1
|
Nandi P, Li S, Columbres RCA, Wang F, Williams DR, Poh YP, Chou TF, Chiu PL. Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes. Int J Mol Sci 2021; 22:ijms22158079. [PMID: 34360842 PMCID: PMC8347982 DOI: 10.3390/ijms22158079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.
Collapse
Affiliation(s)
- Purbasha Nandi
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Rod Carlo A. Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | | | - Yu-Ping Poh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
- Correspondence: (T.-F.C.); (P.-L.C.)
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: (T.-F.C.); (P.-L.C.)
| |
Collapse
|
2
|
Zhang Y, Xie X, Wang X, Wen T, Zhao C, Liu H, Zhao B, Zhu Y. Discovery of novel pyrimidine molecules containing boronic acid as VCP/p97 Inhibitors. Bioorg Med Chem 2021; 38:116114. [PMID: 33831696 DOI: 10.1016/j.bmc.2021.116114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
Valine-containing protein (VCP) is a member of the adenosine triphosphate family involved in a variety of cellular activities. VCP/p97 is capable of maintaining protein homeostasis and mediating the degradation of misfolded polypeptides by the ubiquitin-proteasome system (UPS). In this manuscript, a series of novel p97 inhibitors with pyrimidine as core structure were designed, synthesized and biologically evaluated. Based on the enzymatic results, a detailed structure-activity relationship discussion of the synthesized compounds was carried out. Furthermore, cellular activities of the compounds with enzymatic potency of less than 200 nM were investigated by using A549 and RPMI8226 cell lines. Among the screened inhibitors, compound 17 (IC50, 54.7 nM) showed good enzymatic activity. Investigation of cellular activities with non-small cell lung cancer A549 and multiple myeloma (MM) RPMI8226 further confirmed the potency of 17 with the IC50 values of 2.80 μM and 0.86 μM, respectively. Compound 17 is now being developed as a candidate. Finally, docking studies were carried out to explore the possible binding mode between the active inhibitor 17 and p97.
Collapse
Affiliation(s)
- Yonglei Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China
| | - Xiaomin Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Chi Zhao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Hailong Liu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Feng Q, Zheng J, Zhang J, Zhao M. Synthesis and In Vitro Evaluation of 2-[3-(2-Aminoethyl)-1 H-indol-1-yl]- N-benzylquinazolin-4-amine as a Novel p97/VCP Inhibitor Lead Capable of Inducing Apoptosis in Cancer Cells. ACS OMEGA 2020; 5:31784-31791. [PMID: 33344832 PMCID: PMC7745420 DOI: 10.1021/acsomega.0c04478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
P97/VCP, an endoplasmic reticulum associated protein, belongs to AAA ATPase family, ubiquitous ATPases associated with various cellular activities. Recent research has elucidated the roles of p97/VCP and evaluated its potential as a therapeutic target for some kinds of cancer diseases. We screened the small molecule compounds from a previously established library and found promise in the compound 2-[3-(2-aminoethyl)-1H-indol-1-yl]-N-benzylquinazolin-4-amine (FQ393). Data from docking simulation indicates FQ393 acts as an ATP competitor, and ATPase activity assays showed FQ393 was an inhibitor of p97/VCP. Furthermore, in vitro FQ393 is able to promote apoptosis and prohibit proliferation in a variety of cancer cell lines. Using comparative proteomic profiling of HCT-116 cells, we found significantly different canonical KEGG pathways, which revealed that the protein changes in FQ393 groups were associated with p97/VCP or tumor-related pathways. The present data suggests that FQ393 exerts antitumor activity, at least in part through p97/VCP inhibition.
Collapse
Affiliation(s)
- Qiqi Feng
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| | - Jiaying Zheng
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| | - Jie Zhang
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| | - Ming Zhao
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing 100069, People’s Republic
of China
- Department
of Biomaterials, Beijing Laboratory of Biomedical Materials and Key
Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100026, People’s Republic of China
- Area
Major Laboratory of Peptide and Small Molecular Drugs, Engineering
Research Center of Endogenous Prophylactic of Ministry of Education
of China, Capital Medical University, Beijing 100069, People’s Republic of China
| |
Collapse
|
5
|
AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Biomolecules 2020; 10:biom10040629. [PMID: 32325699 PMCID: PMC7226402 DOI: 10.3390/biom10040629] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate mechanical work that unfolds a substrate protein inside the central axial channel of ATPase ring for degradation. Three-dimensional visualizations of several AAA+ ATPase complexes in the act of substrate processing for protein degradation have been resolved at the atomic level thanks to recent technical advances in cryogenic electron microscopy (cryo-EM). Here, we summarize the resulting advances in structural and biochemical studies of AAA+ proteases in the process of proteolysis reactions, with an emphasis on cryo-EM structural analyses of the 26S proteasome, Cdc48/p97 and FtsH-like mitochondrial proteases. These studies reveal three highly conserved patterns in the structure–function relationship of AAA+ ATPase hexamers that were observed in the human 26S proteasome, thus suggesting common dynamic models of mechanochemical coupling during force generation and substrate translocation.
Collapse
|
6
|
Pharmacophore modeling, atom-based 3D-QSAR and molecular docking studies on N-benzylpyrimidin-4-amine derivatives as VCP/p97 inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02517-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
8
|
Yang G, Lu H, Wang L, Zhao J, Zeng W, Zhang T. Genome-Wide Identification and Transcriptional Expression of the METTL21C Gene Family in Chicken. Genes (Basel) 2019; 10:genes10080628. [PMID: 31434291 PMCID: PMC6723737 DOI: 10.3390/genes10080628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
The chicken is a common type of poultry that is economically important both for its medicinal and nutritional values. Previous studies have found that free-range chickens have more skeletal muscle mass. The methyltransferase-like 21C gene (METTL21C) plays an important role in muscle development; however, there have been few reports on the role of METTL21C in chickens. In this study, we performed a genome-wide identification of chicken METTL21C genes and analyzed their phylogeny, transcriptional expression profile, and real-time quantitative polymerase chain reaction (qPCR). We identified 10 GgMETTL21C genes from chickens, 11 from mice, and 32 from humans, and these genes were divided into six groups, which showed a large amount of variation among these three species. A total of 15 motifs were detected in METTL21C genes, and the intron phase of the gene structure showed that the METTL21C gene family was conservative in evolution. Further, both the transcript data and qPCR showed that a single gene’s (GgMETTL21C3) expression level increased with the muscle development of chickens, indicating that the METTL21C genes are involved in the development of chicken muscles. Our results provide some reference value for the subsequent study of the function of METTL21C.
