerical Simulation Study of Double-Emulsion Droplet Formation in a Co-flow Microchannel Capillary Device. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Guerzoni LPB, de Goes AVC, Kalacheva M, Haduła J, Mork M, De Laporte L, Boersma AJ. High Macromolecular Crowding in Liposomes from Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201169. [PMID: 35904258 PMCID: PMC9507340 DOI: 10.1002/advs.202201169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The intracellular environment is crowded with macromolecules that influence biochemical equilibria and biomacromolecule diffusion. The incorporation of such crowding in synthetic cells would be needed to mimic the biochemistry of living cells. However, only a few methods provide crowded artificial cells, moreover providing cells with either heterogeneous size and composition or containing a significant oil fraction. Therefore, a method that generates monodisperse liposomes with minimal oil content and tunable macromolecular crowding using polydimethylsiloxane (PDMS)-based microfluidics is presented. Lipid stabilized water-in-oil-in-water emulsions that are stable for at least several months and with a high macromolecular crowder concentration that can be controlled with the external osmolality are formed. A crucial feature is that the oil phase can be removed using high flow conditions at any point after production, providing the highly crowded liposomes. Genetically encoded macromolecular crowding sensors show that the high level of macromolecular crowding in the emulsions is fully retained throughout the generation of minimal-oil lipid bilayers. This modular and robust platform will serve the study of biochemistry under physiologically relevant crowding conditions.
Collapse
Affiliation(s)
- Luis P. B. Guerzoni
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - André V. C. de Goes
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Milara Kalacheva
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Jakub Haduła
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Matthias Mork
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Laura De Laporte
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Department Advanced Materials for BiomedicineInstitute of Applied Medical EngineeringUniversity Hospital RWTH AachenForckenbeckstrasse 5552074AachenGermany
| | - Arnold J. Boersma
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
14
|
Pan Y, Cao W, Mu Y, Zhu Q. Microfluidics Facilitates the Development of Single-Cell RNA Sequencing. BIOSENSORS 2022; 12:bios12070450. [PMID: 35884253 PMCID: PMC9312765 DOI: 10.3390/bios12070450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) technology provides a powerful tool for understanding complex biosystems at the single-cell and single-molecule level. The past decade has been a golden period for the development of single-cell sequencing, with scRNA-seq undergoing a tremendous leap in sensitivity and throughput. The application of droplet- and microwell-based microfluidics in scRNA-seq has contributed greatly to improving sequencing throughput. This review introduces the history of development and important technical factors of scRNA-seq. We mainly focus on the role of microfluidics in facilitating the development of scRNA-seq technology. To end, we discuss the future directions for scRNA-seq.
Collapse
Affiliation(s)
- Yating Pan
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenjian Cao
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
| | - Ying Mu
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
- Correspondence: (Y.M.); (Q.Z.); Tel.: +86-88208383 (Y.M.); +86-88208383 (Q.Z.)
| | - Qiangyuan Zhu
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
- Correspondence: (Y.M.); (Q.Z.); Tel.: +86-88208383 (Y.M.); +86-88208383 (Q.Z.)
| |
Collapse
|
15
|
Calhoun SGK, Brower KK, Suja VC, Kim G, Wang N, McCully AL, Kusumaatmaja H, Fuller GG, Fordyce PM. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. LAB ON A CHIP 2022; 22:2315-2330. [PMID: 35593127 PMCID: PMC9195911 DOI: 10.1039/d2lc00229a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Double emulsion droplets (DEs) are water/oil/water droplets that can be sorted via fluorescence-activated cell sorting (FACS), allowing for new opportunities in high-throughput cellular analysis, enzymatic screening, and synthetic biology. These applications require stable, uniform droplets with predictable microreactor volumes. However, predicting DE droplet size, shell thickness, and stability as a function of flow rate has remained challenging for monodisperse single core droplets and those containing biologically-relevant buffers, which influence bulk and interfacial properties. As a result, developing novel DE-based bioassays has typically required extensive initial optimization of flow rates to find conditions that produce stable droplets of the desired size and shell thickness. To address this challenge, we conducted systematic size parameterization quantifying how differences in flow rates and buffer properties (viscosity and interfacial tension at water/oil interfaces) alter droplet size and stability, across 6 inner aqueous buffers used across applications such as cellular lysis, microbial growth, and drug delivery, quantifying the size and shell thickness of >22 000 droplets overall. We restricted our study to stable single core droplets generated in a 2-step dripping-dripping formation regime in a straightforward PDMS device. Using data from 138 unique conditions (flow rates and buffer composition), we also demonstrated that a recent physically-derived size law of Wang et al. can accurately predict double emulsion shell thickness for >95% of observations. Finally, we validated the utility of this size law by using it to accurately predict droplet sizes for a novel bioassay that requires encapsulating growth media for bacteria in droplets. This work has the potential to enable new screening-based biological applications by simplifying novel DE bioassay development.
