1
|
Makharadze D, Kantaria T, Yousef I, del Valle LJ, Katsarava R, Puiggalí J. PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core-Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy. Int J Mol Sci 2024; 25:6999. [PMID: 39000109 PMCID: PMC11241343 DOI: 10.3390/ijms25136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Ibraheem Yousef
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain;
| | - Luis J. del Valle
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
3
|
Kotova S, Kostjuk S, Rochev Y, Efremov Y, Frolova A, Timashev P. Phase transition and potential biomedical applications of thermoresponsive compositions based on polysaccharides, proteins and DNA: A review. Int J Biol Macromol 2023; 249:126054. [PMID: 37532189 DOI: 10.1016/j.ijbiomac.2023.126054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Smart thermoresponsive polymers have long attracted attention as materials of a great potential for biomedical applications, mainly for drug delivery, tissue engineering and wound dressing, with a special interest to injectable hydrogels. Poly-N-isopropylacrylamide (PNIPAM) is the most important synthetic thermoresponsive polymer due to its physiologically relevant transition temperature. However, the use of unmodified PNIPAM encounters such problems as low biodegradability, low drug loading capacity, slow response to thermal stimuli, and insufficient mechanical robustness. The use of natural polysaccharides and proteins in combinations with PNIPAM, in the form of grafted copolymers, IPNs, microgels and physical mixtures, is aimed at overcoming these drawbacks and creating dual-functional materials with both synthetic and natural polymers' properties. When developing such compositions, special attention should be paid to preserving their key property, thermoresponsiveness. Addition of hydrophobic and hydrophilic fragments to PNIPAM is known to affect its transition temperature. This review covers various classes of natural polymers - polysaccharides, fibrous and non-fibrous proteins, DNA - used in combination with PNIPAM for the prospective biomedical purposes, with a focus on their phase transition temperatures and its relation to the natural polymer's structure.
Collapse
Affiliation(s)
- Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Sergei Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Department of Chemistry, Belarusian State University, Minsk 220006, Belarus; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| | - Yuri Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; National University of Ireland Galway, Galway H91 CF50, Ireland
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Anastasia Frolova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
4
|
Zhang Y, Xu C, Zhang D, Chen X. Proteinosomes via Self-Assembly of Thermoresponsive Miktoarm Polymer Protein Bioconjugates. Biomacromolecules 2023; 24:1994-2002. [PMID: 37002865 DOI: 10.1021/acs.biomac.2c01368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
To fabricate nanoscale proteinosomes, thermoresponsive miktoarm polymer protein bioconjugates were prepared through highly efficient molecular recognition between the β-cyclodextrin modified BSA (CD-BSA) and the adamantyl group anchored at the junction point of the thermoresponsive block copolymer poly(ethylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate) (PEG-b-PDEGMA). PEG-b-PDEGMA was synthesized by the Passerini reaction of benzaldehyde-modified PEG, 2-bromo-2-methylpropionic acid, and 1-isocyanoadamantane, followed by the atom transfer radical polymerization of DEGMA. Two block copolymers with different chain lengths of PDEGMA were prepared, and both self-assembled into polymersomes at a temperature above their lower critical solution temperatures (LCST). The two copolymers can undergo molecular recognition with the CD-BSA and form miktoarm star-like bioconjugates. The bioconjugates self-assembled into ∼160 nm proteinosomes at a temperature above their LCSTs, and the miktoarm star-like structure has a great effect on the formation of the proteinosomes. Most of the secondary structure and esterase activity of BSA in the proteinosomes were maintained. The proteinosomes exhibited low toxicity to the 4T1 cells and could deliver model drug doxorubicin into the 4T1 cells.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Changlan Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Xiaoai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
5
|
Ye J, Guo M, Han C, Zhang Y, Meng J. Multifunctionalization of RC membrane via combining surface initiated RAFT polymerization with thiolactone chemistry for enhanced antibody recovery. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Sahin Eguz I, Ihlamur M, Abamor ES, Topuzogullari M. Synthesis and immunogenicity of the linear conjugates of polyacrylic acid and antigenic peptide of human papillomavirus. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Degirmenci A, Sanyal R, Arslan M, Sanyal A. Benzothiazole-disulfide based redox-responsive polymers: facile access to reversibly functionalizable polymeric coatings. Polym Chem 2022. [DOI: 10.1039/d2py00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox-responsive polymers and polymeric coatings containing benzothiazole-disulfide groups provide facile access to reversibly functionalizable platforms.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Mehmet Arslan
- Department of Polymer Materials Engineering, Faculty of Engineering, Yalova University, Yalova 77200, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| |
Collapse
|
10
|
Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as Protein-Polymer Conjugate Multimodal Therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:676025. [PMID: 35047929 PMCID: PMC8757875 DOI: 10.3389/fmedt.2021.676025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Wang X, Liu Y, Yan L. On Thiol‐Ene Radical Coupling Reaction when Synthesis of ABCL