Collapse
Affiliation(s)
- Ge Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Jiarong Zhao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China.
| |
Collapse
|
9
|
Jantrapirom S, Lo Piccolo L, Yoshida H, Yamaguchi M. Depletion of Ubiquilin induces an augmentation in soluble ubiquitinated Drosophila TDP-43 to drive neurotoxicity in the fly. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3038-3049. [PMID: 29936333 DOI: 10.1016/j.bbadis.2018.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
The proteostasis machinery has critical functions in metabolically active cells such as neurons. Ubiquilins (UBQLNs) may decide the fate of proteins, with its ability to bind and deliver ubiquitinated misfolded or no longer functionally required proteins to the ubiquitin-proteasome system (UPS) and/or autophagy. Missense mutations in UBQLN2 have been linked to X-linked dominant amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD). Although aggregation-prone TAR DNA-binding protein 43 (TDP-43) has been recognized as a major component of the ubiquitin pathology, the mechanisms by which UBQLN involves in TDP-43 proteinopathy have not yet been elucidated in detail. We previously characterized a new Drosophila Ubiquilin (dUbqn) knockdown model that produces learning/memory and locomotive deficits during the proteostasis impairment. In the present study, we demonstrated that the depletion of dUbqn markedly affected the expression and sub-cellular localization of Drosophila TDP-43 (TBPH), resulting in a cytoplasmic ubiquitin-positive (Ub+) TBPH pathology. Although we found that the knockdown of dUbqn widely altered and affected the turnover of a large number of proteins, we herein showed that an augmented soluble cytoplasmic Ub+-TBPH is as a crucial source of neurotoxicity following the depletion of dUbqn. We demonstrated that dUbqn knockdown-related neurotoxicity may be rescued by either restoring the proteostasis machinery or reducing the expression of TBPH. These novel results extend our knowledge on the UBQLN loss-of-function pathomechanism and may contribute to the identification of new therapeutics for ALS-FTD and aging-related diseases.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Luca Lo Piccolo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
10
|
Heidelberger JB, Voigt A, Borisova ME, Petrosino G, Ruf S, Wagner SA, Beli P. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep 2018; 19:embr.201744754. [PMID: 29467282 DOI: 10.15252/embr.201744754] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
Valosin-containing protein (VCP) is an evolutionarily conserved ubiquitin-dependent ATPase that mediates the degradation of proteins through the ubiquitin-proteasome pathway. Despite the central role of VCP in the regulation of protein homeostasis, identity and nature of its cellular substrates remain poorly defined. Here, we combined chemical inhibition of VCP and quantitative ubiquitin remnant profiling to assess the effect of VCP inhibition on the ubiquitin-modified proteome and to probe the substrate spectrum of VCP in human cells. We demonstrate that inhibition of VCP perturbs cellular ubiquitylation and increases ubiquitylation of a different subset of proteins compared to proteasome inhibition. VCP inhibition globally upregulates K6-linked ubiquitylation that is dependent on the HECT-type ubiquitin E3 ligase HUWE1. We report ~450 putative VCP substrates, many of which function in nuclear processes, including gene expression, DNA repair and cell cycle. Moreover, we identify that VCP regulates the level and activity of the transcription factor c-Myc.
Collapse
Affiliation(s)
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | - Stefanie Ruf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
11
|
Deng Z, Sheehan P, Chen S, Yue Z. Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease? Mol Neurodegener 2017; 12:90. [PMID: 29282133 PMCID: PMC5746010 DOI: 10.1186/s13024-017-0232-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that share genetic risk factors and pathological hallmarks. Intriguingly, these shared factors result in a high rate of comorbidity of these diseases in patients. Intracellular protein aggregates are a common pathological hallmark of both diseases. Emerging evidence suggests that impaired RNA processing and disrupted protein homeostasis are two major pathogenic pathways for these diseases. Indeed, recent evidence from genetic and cellular studies of the etiology and pathogenesis of ALS-FTD has suggested that defects in autophagy may underlie various aspects of these diseases. In this review, we discuss the link between genetic mutations, autophagy dysfunction, and the pathogenesis of ALS-FTD. Although dysfunction in a variety of cellular pathways can lead to these diseases, we provide evidence that ALS-FTD is, in many cases, an autophagy disease.
Collapse
Affiliation(s)
- Zhiqiang Deng
- Brain center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.,Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Patricia Sheehan
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Shi Chen
- Brain center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| |
Collapse
|
12
|
Abstract
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.
Collapse
Affiliation(s)
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, 4249 Fifth Ave, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Rao MV, Williams DR, Cocklin S, Loll PJ. Interaction between the AAA + ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 2017; 292:18392-18407. [PMID: 28939772 DOI: 10.1074/jbc.m117.806281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/16/2017] [Indexed: 12/29/2022] Open
Abstract
p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.
Collapse
Affiliation(s)
- Maya V Rao
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Dewight R Williams
- the LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Patrick J Loll
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
14
|
Bodnar NO, Rapoport TA. Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex. Cell 2017; 169:722-735.e9. [PMID: 28475898 DOI: 10.1016/j.cell.2017.04.020] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/18/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
Abstract
The Cdc48 ATPase and its cofactors Ufd1/Npl4 (UN) extract polyubiquitinated proteins from membranes or macromolecular complexes, but how they perform these functions is unclear. Cdc48 consists of an N-terminal domain that binds UN and two stacked hexameric ATPase rings (D1 and D2) surrounding a central pore. Here, we use purified components to elucidate how the Cdc48 complex processes substrates. After interaction of the polyubiquitin chain with UN, ATP hydrolysis by the D2 ring moves the polypeptide completely through the double ring, generating a pulling force on the substrate and causing its unfolding. ATP hydrolysis by the D1 ring is important for subsequent substrate release from the Cdc48 complex. This release requires cooperation of Cdc48 with a deubiquitinase, which trims polyubiquitin to an oligoubiquitin chain that is then also translocated through the pore. Together, these results lead to a new paradigm for the function of Cdc48 and its mammalian ortholog p97/VCP.
Collapse
Affiliation(s)
- Nicholas O Bodnar
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Zhao F, Gao LH, Li SS, Wei ZY, Fu WZ, He JW, Liu YJ, Hu YQ, Dong J, Zhang ZL. Association between SNPs and haplotypes in the METTL21C gene and peak bone mineral density and body composition in Chinese male nuclear families. J Bone Miner Metab 2017; 35:437-447. [PMID: 27628047 DOI: 10.1007/s00774-016-0774-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
The methyltransferase-like 21C gene (METTL21C), which is mainly expressed in muscle, can promote the differentiation of myoblasts to myotubes and reduce glucocorticoid-induced apoptosis of osteocytes. The purpose of this study was to explore the association between single nucleotide polymorphisms of METTL21C and peak bone mineral density (BMD), body mass index, total fat mass (TFM), and total lean mass (TLM) in Chinese young men. Fifteen tagging single nucleotide polymorphisms were genotyped, and haplotype blocks were derived in 400 Chinese male nuclear families. The peak BMD of the lumbar and hip, TFM, and TLM were measured by dual-energy X-ray absorptiometry. The association analyses were performed by a quantitative transmission disequilibrium test. Both TLM and TFM had a significant positive effect on peak BMD, but the positive regulation of TLM was stronger than that of TFM. After 1000 permutations, significant within-family associations were found between rs9585961 and lumbar spine BMD and femoral neck BMD, rs9518810 and femoral neck BMD, and rs599976 and body mass index, TFM, and percentage fat mass (all P < 0.05). The association analyses with haplotypes showed that haplotype AG in block 1 was significantly associated with TFM (P = 0.031) and haplotype CAG in block 2 was significantly associated with lumbar spine BMD (P = 0.020). Our study, for the first time, demonstrates that the polymorphisms and haplotypes of METTL21C contribute to the peak BMD and TFM in Chinese males, which suggests that as a quantitative trait locus with potential pleiotropy it may have an influence on osteoporosis and obesity.