Collapse
Affiliation(s)
- Suzanne G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Vineeth Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- School of Engineering and Applied Sciences, Harvard University, MA - 01234, USA
| | - Gaeun Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Ningning Wang
- School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexandra L McCully
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Camelo-Silva C, Verruck S, Ambrosi A, Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Microfluidic preparation of monodisperse hollow polyacrylonitrile microspheres for ICF. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Yang Z, Ma X, Wang S, Liu D. Generation and Evolution of Double Emulsions in a Circular Microchannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
20
|
Crowe CD, Keating CD. Microfluidic Control of Coexisting Chemical Microenvironments within Multiphase Water-in-Fluorocarbon Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1811-1820. [PMID: 35090115 DOI: 10.1021/acs.langmuir.1c02929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of aqueous polymer-based phase separation within water-in-oil emulsion droplets provides a powerful platform for exploring the impact of compartmentalization and preferential partitioning on biologically relevant solutes. By forming an emulsion, a bulk solution is converted into a large number of chemically isolated microscale droplets. Microfluidic techniques provide an additional level of control over the formation of such systems. This enables the selective production of multiphase droplets with desired solution compositions and specific characteristics, such as solute partitioning. Here, we demonstrate control over the chemical microenvironment by adjusting the composition to increase tie line length for poly(ethylene glycol) (PEG)-dextran aqueous two-phase systems (ATPS) encapsulated within multiphase water-in-fluorocarbon oil emulsion droplets. Through rational adjustment of microfluidic parameters alone, ATPS droplets containing differing compositions could be produced during the course of a single experiment, with the produced droplets demonstrating a controllable range of tie line lengths. This provided control over partitioning behavior for biologically relevant macromolecules such that the difference in local protein concentration between adjacent phases could be rationally tuned. This work illustrates a broadly applicable technique to rationally create emulsified multiphase aqueous systems of desired compositions through the adjustment of microfluidic parameters alone, allowing for easy and rapid screening of various chemical microenvironments.
Collapse
Affiliation(s)
- Charles D Crowe
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
21
|
Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. J Colloid Interface Sci 2021; 611:451-461. [PMID: 34968964 DOI: 10.1016/j.jcis.2021.12.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Double emulsions with many monodispersed internal droplets are required for the fabrication of multicompartment microcapsules and tissue-like synthetic materials. These double emulsions can also help to optically resolve different coalescence mechanisms contributing to double emulsion destabilization. Up to date microfluidic double emulsions are limited to either core-shell droplets or droplets with eight or less inner droplets. By applying a two-step jet break-up within one setup, double emulsion droplets filled with up to several hundred monodispersed inner droplets can be achieved. EXPERIMENTS Modular interconnected CNC-milled Lego®-inspired blocks were used to create two separated droplet break-up points within coaxial glass capillaries. Inner droplets were formed by countercurrent flow focusing within a small inner capillary, while outer droplets were formed by co-flow in an outer capillary. The size of inner and outer droplets was independently controlled since the two droplet break-up processes were decoupled. FINDINGS With the developed setup W/O/W and O/W/O double emulsions were produced with different surfactants, oils, and viscosity modifiers to encapsulate 25-400 inner droplets in each outer drop with a volume percentage of inner phase between 7% and 50%. From these emulsions monodispersed multicompartment microcapsules were obtained. The report offers insights on the relationship between the coalescence of internal droplets and their release.