Collapse
Affiliation(s)
- Fei Zhao
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
- Department of Endocrinology, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030001, China
| | - Li-Hong Gao
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Shan-Shan Li
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Wen-Zhen Fu
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Jin-Wei He
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Yu-Juan Liu
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Yun-Qiu Hu
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China
| | - Jing Dong
- Department of Endocrinology, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030001, China
| | - Zhen-Lin Zhang
- Division of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
16
|
Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc Natl Acad Sci U S A 2017; 114:E4380-E4388. [PMID: 28512218 DOI: 10.1073/pnas.1706205114] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
p97 is a "segregase" that plays a key role in numerous ubiquitin (Ub)-dependent pathways such as ER-associated degradation. It has been hypothesized that p97 extracts proteins from membranes or macromolecular complexes to enable their proteasomal degradation; however, the complex nature of p97 substrates has made it difficult to directly observe the fundamental basis for this activity. To address this issue, we developed a soluble p97 substrate-Ub-GFP modified with K48-linked ubiquitin chains-for in vitro p97 activity assays. We demonstrate that WT p97 can unfold proteins and that this activity is dependent on the p97 adaptor NPLOC4-UFD1L, ATP hydrolysis, and substrate ubiquitination, with branched chains providing maximal stimulation. Furthermore, we show that a p97 mutant that causes inclusion body myopathy, Paget's disease of bone, and frontotemporal dementia in humans unfolds substrate faster, suggesting that excess activity may underlie pathogenesis. This work overcomes a significant barrier in the study of p97 and will allow the future dissection of p97 mechanism at a level of detail previously unattainable.
Collapse
|
17
|
Hänzelmann P, Schindelin H. The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97. Front Mol Biosci 2017; 4:21. [PMID: 28451587 PMCID: PMC5389986 DOI: 10.3389/fmolb.2017.00021] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
The hexameric type II AAA ATPase (ATPase associated with various activities) p97 (also referred to as VCP, Cdc48, and Ter94) is critically involved in a variety of cellular activities including pathways such as DNA replication and repair which both involve chromatin remodeling, and is a key player in various protein quality control pathways mediated by the ubiquitin proteasome system as well as autophagy. Correspondingly, p97 has been linked to various pathophysiological states including cancer, neurodegeneration, and premature aging. p97 encompasses an N-terminal domain, two highly conserved ATPase domains and an unstructured C-terminal tail. This enzyme hydrolyzes ATP and utilizes the resulting energy to extract or disassemble protein targets modified with ubiquitin from stable protein assemblies, chromatin and membranes. p97 participates in highly diverse cellular processes and hence its activity is tightly controlled. This is achieved by multiple regulatory cofactors, which either associate with the N-terminal domain or interact with the extreme C-terminus via distinct binding elements and target p97 to specific cellular pathways, sometimes requiring the simultaneous association with more than one cofactor. Most cofactors are recruited to p97 through conserved binding motifs/domains and assist in substrate recognition or processing by providing additional molecular properties. A tight control of p97 cofactor specificity and diversity as well as the assembly of higher-order p97-cofactor complexes is accomplished by various regulatory mechanisms, which include bipartite binding, binding site competition, changes in oligomeric assemblies, and nucleotide-induced conformational changes. Furthermore, post-translational modifications (PTMs) like acetylation, palmitoylation, phosphorylation, SUMOylation, and ubiquitylation of p97 have been reported which further modulate its diverse molecular activities. In this review, we will describe the molecular basis of p97-cofactor specificity/diversity and will discuss how PTMs can modulate p97-cofactor interactions and affect the physiological and patho-physiological functions of p97.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of WürzburgWürzburg, Germany
| |
Collapse
|
18
|
p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex. Mol Cell Biol 2017; 37:MCB.00660-16. [PMID: 28115426 PMCID: PMC5376629 DOI: 10.1128/mcb.00660-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 12/28/2022] Open
Abstract
Activation of the stress-responsive transcription factor NRF2 is the major line of defense to combat oxidative or electrophilic insults. Under basal conditions, NRF2 is continuously ubiquitylated by the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex and is targeted to the proteasome for degradation (the canonical mechanism). However, the path from the CUL3 complex to ultimate proteasomal degradation was previously unknown. p97 is a ubiquitin-targeted ATP-dependent segregase that extracts ubiquitylated client proteins from membranes, protein complexes, or chromatin and has an essential role in autophagy and the ubiquitin proteasome system (UPS). In this study, we show that p97 negatively regulates NRF2 through the canonical pathway by extracting ubiquitylated NRF2 from the KEAP1-CUL3 E3 complex, with the aid of the heterodimeric cofactor UFD1/NPL4 and the UBA-UBX-containing protein UBXN7, for efficient proteasomal degradation. Given the role of NRF2 in chemoresistance and the surging interest in p97 inhibitors to treat cancers, our results indicate that dual p97/NRF2 inhibitors may offer a more potent and long-term avenue of p97-targeted treatment.
Collapse
|
19
|
Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation. mBio 2017; 8:mBio.00328-17. [PMID: 28351922 PMCID: PMC5371415 DOI: 10.1128/mbio.00328-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT) screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL) to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation. Bacterial and viral infections produce pathogen-specific proteins that interfere with host functions, including the immune response. Mouse mammary tumor virus (MMTV) is a model system for studies of human complex retroviruses, such as HIV-1, as well as cancer induction. We have shown that MMTV encodes a regulatory protein, Rem, which is cleaved into an N-terminal signal peptide (SP) and a C-terminal protein (Rem-CT) within the endoplasmic reticulum (ER) membrane. SP function requires ER membrane extraction by retrotranslocation, which is part of a protein quality control system known as ER-associated degradation (ERAD) that is essential to cellular health. Through poorly understood mechanisms, certain pathogen-derived proteins are retrotranslocated but not degraded. We demonstrate here that MMTV SP retrotranslocation from the ER membrane avoids degradation through a unique process involving interaction with cellular p97 ATPase and failure to acquire cellular proteasome-targeting sequences.