Collapse
|
22
|
Design and Manufacture of a Low-Cost Microfluidic System for the Synthesis of Giant Liposomes for the Encapsulation of Yeast Homologues: Applications in the Screening of Membrane-Active Peptide Libraries. MICROMACHINES 2021; 12:mi12111377. [PMID: 34832789 PMCID: PMC8619280 DOI: 10.3390/mi12111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/24/2022]
Abstract
The discovery of new membrane-active peptides (MAPs) is an area of considerable interest in modern biotechnology considering their ample applicability in several fields ranging from the development of novel delivery vehicles (via cell-penetrating peptides) to responding to the latent threat of antibiotic resistance (via antimicrobial peptides). Different strategies have been devised for such discovery process, however, most of them involve costly, tedious, and low-efficiency methods. We have recently proposed an alternative route based on constructing a non-rationally designed library recombinantly expressed on the yeasts’ surfaces. However, a major challenge is to conduct a robust and high-throughput screening of possible candidates with membrane activity. Here, we addressed this issue by putting forward low-cost microfluidic platforms for both the synthesis of Giant Unilamellar Vesicles (GUVs) as mimicking entities of cell membranes and for providing intimate contact between GUVs and homologues of yeasts expressing MAPs. The homologues were chitosan microparticles functionalized with the membrane translocating peptide Buforin II, while intimate contact was through passive micromixers with different channel geometries. Both microfluidic platforms were evaluated both in silico (via Multiphysics simulations) and in vitro with a high agreement between the two approaches. Large and stable GUVs (5–100 µm) were synthesized effectively, and the mixing processes were comprehensively studied leading to finding the best operating parameters. A serpentine micromixer equipped with circular features showed the highest average encapsulation efficiencies, which was explained by the unique mixing patterns achieved within the device. The microfluidic devices developed here demonstrate high potential as platforms for the discovery of novel MAPs as well as for other applications in the biomedical field such as the encapsulation and controlled delivery of bioactive compounds.
Collapse
|
23
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
24
|
Le TNQ, Tran NN, Escribà-Gelonch M, Serra CA, Fisk I, McClements DJ, Hessel V. Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chem Soc Rev 2021; 50:11979-12012. [PMID: 34515721 DOI: 10.1039/d1cs00465d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanotechnology is increasingly being utilized to create advanced materials with improved or new functional attributes. Converting fertilizers into a nanoparticle-form has been shown to improve their efficacy but the current procedures used to fabricate nanofertilisers often have poor reproducibility and flexibility. Microfluidic systems, on the other hand, have advantages over traditional nanoparticle fabrication methods in terms of energy and materials consumption, versatility, and controllability. The increased controllability can result in the formation of nanoparticles with precise and complex morphologies (e.g., tuneable sizes, low polydispersity, and multi-core structures). As a result, their functional performance can be tailored to specific applications. This paper reviews the principles, formation, and applications of nano-enabled delivery systems fabricated using microfluidic approaches for the encapsulation, protection, and release of fertilizers. Controlled release can be achieved using two main routes: (i) nutrients adsorbed on nanosupports and (ii) nutrients encapsulated inside nanostructures. We aim to highlight the opportunities for preparing a new generation of highly versatile nanofertilisers using microfluidic systems. We will explore several main characteristics of microfluidically prepared nanofertilisers, including droplet formation, shell fine-tuning, adsorbate fine-tuning, and sustained/triggered release behavior.
Collapse
Affiliation(s)
- Tu Nguyen Quang Le
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. .,Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. .,School of Chemical Engineering, Can Tho University, Can Tho City, Vietnam
| | - Marc Escribà-Gelonch
- Higher Polytechnic Engineering School, University of Lleida, Igualada (Barcelona), 08700, Spain
| | - Christophe A Serra
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France
| | - Ian Fisk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.,The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | | | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. .,School of Engineering, University of Warwick, Library Rd, Coventry, UK
| |
Collapse
|
25
|
Kamnerdsook A, Juntasaro E, Khemthongcharoen N, Chanasakulniyom M, Sripumkhai W, Pattamang P, Promptmas C, Atthi N, Jeamsaksiri W. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic-hydrophobic surface. RSC Adv 2021; 11:35653-35662. [PMID: 35493190 PMCID: PMC9043265 DOI: 10.1039/d1ra06887c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
The objective of this paper is to propose a surface modification method for preparing PDMS microfluidic devices with partially hydrophilic-hydrophobic surfaces for generating double emulsion droplets. The device is designed to be easy to use without any complicated preparation process and also to achieve high droplet encapsulation efficiency compared to conventional devices. The key component of this preparation process is the permanent chemical coating for which the Pluronic surfactant is added into the bulk PDMS. The addition of Pluronic surfactant can modify the surface property of PDMS from a fully hydrophobic surface to a partially hydrophilic-hydrophobic surface whose property can be either hydrophilic or hydrophobic depending on the air- or water-treatment condition. In order to control the surface wettability, this microfluidic device with the partially hydrophilic-hydrophobic surface undergoes water treatment by injecting deionized water into the specific microchannels where their surface property changes to hydrophilic. This microfluidic device is tested by generating monodisperse water-in-oil-in-water (w/o/w) double emulsion micro-droplets for which the maximum droplet encapsulation efficiency of 92.4% is achieved with the average outer and inner diameters of 75.0 and 57.7 μm, respectively.
Collapse
Affiliation(s)
- Ampol Kamnerdsook
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Ekachai Juntasaro
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Numfon Khemthongcharoen
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Mayuree Chanasakulniyom
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University Nakhon Pathom 73170 Thailand
| | - Witsaroot Sripumkhai
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| | - Pattaraluck Pattamang
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| | - Chamras Promptmas
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Nithi Atthi
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| | - Wutthinan Jeamsaksiri
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| |
Collapse
|
26
|
Chen L, Xiao Y, Wu Q, Yan X, Zhao P, Ruan J, Shan J, Chen D, Weitz DA, Ye F. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102579. [PMID: 34390183 DOI: 10.1002/smll.202102579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Hierarchical emulsions are interesting for both scientific researches and practical applications. Hierarchical emulsions prepared by microfluidics require complicated device geometry and delicate control of flow rates. Here, a versatile method is developed to design hierarchical emulsions using microfluidic 3D droplet printing in droplet. The process of droplet printing in droplet mimics the dragonfly laying eggs and has advantages of easy processing and flexible design. To demonstrate the capability of the method, double emulsions and triple emulsions with tunable core number, core size, and core composition are prepared. The hierarchical emulsions are excellent templates for the developments of functional materials. Flattened crescent-moon-shaped particles are then fabricated using double emulsions printed in confined 2D space as templates. The particles are excellent delivery vehicles for 2D interfaces, which can load and transport cargos through a well-defined trajectory under external magnetic steering. Microfluidic 3D droplet printing in droplet provides a powerful platform with improved simplicity and flexibility for the design of hierarchical emulsions and functional materials.