Collapse
|
20
|
Arai MA, Taguchi S, Komatsuzaki K, Uchiyama K, Masuda A, Sampei M, Satoh M, Kado S, Ishibashi M. Valosin-containing Protein is a Target of 5'-l Fuligocandin B and Enhances TRAIL Resistance in Cancer Cells. ChemistryOpen 2016; 5:574-579. [PMID: 28032027 PMCID: PMC5167318 DOI: 10.1002/open.201600081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 01/25/2023] Open
Abstract
Fuligocandin B (2) is a novel natural product that can overcome TRAIL resistance. We synthesized enatiomerically pure fuligocandin B (2) and its derivative 5′‐I fuligocandin B (4), and found that the latter had an improved biological activity against the human gastric cancer cell line, AGS. We attached a biotin linker and photoactivatable aryl diazirine group to 5′‐I fuligocandin B (4), and employed a pull‐down assay to identify valosin‐containing protein (VCP/p97), an AAA ATPase, as a 5′‐I fuligocandin B (4) target protein. Knock‐down of VCP by siRNA enhanced sensitivity to TRAIL in AGS cells. In addition, 4 enhanced CHOP and DR5 protein expression, and overall intracellular levels of ubiquitinated protein. These data suggest that endoplasmic reticulum stress caused through VCP inhibition by 4 increases CHOP‐mediated DR5 up‐regulation, which enhances TRAIL‐induced cell death in AGS cells. To the best of our knowledge, this is the first example to show a relationship between VCP and TRAIL‐resistance‐overcoming activity in cancer cells.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shota Taguchi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Kazuhiro Komatsuzaki
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Kento Uchiyama
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Ayaka Masuda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mana Sampei
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry Chiba University Hospital 1-8-1 Inohana, Chuo-ku Chiba260-8670 Japan; Chemical Analysis Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba263-8522 Japan
| | - Sayaka Kado
- Chemical Analysis Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| |
Collapse
|
21
|
Vekaria PH, Home T, Weir S, Schoenen FJ, Rao R. Targeting p97 to Disrupt Protein Homeostasis in Cancer. Front Oncol 2016; 6:181. [PMID: 27536557 PMCID: PMC4971439 DOI: 10.3389/fonc.2016.00181] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein (VCP), is an ATPase whose function is essential to restore protein homeostasis in the cells. Working in concert with the ubiquitin proteasome system, p97 promotes the retrotranslocation from cellular organelles and/or degradation of misfolded proteins. Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, especially those that have a highly secretory phenotype. This review summarizes our current understanding of the function of p97 in maintaining protein homeostasis and its inhibition with small molecule inhibitors as an emerging strategy to target cancer cells.
Collapse
Affiliation(s)
| | - Trisha Home
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| | - Scott Weir
- The University of Kansas Cancer Center, University of Kansas , Kansas City, KS , USA
| | - Frank J Schoenen
- Specialized Chemistry Center, University of Kansas , Lawrence, KS , USA
| | - Rekha Rao
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| |
Collapse
|
22
|
Tillotson J, Bashyal BP, Kang M, Shi T, De La Cruz F, Gunatilaka AAL, Chapman E. Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin. Org Biomol Chem 2016; 14:5918-21. [PMID: 27223265 PMCID: PMC5466822 DOI: 10.1039/c6ob00560h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ATPase p97 is a ubiquitin targeted segregase that uses the energy of ATP binding and hydrolysis to extract ubiquitylated substrates from biological membranes, from other proteins, or from protein complexes to carry out myriad tasks in eukaryotes. Increased p97 activity has been linked to a poor prognosis in cancer patients, making p97 an anti-neoplastic target. In the present study, we show that dehydrocurvularin (DHC) and its chlorinated variants are covalent inhibitors of p97, interfering with its ATPase activity. Interestingly, cellular studies revealed both DHC and its monochloro analogue interfere with both the proteasome and p97, whereas its dichloro analogue showed p97 specificity.
Collapse
Affiliation(s)
- Joseph Tillotson
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, Zhang Z, Xu J. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem 2016; 291:14373-14384. [PMID: 27226613 DOI: 10.1074/jbc.m116.729343] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Fuxiao Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated People's No.6 Hospital, Shanghai 200233, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,.
| |
Collapse
|
24
|
Gui L, Zhang X, Li K, Frankowski KJ, Li S, Wong DE, Moen DR, Porubsky PR, Lin HJ, Schoenen FJ, Chou TF. Evaluating p97 Inhibitor Analogues for Potency against p97-p37 and p97-Npl4-Ufd1 Complexes. ChemMedChem 2016; 11:953-7. [PMID: 27043824 PMCID: PMC9049307 DOI: 10.1002/cmdc.201600036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 12/21/2022]
Abstract
We previously found that the p97 cofactor, p47, significantly decreased the potency of some ATP-competitive p97 inhibitors such as ML240 [2-(2-amino-1H-benzo[d]imidazol-1-yl)-N-benzyl-8-methoxyquinazolin-4-amine] and ML241 [2-(2H-benzo[b][1,4]oxazin-4(3H)-yl)-N-benzyl-5,6,7,8 tetrahydroquinazolin-4-amine]. In this study, we aimed to evaluate inhibitor potencies against two additional p97 cofactor complexes, p97-p37 and p97-Npl4-Ufd1. We focused on these two cofactor complexes, because the protein sequence of p37 is 50 % identical to that of p47, and the Npl4-Ufd1 heterodimer (NU) is the most-studied p97 cofactor complex. We screened 200 p97 inhibitor analogues for their ability to inhibit the ATPase activity of p97 alone and of p97-p37 and p97-NU complexes. In contrast to the effect of p47, p37 and NU did not significantly change the potencies of most of the compounds. These results highlight differences among p97 cofactors in influencing p97 conformation and effects of inhibitors on p97 complexes, as compared to p97 alone. Continued efforts are needed to advance the development of complex-specific p97 inhibitors.
Collapse
Affiliation(s)
- Lin Gui
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoyi Zhang
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Kelin Li
- Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047-3761, USA
| | - Kevin J Frankowski
- Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047-3761, USA
| | - Shan Li
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Daniel E Wong
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA
| | - Derek R Moen
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA
| | - Patrick R Porubsky
- Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047-3761, USA
| | - Henry J Lin
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA
| | - Frank J Schoenen
- Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047-3761, USA
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 W. Carson St, Torrance, CA, 90502, USA.
| |
Collapse
|
25
|
Lee TC, Kang M, Kim CH, Schultz PG, Chapman E, Deniz AA. Dual Unnatural Amino Acid Incorporation and Click-Chemistry Labeling to Enable Single-Molecule FRET Studies of p97 Folding. Chembiochem 2016; 17:981-4. [PMID: 27115850 DOI: 10.1002/cbic.201500695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Many cellular functions are critically dependent on the folding of complex multimeric proteins, such as p97, a hexameric multidomain AAA+ chaperone. Given the complex architecture of p97, single-molecule (sm) FRET would be a powerful tool for studying folding while avoiding ensemble averaging. However, dual site-specific labeling of such a large protein for smFRET is a significant challenge. Here, we address this issue by using bioorthogonal azide-alkyne chemistry to attach an smFRET dye pair to site-specifically incorporated unnatural amino acids, allowing us to generate p97 variants reporting on inter- or intradomain structural features. An initial proof-of-principle set of smFRET results demonstrated the strengths of this labeling method. Our results highlight this as a powerful tool for structural studies of p97 and other large protein machines.