Collapse
Affiliation(s)
- Li Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Yao Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Qinglin Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xiaoxiao Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Stucki A, Jusková P, Nuti N, Schmitt S, Dittrich PS. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression. SMALL METHODS 2021; 5:e2100331. [PMID: 34927870 DOI: 10.1002/smtd.202100331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Indexed: 06/14/2023]
Abstract
Microfluidic methods for the formation of single and double emulsion (DE) droplets allow for the encapsulation and isolation of reactants inside nanoliter compartments. Such methods have greatly enhanced the toolbox for high-throughput screening for cell or enzyme engineering and drug discovery. However, remaining challenges in the supply of reagents into these enclosed compartments limit the applicability of droplet microfluidics. Here, a strategy is introduced for on-demand delivery of reactants in DEs. Lipid vesicles are used as reactant carriers, which are co-encapsulated in double emulsions and release their cargo upon addition of an external trigger, here the anionic surfactant sodium dodecyl sulfate (SDS). The reagent present inside the lipid vesicles stays isolated from the remaining content of the DE vessel until SDS enters the DE lumen and solubilizes the vesicles' lipid bilayer. The versatility of the method is demonstrated with two critical applications chosen as representative assays for high-throughput screening: the induction of gene expression in bacteria and the initiation of an enzymatic reaction. This method not only allows for the release of the lipid vesicle content inside DEs to be synchronized for all DEs but also for the release to be triggered at any desired time.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Nicola Nuti
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
28
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
29
|
|
30
|
Prakash R, Ghosh S. Effect of Bend Wettability on Hydrodynamics of Liquid–Liquid Two-phase Flow in Serpentine Mini Geometry. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ravi Prakash
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| | - Sumana Ghosh
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| |
Collapse
|
31
|
Zhang T, Zou X, Xu L, Pan D, Huang W. Numerical investigation of fluid property effects on formation dynamics of millimeter-scale compound droplets in a co-flowing device. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Dos Santos EC, Belluati A, Necula D, Scherrer D, Meyer CE, Wehr RP, Lörtscher E, Palivan CG, Meier W. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004804. [PMID: 33107187 DOI: 10.1002/adma.202004804] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways.
Collapse
Affiliation(s)
- Elena C Dos Santos
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Dominik Scherrer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Riccardo P Wehr
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| |
Collapse
|
33
|
High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng 2020; 63:102-125. [PMID: 33017684 DOI: 10.1016/j.ymben.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.
Collapse
|
34
|
Controlled preparation of compound droplets in a double rectangular co-flowing microfluidic device. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Brower KK, Khariton M, Suzuki PH, Still C, Kim G, Calhoun SGK, Qi LS, Wang B, Fordyce PM. Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS. Anal Chem 2020; 92:13262-13270. [PMID: 32900183 DOI: 10.1021/acs.analchem.0c02499] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past five years, droplet microfluidic techniques have unlocked new opportunities for the high-throughput genome-wide analysis of single cells, transforming our understanding of cellular diversity and function. However, the field lacks an accessible method to screen and sort droplets based on cellular phenotype upstream of genetic analysis, particularly for large and complex cells. To meet this need, we developed Dropception, a robust, easy-to-use workflow for precise single-cell encapsulation into picoliter-scale double emulsion droplets compatible with high-throughput screening via fluorescence-activated cell sorting (FACS). We demonstrate the capabilities of this method by encapsulating five standardized mammalian cell lines of varying sizes and morphologies as well as a heterogeneous cell mixture of a whole dissociated flatworm (5-25 μm in diameter) within highly monodisperse double emulsions (35 μm in diameter). We optimize for preferential encapsulation of single cells with extremely low multiple-cell loading events (<2% of cell-containing droplets), thereby allowing direct linkage of cellular phenotype to genotype. Across all cell lines, cell loading efficiency approaches the theoretical limit with no observable bias by cell size. FACS measurements reveal the ability to discriminate empty droplets from those containing cells with good agreement to single-cell occupancies quantified via microscopy, establishing robust droplet screening at single-cell resolution. High-throughput FACS screening of cellular picoreactors has the potential to shift the landscape of single-cell droplet microfluidics by expanding the repertoire of current nucleic acid droplet assays to include functional phenotyping.
Collapse
Affiliation(s)
- Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States.,Chem-H Institute, Stanford University, Stanford, California 94305, United States
| | - Margarita Khariton
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Chris Still
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, United States
| | - Gaeun Kim
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Suzanne G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States.,Chem-H Institute, Stanford University, Stanford, California 94305, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States.,Department of Developmental Biology, Stanford University, Stanford, California 94305, United States
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States.,Chem-H Institute, Stanford University, Stanford, California 94305, United States.,Department of Genetics, Stanford University, Stanford, California 94305, United States.,Chan Zuckerburg BioHub, San Francisco, California 94158, United States
| |
Collapse
|
36
|
Tan S, Gao C, Liu H, Ye B, Sun D. Research of double emulsion formation and shell-thickness influence factors in a novel six-way junction microfluidic device. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
One-step microdevices for synthesizing morphology-controlled ultraviolet-curable polysiloxane shell particles. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00106-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Brower KK, Carswell-Crumpton C, Klemm S, Cruz B, Kim G, Calhoun SGK, Nichols L, Fordyce PM. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. LAB ON A CHIP 2020; 20:2062-2074. [PMID: 32417874 PMCID: PMC7670282 DOI: 10.1039/d0lc00261e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics has made large impacts in diverse areas such as enzyme evolution, chemical product screening, polymer engineering, and single-cell analysis. However, while droplet reactions have become increasingly sophisticated, phenotyping droplets by a fluorescent signal and sorting them to isolate individual variants-of-interest at high-throughput remains challenging. Here, we present sdDE-FACS (s[combining low line]ingle d[combining low line]roplet D[combining low line]ouble E[combining low line]mulsion-FACS), a new method that uses a standard flow cytometer to phenotype, select, and isolate individual double emulsion droplets of interest. Using a 130 μm nozzle at high sort frequency (12-14 kHz), we demonstrate detection of droplet fluorescence signals with a dynamic range spanning 5 orders of magnitude and robust post-sort recovery of intact double emulsion (DE) droplets using 2 commercially-available FACS instruments. We report the first demonstration of single double emulsion droplet isolation with post-sort recovery efficiencies >70%, equivalent to the capabilities of single-cell FACS. Finally, we establish complete downstream recovery of nucleic acids from single, sorted double emulsion droplets via qPCR with little to no cross-contamination. sdDE-FACS marries the full power of droplet microfluidics with flow cytometry to enable a variety of new droplet assays, including rare variant isolation and multiparameter single-cell analysis.
Collapse
Affiliation(s)
- Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Experimental study on millimeter-scale W1/O/W2 compound droplets formation in a co-flowing device with two-step structure. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Investigation on millimeter-scale W1/O/W2 compound droplets generation in a co-flowing device with one-step structure. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Al nuumani R, Vladisavljević GT, Kasprzak M, Wolf B. In-vitro oral digestion of microfluidically produced monodispersed W/O/W food emulsions loaded with concentrated sucrose solution designed to enhance sweetness perception. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Michelon M, Leopércio BC, Carvalho MS. Microfluidic production of aqueous suspensions of gellan-based microcapsules containing hydrophobic compounds. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Sajjadi S, Alroaithi M, Chaurasia AS, Jahanzad F. "On-the-Fly" Fabrication of Highly-Ordered Interconnected Cylindrical and Spherical Porous Microparticles via Dual Polymerization Zone Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12731-12743. [PMID: 31461292 DOI: 10.1021/acs.langmuir.9b01077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A microfluidic platform with dual photopolymerization zones has been developed for production of novel uniform interconnected porous particles with shapes imposed either by the geometry of the external capillary or by the thermodynamic minimization of interfacial area. Double w/o/w (water/oil/water) drops with well-defined internal droplet size and number were produced and then exposed to online photopolymerization to create the porous particles. Cylindrical interconnected porous particles were produced in a segmented flow where the drops took the shape of the capillary. The microfluidic setup included an extension capillary where the drops relaxed and conformed to their thermodynamically favored morphology. Window opening of the particles occurred "on-the-fly" during UV polymerization without using any offline auxiliary methods. A distinction was made between critically and highly packed arrangements in double drops. The window opening occurred consistently for highly packed spherical drops, but only for critically packed drops containing more than six internal cores at internal phase ratios as low as 0.35. The size and number of cores and shape and structure of double drops could be precisely tuned by the flow rate and by packing structure of the inner droplets.