Collapse
Affiliation(s)
- Taehyung C Lee
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Minjin Kang
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Chan Hyuk Kim
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter G Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Ashok A Deniz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
26
|
Wijeratne EMK, Gunaherath GMKB, Chapla VM, Tillotson J, de la Cruz F, Kang M, U'Ren JM, Araujo AR, Arnold AE, Chapman E, Gunatilaka AAL. Oxaspirol B with p97 Inhibitory Activity and Other Oxaspirols from Lecythophora sp. FL1375 and FL1031, Endolichenic Fungi Inhabiting Parmotrema tinctorum and Cladonia evansii. JOURNAL OF NATURAL PRODUCTS 2016; 79:340-52. [PMID: 26812276 PMCID: PMC4926610 DOI: 10.1021/acs.jnatprod.5b00986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new metabolite, oxaspirol D (4), together with oxaspirols B (2) and C (3) were isolated from Lecythophora sp. FL1375, an endolichenic fungus isolated from Parmotrema tinctorum, whereas Lecythophora sp. FL1031 inhabiting the lichen Cladonia evansii afforded oxaspirols A (1), B (2), and C (3). Of these, oxaspirol B (2) showed moderate p97 ATPase inhibitory activity. A detailed characterization of all oxaspirols was undertaken because structures proposed for known oxaspirols have involved incomplete assignments of NMR spectroscopic data leading only to their planar structures. Thus, the naturally occurring isomeric mixture (2a and 2b) of oxaspirol B was separated as their diacetates (5a and 5b) and the structures and absolute configurations of 1, 2a, 2b, 3, and 4 were determined by the application of spectroscopic techniques including two-dimensional NMR and the modified Mosher's ester method. Oxaspirol B (2) and its diacetates 5a and 5b were evaluated for their ATPase inhibitory activities of p97, p97 mutants, and other ATP-utilizing enzymes, and only 2 was found to be active, indicating the requirement of some structural features in oxaspirols for their activity. Additional biochemical and cellular assays suggested that 2 was a reversible, non-ATP competitive, and specific inhibitor of p97.
Collapse
Affiliation(s)
- E. M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - G. M. Kamal B. Gunaherath
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
- Department of Chemistry, Open University of Sri Lanka, Nugegoda 10250, Sri Lanka
| | - Vanessa M. Chapla
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
- Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, Sao Paulo 14800-900, Brazil
| | - Joseph Tillotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Fabian de la Cruz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - MinJing Kang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jana M. U'Ren
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Angela R. Araujo
- Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, Sao Paulo 14800-900, Brazil
| | - A. Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - A. A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
27
|
Hu G, Xiao F, Li Y, Li Y, Vongsangnak W. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 160:57-74. [PMID: 27928579 DOI: 10.1007/10_2016_40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.
Collapse
Affiliation(s)
- Guang Hu
- Center for Systems Biology, School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
| | - Fei Xiao
- School of Basic Medicine and Biological Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Yuqian Li
- School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuan Li
- Center for Systems Biology, School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
28
|
Barthelme D, Sauer RT. Origin and Functional Evolution of the Cdc48/p97/VCP AAA+ Protein Unfolding and Remodeling Machine. J Mol Biol 2015; 428:1861-9. [PMID: 26608813 DOI: 10.1016/j.jmb.2015.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 01/25/2023]
Abstract
The AAA+ Cdc48 ATPase (alias p97 or VCP) is a key player in multiple ubiquitin-dependent cell signaling, degradation, and quality control pathways. Central to these broad biological functions is the ability of Cdc48 to interact with a large number of adaptor proteins and to remodel macromolecular proteins and their complexes. Different models have been proposed to explain how Cdc48 might couple ATP hydrolysis to forcible unfolding, dissociation, or remodeling of cellular clients. In this review, we provide an overview of possible mechanisms for substrate unfolding/remodeling by this conserved and essential AAA+ protein machine and their adaption and possible biological function throughout evolution.
Collapse
Affiliation(s)
- Dominik Barthelme
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Fusser M, Kernstock S, Aileni VK, Egge-Jacobsen W, Falnes PØ, Klungland A. Lysine Methylation of the Valosin-Containing Protein (VCP) Is Dispensable for Development and Survival of Mice. PLoS One 2015; 10:e0141472. [PMID: 26544960 PMCID: PMC4636187 DOI: 10.1371/journal.pone.0141472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/08/2015] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP) is a homohexameric ATPase involved in a multitude cellular processes and it was recently shown that VCP is trimethylated at lysine 315 by the VCP lysine methyltransferase (VCPKMT). Here, we generated and validated a constitutive knockout mouse by targeting exon 1-4 of the Vcpkmt gene. We show that Vcpkmt is ubiquitously expressed in all tissues examined and confirm the sub-cellular localization to the cytoplasm. We show by (I) mass spectrometric analysis, (II) VCPKMT-mediated in vitro methylation of VCP in cell extracts and (III) immunostaining with a methylation specific antibody, that in Vcpkmt-/- mice the methylation of lysine 315 in VCP is completely abolished. In contrast, VCP is almost exclusively trimethylated in wild-type mice. Furthermore, we investigated the specificity of VCPKMT with in vitro methylation assays using as source of substrate protein extracts from Vcpkmt-/- mouse organs or three human Vcpkmt-/- cell lines. The results show that VCPKMT is a highly specific enzyme, and suggest that VCP is its sole substrate. The Vcpkmt-/- mice were viable, fertile and had no obvious pathological phenotype. Their body weight, life span and acute endurance capacity were comparable to wild-type controls. Overall the results show that VCPKMT is an enzyme required for methylation of K315 of VCP in vivo, but VCPKMT is not essential for development or survival under unstressed conditions.
Collapse
Affiliation(s)
- Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stefan Kernstock
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wolfgang Egge-Jacobsen
- Glyconor Mass Spectrometry, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
30
|
Tao S, Tillotson J, Wijeratne EMK, Xu YM, Kang M, Wu T, Lau EC, Mesa C, Mason DJ, Brown RV, Clair JJL, Gunatilaka AAL, Zhang DD, Chapman E. Withaferin A Analogs That Target the AAA+ Chaperone p97. ACS Chem Biol 2015; 10:1916-1924. [PMID: 26006219 PMCID: PMC4593394 DOI: 10.1021/acschembio.5b00367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the mode of action (MOA) of many natural products can be puzzling with mechanistic clues that seem to lack a common thread. One such puzzle lies in the evaluation of the antitumor properties of the natural product withaferin A (WFA). A variety of seemingly unrelated pathways have been identified to explain its activity, suggesting a lack of selectivity. We now show that WFA acts as an inhibitor of the chaperone, p97, both in vitro and in cell models in addition to inhibiting the proteasome in vitro. Through medicinal chemistry, we have refined the activity of WFA toward p97 and away from the proteasome. Subsequent studies indicated that these WFA analogs retained p97 activity and cytostatic activity in cell models, suggesting that the modes of action reported for WFA could be connected by proteostasis modulation. Through this endeavor, we highlight how the parallel integration of medicinal chemistry with chemical biology offers a potent solution to one of natures' intriguing molecular puzzles.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Joseph Tillotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-ming Xu
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - MinJin Kang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Tongde Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Eric C. Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Celestina Mesa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Damian J. Mason
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - Robert V. Brown
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - James J. La Clair
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States,Corresponding Authors.
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tucson, Arizona 85721, United States,Corresponding Authors.
| |
Collapse
|
31
|
Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation. Proc Natl Acad Sci U S A 2015; 112:E3327-36. [PMID: 26080448 DOI: 10.1073/pnas.1509658112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although "histone" methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain-containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70's function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.