Collapse
Affiliation(s)
- Shahriar Sajjadi
- Faculty of Natural and Mathematical Sciences , King's College London , Strand , London WC2R 2LS , U.K
| | - Mohammad Alroaithi
- Research Development Center , Saudi Aramco , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Ankur S Chaurasia
- ESPCI Paris , 10 Rue Vauquelin , 75231 , Paris cedex 05, Paris , France
| | - Fatemeh Jahanzad
- Division of Chemical and Energy Engineering , London South Bank University , London SE1 0AA , U.K
| |
Collapse
|
44
|
Yoon DH, Nozaki Y, Tanaka D, Sekiguchi T, Shoji S. Integration of Horizontal and Vertical Microfluidic Modules for Core-Shell Droplet Generation and Chemical Application. MICROMACHINES 2019; 10:E613. [PMID: 31540177 PMCID: PMC6780611 DOI: 10.3390/mi10090613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
This paper presents a method for utilizing three-dimensional microfluidic channels fully to realize multiple functions in a single device. The final device structure was achieved by combining three independent modules that consisted of horizontal and vertical channels. The device allowed for the one-step generation of water-in-oil-in-water droplets without the need for partial treatment of the polydimethylsiloxane channel surface using separate modules for generating water-in-oil droplets on the horizontal plane and oil-in-water droplets on the vertical plane. The second vertically structured module provided an efficient flow for the generation of highly wettable liquid droplets, and tuning of the first horizontally structured module enabled different modes of inner-core encapsulation within the oil shell. The successful integration of the vertical and horizontal channels for core-shell droplet generation and the chemical synthesis of a metal complex within the droplets were evaluated. The proposed approach of integrating independent modules will expand and enhance the functions of microfluidic platforms.
Collapse
Affiliation(s)
- Dong Hyun Yoon
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Yoshito Nozaki
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
45
|
Azarmanesh M, Bawazeer S, Mohamad AA, Sanati-Nezhad A. Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One-Step Hybrid Microfluidic Device. Sci Rep 2019; 9:12694. [PMID: 31481702 PMCID: PMC6722102 DOI: 10.1038/s41598-019-49136-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple Emulsions (MEs) contain a drop laden with many micro-droplets. A single-step microfluidic-based synthesis process of MEs is presented to provide a rapid and controlled generation of monodisperse MEs. The design relies on the interaction of three immiscible fluids with each other in subsequent droplet formation steps to generate monodisperse ME constructs. The design is within a microchannel consists of two compartments of cross-junction and T-junction. The high shear stress at the cross-junction creates a stagnation point that splits the first immiscible phase to four jet streams each of which are sprayed to micrometer droplets surrounded by the second phase. The resulted structure is then supported by the third phase at the T-junction to generate and transport MEs. The ME formation within microfluidics is numerically simulated and the effects of several key parameters on properties of MEs are investigated. The dimensionless modeling of ME formation enables to change only one parameter at the time and analyze the sensitivity of the system to each parameter. The results demonstrate the capability of highly controlled and high-throughput MEs formation in a one-step synthesis process. The consecutive MEs are monodisperse in size which open avenues for the generation of controlled MEs for different applications.
Collapse
Affiliation(s)
- Milad Azarmanesh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Saleh Bawazeer
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Abdulmajeed A Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada. .,Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
46
|
Wang X, Zhu J, Shao T, Luo X, Zhang L. Production of Highly Monodisperse Millimeter‐Sized Double‐Emulsion Droplets in a Coaxial Capillary Device. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaojun Wang
- China Academy of Engineering Physics, Science and Technology on Plasma Physics LaboratoryResearch Center of Laser Fusion P. O. Box 919-987 621900 Mianyang China
- Mianyang Teachers' CollegeSchool of Chemistry and Chemical Engineering 30 Xianren Road Section 621000 Mianyang China
| | - Jiayi Zhu
- Southwest University of Science and Technology and Research Center of Laser FusionJoint Laboratory for Extreme Conditions Matter Properties 59 Qinglong Road 621000 Mianyang China
| | - Ting Shao
- China Academy of Engineering Physics, Science and Technology on Plasma Physics LaboratoryResearch Center of Laser Fusion P. O. Box 919-987 621900 Mianyang China
| | - Xuan Luo
- China Academy of Engineering Physics, Science and Technology on Plasma Physics LaboratoryResearch Center of Laser Fusion P. O. Box 919-987 621900 Mianyang China
| | - Lin Zhang
- China Academy of Engineering Physics, Science and Technology on Plasma Physics LaboratoryResearch Center of Laser Fusion P. O. Box 919-987 621900 Mianyang China
| |
Collapse
|
47
|
Azizian P, Azarmanesh M, Dejam M, Mohammadi M, Shamsi M, Sanati-Nezhad A, Mohamad AA. Electrohydrodynamic formation of single and double emulsions for low interfacial tension multiphase systems within microfluidics. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Askari AH, Shams M, Sullivan PE. Numerical simulation of double emulsion formation in cross-junctional flow-focusing microfluidic device using Lattice Boltzmann method. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1518141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Amir Hossein Askari
- Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Vanak Square, Tehran, Iran
| | - Mehrzad Shams
- Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis St., Vanak Square, Tehran, Iran
| | - Pierre E. Sullivan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Liu M, Zheng Y, Liu Y, Zhang Z, Wang Y, Chen Q, Li J, Li J, Huang Y, Yin Q. Effects of surfactant adsorption on the formation of compound droplets in microfluidic devices. RSC Adv 2019; 9:41943-41954. [PMID: 35541619 PMCID: PMC9076507 DOI: 10.1039/c9ra07141e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
Driven by the need to prepare monodisperse compound droplets, the formation mechanism of compound droplets was comprehensively investigated. With increasing poly(vinyl alcohol) (PVA) concentration in the W2 phase, the formation mechanism of inner W1 droplet is not affected while the behavior of the O phase in the W2 phase is different. The W1/O compound droplets can form stably in an inner squeezing – outer dripping regime, but the structure of the W1/O compound droplets are affected by the formation time matching between inner W1 droplet and W1/O compound droplets, which influences the stability of the compound droplets. Moreover, the formation process of the W1/O compound droplet is composed of cone recoiling, neck formation, neck developing, neck thinning and neck pinch-off. The formation time of the W1/O compound droplet is mainly determined the neck formation stage. The higher interfacial tension is unfavorable to the neck formation at the initial stages, but it makes the Laplace pressure difference increasing, which promotes the thinning of the neck in the neck pinch-off stage. The results provide more in-depth insights of the effects of surfactants on the formation of compound droplets, benefiting for preparing monodisperse and stable compound droplets. Profile of neck width versus the relative time during the formation process of W1/O droplets.![]()
Collapse
Affiliation(s)
- Meifang Liu
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yueqing Zheng
- Institute of Mechanical Manufacturing Technology
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yiyang Liu
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Zhanwen Zhang
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yuguang Wang
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Qiang Chen
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Jing Li
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Jie Li
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yawen Huang
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- China
| | - Qiang Yin
- Research Center of Laser Fusion
- China Academy of Engineering Physics
- Mianyang 621900
- China
| |
Collapse
|
50
|
Zhu XD, Shi X, Wang SW, Chu J, Zhu WH, Ye BC, Zuo P, Wang YH. High-throughput screening of high lactic acid-producing Bacillus coagulans by droplet microfluidic based flow cytometry with fluorescence activated cell sorting. RSC Adv 2019; 9:4507-4513. [PMID: 35520173 PMCID: PMC9060631 DOI: 10.1039/c8ra09684h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/04/2019] [Indexed: 01/17/2023] Open
Abstract
A high-throughput screening system based on droplet microfluidic sorting was developed and employed for screening of high lactic acid-producing Bacillus coagulans. In this system, water-in-oil-in-water (W/O/W) droplets, which were ∼12 pL in volume were used as picoliter-reactors for lactic acid fermentation. A fluorescent sensor was developed and used for monitoring pH which indicated the production of lactic acid. After fermentation, fluorescence activated cell sorting was performed with high sensitivity and speed. Using this microfluidic high-throughput screening system, we found a mutant with a yield of 76 g L−1 lactic acid which was 52% higher than its parent strain with a screening throughput exceeding 106 clones per h. A high-throughput screening system based on droplet microfluidic sorting was developed and employed for screening of high lactic acid-producing Bacillus coagulans.![]()
Collapse
Affiliation(s)
- Xu-Dong Zhu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Xiang Shi
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Shu-Wen Wang
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Wei-Hong Zhu
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Peng Zuo
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yong-Hong Wang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|