Collapse
|
32
|
Chapman E, Maksim N, de la Cruz F, La Clair JJ. Inhibitors of the AAA+ chaperone p97. Molecules 2015; 20:3027-49. [PMID: 25685910 PMCID: PMC4576884 DOI: 10.3390/molecules20023027] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Nick Maksim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Fabian de la Cruz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - James J La Clair
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
33
|
Fang CJ, Gui L, Zhang X, Moen DR, Li K, Frankowski KJ, Lin HJ, Schoenen FJ, Chou TF. Evaluating p97 inhibitor analogues for their domain selectivity and potency against the p97-p47 complex. ChemMedChem 2015; 10:52-6. [PMID: 25377500 PMCID: PMC4280364 DOI: 10.1002/cmdc.201402420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 01/22/2023]
Abstract
We previously found that p97 ATPase inhibitors 2-(2-amino-1H-benzo[d]imidazol-1-yl)-N-benzyl-8-methoxyquinazolin-4-amine (ML240) and 2-(2H-benzo[b][1,4]oxazin-4(3H)-yl)-N-benzyl-5,6,7,8-tetrahydroquinazolin-4-amine (ML241) specifically target the D2 domain of wild-type p97. In addition, one of the major p97 cofactors, p47, decreases their potencies by ∼50-fold. In contrast, N(2) ,N(4) -dibenzylquinazoline-2,4-diamine (DBeQ) targets both the D1 and D2 domains and shows only a four- to sixfold decrease in potency against the p97-p47 complex. To elucidate structure-activity relationships for the inhibitors, we screened 200 p97 inhibitor analogues for their ability to inhibit the ATPase activity of either or both of the D1 or D2 domains, as well for their effects on p47 potency. The selectivity of 29 of these compounds was further examined by eight-dose titrations. Four compounds showed modest selectivity for inhibiting the ATPase activity of D1. Eleven compounds inhibited D2 with greater potencies, and four showed similar potencies against D1 and D2. p47 decreased the potencies of the majority of the compounds and increased the potencies of five compounds. These results highlight the possibility of developing domain-selective and complex-specific p97 inhibitors in order to further elucidate the physiological roles of p97 and its cofactors.
Collapse
Affiliation(s)
- Chen-Jie Fang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute., 1124 W. Carson St, Torrance, California 90502, United States
- School of Chemical Biology and Pharmaceutics, Capital Medical University
| | - Lin Gui
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute., 1124 W. Carson St, Torrance, California 90502, United States
| | - Xiaoyi Zhang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute., 1124 W. Carson St, Torrance, California 90502, United States
| | - Derek R. Moen
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute., 1124 W. Carson St, Torrance, California 90502, United States
| | - Kelin Li
- University of Kansas Specialized Chemistry Center
| | | | - Henry J. Lin
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute., 1124 W. Carson St, Torrance, California 90502, United States
| | | | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute., 1124 W. Carson St, Torrance, California 90502, United States
| |
Collapse
|
34
|
Jalles A, Maciel P. The disruption of proteostasis in neurodegenerative disorders. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
Kang M, Wu T, Wijeratne EMK, Lau EC, Mason DJ, Mesa C, Tillotson J, Zhang DD, Gunatilaka AAL, La Clair JJ, Chapman E. Functional chromatography reveals three natural products that target the same protein with distinct mechanisms of action. Chembiochem 2014; 15:2125-31. [PMID: 25125376 PMCID: PMC4187115 DOI: 10.1002/cbic.201402258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 01/12/2023]
Abstract
Access to lead compounds with defined molecular targets continues to be a barrier to the translation of natural product resources. As a solution, we developed a system that uses discrete, recombinant proteins as the vehicles for natural product isolation. Here, we describe the use of this functional chromatographic method to identify natural products that bind to the AAA+ chaperone, p97, a promising cancer target. Application of this method to a panel of fungal and plant extracts identified rheoemodin, 1-hydroxydehydroherbarin, and phomapyrrolidone A as distinct p97 modulators. Excitingly, each of these molecules displayed a unique mechanism of p97 modulation. This discovery provides strong support for the application of functional chromatography to the discovery of protein modulators that would likely escape traditional high-throughput or phenotypic screening platforms.
Collapse
Affiliation(s)
- MinJin Kang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Tongde Wu
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706-6800, United States
| | - Eric C. Lau
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Damian J. Mason
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Celestina Mesa
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Joseph Tillotson
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - Donna D. Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85706-6800, United States
| | - James J. La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA 92163-1052, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, United States
| |
Collapse
|
36
|
Ewens CA, Panico S, Kloppsteck P, McKeown C, Ebong IO, Robinson C, Zhang X, Freemont PS. The p97-FAF1 protein complex reveals a common mode of p97 adaptor binding. J Biol Chem 2014; 289:12077-12084. [PMID: 24619421 PMCID: PMC4002113 DOI: 10.1074/jbc.m114.559591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/05/2014] [Indexed: 01/07/2023] Open
Abstract
p97, also known as valosin-containing protein, is a versatile participant in the ubiquitin-proteasome system. p97 interacts with a large network of adaptor proteins to process ubiquitylated substrates in different cellular pathways, including endoplasmic reticulum-associated degradation and transcription factor activation. p97 and its adaptor Fas-associated factor-1 (FAF1) both have roles in the ubiquitin-proteasome system during NF-κB activation, although the mechanisms are unknown. FAF1 itself also has emerging roles in other cell-cycle pathways and displays altered expression levels in various cancer cell lines. We have performed a detailed study the p97-FAF1 interaction. We show that FAF1 binds p97 stably and in a stoichiometry of 3 to 6. Cryo-EM analysis of p97-FAF1 yielded a 17 Å reconstruction of the complex with FAF1 above the p97 ring. Characteristics of p97-FAF1 uncovered in this study reveal common features in the interactions of p97, providing mechanistic insight into how p97 mediates diverse functionalities.
Collapse
Affiliation(s)
- Caroline A Ewens
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Silvia Panico
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Patrik Kloppsteck
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ciaran McKeown
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ima-Obong Ebong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Carol Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Xiaodong Zhang
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul S Freemont
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
37
|
Yeung HO, Förster A, Bebeacua C, Niwa H, Ewens C, McKeown C, Zhang X, Freemont PS. Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy. Open Biol 2014; 4:130142. [PMID: 24598262 PMCID: PMC3971404 DOI: 10.1098/rsob.130142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes.
Collapse
Affiliation(s)
- Heidi O Yeung
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang FC, Lin YH, Chen WH, Huang JY, Chang HY, Su SH, Wang HT, Chiang CY, Hsu PH, Tsai MD, Tan BCM, Lee SC. Interaction between salt-inducible kinase 2 (SIK2) and p97/valosin-containing protein (VCP) regulates endoplasmic reticulum (ER)-associated protein degradation in mammalian cells. J Biol Chem 2013; 288:33861-33872. [PMID: 24129571 DOI: 10.1074/jbc.m113.492199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.
Collapse
Affiliation(s)
- Fu-Chia Yang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ya-Huei Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Hao Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jing-Yi Huang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsin-Yun Chang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Su-Hui Su
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsiao-Ting Wang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Yi Chiang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pang-Hung Hsu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Daw Tsai
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | - Sheng-Chung Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
39
|
Tonddast-Navaei S, Stan G. Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine. J Am Chem Soc 2013; 135:14627-36. [PMID: 24007343 DOI: 10.1021/ja404051b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ATPases associated with various cellular activities (AAA+) form a superfamily of ring-shaped motor proteins that utilize cyclical allosteric motions to remodel or translocate substrate proteins (SP) through a narrow central pore. The p97 ATPase is a homohexameric, double-ring member of this superfamily that encloses a central channel with nonuniform width. A narrow compartment is present within the D1 ring and a larger cavity within the D2 ring, separated by a constriction formed by six His amino acids. We use molecular dynamics simulations to probe the interaction between p97 and an extended peptide substrate. Mechanical pulling of the substrate through the p97 pore reveals that smaller work is required for translocation from the D1 toward the D2 compartment than in the opposite direction. These distinct energetic requirements originate in structural aspects and chemical properties of the pore lining. Whereas van der Waals interactions are dominant within the D1 pore, interaction within the D2 pore are strongly electrostatic. Two charged amino acids in the D2 pore, Arg599 and Glu554, provide the largest contribution to the interaction and hinder translocation from the D2 pore. SP threading requires smaller forces when the SP is pulled from the D1 side due to lower barrier to rotation of the His side chains in the direction of the D2 pore. Based on additional simulations of SP binding to two allosteric conformations of p97, we propose that transient binding and release of SP from the pore involves a lever mechanism. Binding to the open pore conformation of p97 occurs primarily at the Arg599 side chain, where the SP backbone is engaged through electrostatic interactions and hydrogen bonds. ATP-driven conformational transitions within the D2 ring alter the chemical environment inside the p97 cavity in the closed pore state. In this state, Glu554 side chains project further into the pore and interacts strongly through van der Waals contacts with the SP backbone. Based on mutations at the two sites in each of the states we identify a specific requirement of these side chains for interaction with the substrate.
Collapse
Affiliation(s)
- Sam Tonddast-Navaei
- Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | | |
Collapse
|
40
|
Kolawa N, Sweredoski MJ, Graham RLJ, Oania R, Hess S, Deshaies RJ. Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics 2013; 12:2791-803. [PMID: 23793018 PMCID: PMC3790291 DOI: 10.1074/mcp.m113.030163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Cdc48 (p97/VCP in human cells) is a hexameric AAA ATPase that is thought to use ATP hydrolysis to power the segregation of ubiquitin-conjugated proteins from tightly bound partners. Current models posit that Cdc48 is linked to its substrates through adaptor proteins, including a family of seven proteins (13 in human) that contain a Cdc48-binding UBX domain. However, few substrates for specific UBX proteins are known, and hence the generality of this hypothesis remains untested. Here, we use mass spectrometry to identify ubiquitin conjugates that accumulate in cdc48 and ubx mutants. Different ubx mutants exhibit unique patterns of conjugate accumulation that point to functional specialization of individual Ubx proteins. To validate our findings, we examined in detail the endoplasmic reticulum-bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. Mutant ubx2Δ cells are deficient in both cleaving the ubiquitinated 120 kDa precursor of Spt23 to form active p90 and in localizing p90 to the nucleus, resulting in reduced expression of the target gene OLE1, which encodes fatty acid desaturase. Our findings provide a resource for future investigations on Cdc48, illustrate the utility of proteomics to identify ligands for specific ubiquitin receptor pathways, and uncover Ubx2 as a key player in the regulation of membrane lipid biosynthesis.
Collapse
|
41
|
Wang P, Yang L, Cheng G, Yang G, Xu Z, You F, Sun Q, Lin R, Fikrig E, Sutton RE. UBXN1 interferes with Rig-I-like receptor-mediated antiviral immune response by targeting MAVS. Cell Rep 2013; 3:1057-70. [PMID: 23545497 PMCID: PMC3707122 DOI: 10.1016/j.celrep.2013.02.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 01/10/2013] [Accepted: 02/26/2013] [Indexed: 12/25/2022] Open
Abstract
RNA viruses are sensed by RIG-I-like receptors (RLRs), which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.
Collapse
Affiliation(s)
- Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Long Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gong Cheng
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guang Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhengyun Xu
- Lady Davis Institute–Jewish General Hospital and Department of Medicine, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Fuping You
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiang Sun
- Lady Davis Institute–Jewish General Hospital and Department of Medicine, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Rongtuan Lin
- Lady Davis Institute–Jewish General Hospital and Department of Medicine, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard E. Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Franz A, Ackermann L, Hoppe T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:205-15. [PMID: 23583830 DOI: 10.1016/j.bbamcr.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | | | | |
Collapse
|
43
|
Lysine methylation of VCP by a member of a novel human protein methyltransferase family. Nat Commun 2013; 3:1038. [PMID: 22948820 DOI: 10.1038/ncomms2041] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023] Open
Abstract
Valosin-containing protein (VCP, also called p97) is an essential and highly conserved adenosine triphosphate-dependent chaperone implicated in a wide range of cellular processes in eukaryotes, and mild VCP mutations can cause severe neurodegenerative disease. Here we show that mammalian VCP is trimethylated on Lys315 in a variety of cell lines and tissues, and that the previously uncharacterized protein METTL21D (denoted here as VCP lysine methyltransferase, VCP-KMT) is the responsible enzyme. VCP methylation was abolished in three human VCP-KMT knockout cell lines generated with zinc-finger nucleases. Interestingly, VCP-KMT was recently reported to promote tumour metastasis, and indeed, VCP-KMT-deficient cells displayed reduced growth rate, migration and invasive potential. Finally, we present data indicating that VCP-KMT, calmodulin-lysine methyltransferase and eight uncharacterized proteins together constitute a novel human protein methyltransferase family. The present work provides new insights on protein methylation and its links to human disease.
Collapse
|
44
|
Kirchner P, Bug M, Meyer H. Ubiquitination of the N-terminal region of caveolin-1 regulates endosomal sorting by the VCP/p97 AAA-ATPase. J Biol Chem 2013; 288:7363-72. [PMID: 23335559 PMCID: PMC3591644 DOI: 10.1074/jbc.m112.429076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 (CAV1) is the defining constituent of caveolae at the plasma membrane of many mammalian cells. For turnover, CAV1 is ubiquitinated and sorted to late endosomes and lysosomes. Sorting of CAV1 requires the AAA+-type ATPase VCP and its cofactor UBXD1. However, it is unclear in which region CAV1 is ubiquitinated and how ubiquitination is linked to sorting of CAV1 by VCP-UBXD1. Here, we show through site-directed mutagenesis that ubiquitination of CAV1 occurs at any of the six lysine residues, 5, 26, 30, 39, 47, and 57, that are clustered in the N-terminal region but not at lysines in the oligomerization, intramembrane, or C-terminal domains. Mutation of Lys-5-57 to arginines prevented binding of the VCP-UBXD1 complex and, importantly, strongly reduced recruitment of VCP-UBXD1 to endocytic compartments. Moreover, the Lys-5-57Arg mutation specifically interfered with trafficking of CAV1 from early to late endosomes. Conversely and consistently, depletion of VCP or UBXD1 led to accumulation of ubiquitinated CAV1, suggesting that VCP acts downstream of ubiquitination and is required for transport of the ubiquitinated form of CAV1 to late endosomes. These results define the N-terminal region of CAV1 as the critical ubiquitin conjugation site and, together with previous data, demonstrate the significance of this ubiquitination for binding to the VCP-UBXD1 complex and for sorting into lysosomes.
Collapse
Affiliation(s)
- Philipp Kirchner
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | | | | |
Collapse
|
45
|
Erzurumlu Y, Kose FA, Gozen O, Gozuacik D, Toth EA, Ballar P. A unique IBMPFD-related P97/VCP mutation with differential binding pattern and subcellular localization. Int J Biochem Cell Biol 2013; 45:773-82. [PMID: 23333620 DOI: 10.1016/j.biocel.2013.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
p97/VCP is a hexameric AAA type ATPase that functions in a variety of cellular processes such as endoplasmic reticulum associated degradation (ERAD), organelle biogenesis, autophagy and cell-cycle regulation. Inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder which has been attributed to mutations in p97/VCP. Several missense mutations affecting twelve different amino acids have been identified in IBMPFD patients and some of them were suggested to be involved in the observed pathology. Here, we analyzed the effect of all twelve p97/VCP variants on ERAD substrates and their cofactor binding abilities. While all mutants cause ERAD substrate accumulation, P137L mutant p97/VCP differs from other IBMPFD mutants by having a unique solubility profile and subcellular localization. Intriguingly, although almost all mutants exhibit enhanced p47 and Ufd1-Npl4 binding, the P137L mutation completely abolishes p97/VCP interactions with Ufd1, Npl4 and p47, while retaining its gp78 binding. While recombinant R155C mutant protein consistently interacts with both Ufd1 and VIM of gp78, P137L mutant protein lost binding ability to Ufd1 but not to VIM in vitro. The differential impairments in p97/VCP interactions with its functional partners and function should help our understanding of the molecular pathogenesis of IBMPFD.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Ege University, Faculty of Pharmacy, Biochemistry Department, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
46
|
Dantuma NP, Hoppe T. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Trends Cell Biol 2012; 22:483-91. [PMID: 22818974 DOI: 10.1016/j.tcb.2012.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
Abstract
The AAA (ATPases associated with various cellular activities) family member Cdc48/p97 is best known for its role in ubiquitin-dependent proteasomal degradation of aberrant endoplasmic reticulum (ER) proteins, a process known as ER-associated degradation (ERAD). However, recent studies have also defined Cdc48/p97 as a central player in various chromatin-associated processes linked to cell cycle progression, DNA replication, transcription, and the DNA damage response. Notwithstanding the apparent differences in location and function, the role of Cdc48/p97 in ubiquitin-dependent extraction from chromatin (UDEC) bears striking similarities with its action in ERAD. Here, we discuss recent data that expand our current model of the role of Cdc48/p97 as a ubiquitin-selective segregase in the nuclear chromatin environment.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
47
|
Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc Natl Acad Sci U S A 2012; 109:9792-7. [PMID: 22675116 DOI: 10.1073/pnas.1205853109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hexameric protein p97, a very abundant type II AAA ATPase (ATPase associated with various cellular activities), is involved in a diverse range of cellular functions. During its ATPase cycle p97 functions as an ATP motor, converting the chemical energy released upon hydrolysis of ATP to ADP into mechanical work, which is then directed toward the proteins that serve as substrates. A key question in this process is: How is the nucleotide-induced motion transmitted from the C-terminal ATPase domain (the D2 domain) of p97 to the distant N-terminal substrate-processing domain? We have previously reported the surprising finding that motion transmission between the two ATPase domains (the D2 and D1 domains) is mediated by the D1-D2 linker region of its neighboring protomer. In this study we report efforts to better understand this process. Our findings suggest that the amino acid sequence containing Gly-Gly that is located at the C terminus of the D1-D2 linker functions as a pivoting point that allows the dynamic movement of the D1-D2 linker. Furthermore, we found that locking the D1-D2 linker to the D2 domain by introducing disulfide bonds significantly impaired the motion-transmission process. These results support our previous model for interprotomer motion transmission, and provide more detailed information on how the motion transmission between the two ATPase domains of p97 is relayed by the flexible movement of the D1-D2 linker from its neighboring protomer.
Collapse
|
48
|
Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, Shyue SK, Lee TS. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 2012; 56:691-701. [DOI: 10.1002/mnfr.201100735] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing-Feng Zhao
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - Li-Chieh Ching
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - Yu-Chu Huang
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - Chien-Yu Chen
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology; National Yang-Ming University; Taipei; Taiwan
| | - Yu Ru Kou
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division; Institute of Biomedical Sciences; Academia Sinica; Taipei; Taiwan
| | | |
Collapse
|
49
|
Kamiya Y, Uekusa Y, Sumiyoshi A, Sasakawa H, Hirao T, Suzuki T, Kato K. NMR characterization of the interaction between the PUB domain of peptide:N-glycanase and ubiquitin-like domain of HR23. FEBS Lett 2012; 586:1141-6. [PMID: 22575648 DOI: 10.1016/j.febslet.2012.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/09/2012] [Indexed: 01/09/2023]
Abstract
PUB domains are identified in several proteins functioning in the ubiquitin (Ub)-proteasome system and considered as p97-binding modules. To address the further functional roles of these domains, we herein characterized the interactions of the PUB domain of peptide:N-glycanase (PNGase) with Ub and Ub-like domain (UBL) of the proteasome shuttle factor HR23. NMR data indicated that PNGase-PUB exerts an acceptor preferentially for HR23-UBL, electrostatically interacting with the UBL surface employed for binding to other Ub/UBL motifs. Our findings imply that PNGase-PUB serves not only as p97-binding module but also as a possible activator of HR23 in endoplasmic reticulum-associated degradation mechanisms.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Bug M, Meyer H. Expanding into new markets--VCP/p97 in endocytosis and autophagy. J Struct Biol 2012; 179:78-82. [PMID: 22450227 DOI: 10.1016/j.jsb.2012.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
The AAA-ATPase p97 (also called VCP for Valosin-containing protein) is essential for a number of cellular processes as diverse as ER-associated degradation, DNA damage response, and cell cycle control. Mechanistically, p97 cooperates with its cofactor Ufd1-Npl4 in these processes to segregate polyubiquitinated misfolded or regulatory client proteins from intracellular structures for subsequent degradation by the proteasome. Recent work now connects p97, independently of Ufd1-Npl4, to endosomal trafficking and autophagy. Interestingly, these pathways also deliver proteins for degradation, albeit by the lysosome. While monoubiquitination and alternative p97-cofactors, including UBXD1, have been associated with these activities, the underlying molecular mechanism(s) are still unclear or controversial. In this review, we aim to summarize the available data and discuss mechanistic models.
Collapse
Affiliation(s)
- Monika Bug
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | | |
Collapse
|