2
Type Heteroarm Star Copolymer Containing PDPA Arm. ChemistrySelect 2021. [DOI: 10.1002/slct.202101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Wang
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yuyang Liu
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Lei Yan
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
12
|
Olson RA, Levi JS, Scheutz GM, Lessard JJ, Figg CA, Kamat MN, Basso KB, Sumerlin BS. Macromolecular Photocatalyst for Synthesis and Purification of Protein–Polymer Conjugates. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rebecca A. Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jordan S. Levi
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jacob J. Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - C. Adrian Figg
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Manasi N. Kamat
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kari B. Basso
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Zhang L, Zhang D, Yang Y, Zhang Y. Stimuli-Responsive Proteinosomes Based on Biohybrid Shell Cross-Linked Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3950-3959. [PMID: 33751892 DOI: 10.1021/acs.langmuir.1c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new method of stimuli-responsive proteinosome fabrication with the shell cross-linked micelle as a template is reported in this research. A thermoresponsive diblock copolymer poly[di(ethylene glycol) methyl ether methacrylate]-b-poly[poly(ethylene glycol) methyl ether methacrylate-co-pyridyl disulfide methacrylamide] [PDEGMA-b-P(PEGMA-co-PDSMA)] was synthesized and self-assembled into micelles with PDEGMA cores and P(PEGMA-co-PDSMA) shells at the temperature above its lower critical solution temperature (LCST). Reduced bovine serum albumin (BSA) molecules with six thiol groups were used to cross-link the shells of the micelles by reacting with the pendant pyridyl disulfide groups on the P(PEGMA-co-PDSMA) block. At a temperature below the LCST of the polymer, the PDEGMA cores were dissolved in water, affording proteinosomes with a size of about 50 nm and capsule-like structures. The proteinosome was also thermoresponsive with a phase transition temperature at 35 °C. The fabrication of the proteinosome had no obvious influence on the structure and activity of BSA, and BSA retained most of its secondary structure and esterase-like activity. Because the BSA molecules were connected to the polymer chains through disulfide bonds, they could be released upon addition of dithiothreitol. The in vitro cell viability evaluation and the cellular uptake assay demonstrated that the proteinosome showed low toxicity to NIH 3T3 and 4T1 cells and could be internalized into the 4T1 cells.
Collapse
Affiliation(s)
- Lixin Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yongfang Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
14
|
Theodorou A, Mandriotis P, Anastasaki A, Velonia K. Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of giant amphiphiles. Polym Chem 2021. [DOI: 10.1039/d0py01608j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New families of amphiphilic protein–polymer bioconjugates readily synthesized via an oxygen tolerant, photoinduced RDRP approach.
Collapse
Affiliation(s)
- Alexis Theodorou
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Petros Mandriotis
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Kelly Velonia
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| |
Collapse
|
15
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Moon HJ, Ku M, Roh YH, Lee HJ, Yang J, Bong KW. Elimination of Unreacted Acrylate Double Bonds in the Polymer Networks of Microparticles Synthesized via Flow Lithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2271-2277. [PMID: 32013441 DOI: 10.1021/acs.langmuir.9b02737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow lithography (FL), a versatile technique used to synthesize anisotropic multifunctional microparticles, has attracted substantial interest, given that the resulting particles with complex geometries and multilayered biochemical functionalities can be used in a wide variety of applications. However, after this process, there are double bonds remaining from the cross-linkable groups of monomers. The unreacted cross-linkable groups can affect the particles' biochemical properties. Here, we verify that the microparticles produced by FL contain a significant number of unreacted acrylate double bonds (UADBs), which could cause irreversible biochemical changes in the particle and pernicious effects to biological systems. We also confirm that the particles contain a considerable number of UADBs, regardless of the various synthetic (lithographic) conditions that can be used in a typical FL process. We present an effective way to eliminate a substantial amount of UADBs after synthesis by linking biochemically inert poly(ethylene glycol) based on click chemistry. We verify that eliminating UADBs by using this click chemistry approach can efficiently resolve problems, such as the occurrence of random reactions and the cytotoxicity of UADBs.
Collapse
Affiliation(s)
- Hyun June Moon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Minhee Ku
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Hyun Jee Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
- YUHS-KRIBB Medical Convergence Research Center, Yonsei University, Seoul 03722, Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
17
|
Hirayama S, Oohora K, Uchihashi T, Hayashi T. Thermoresponsive Micellar Assembly Constructed from a Hexameric Hemoprotein Modified with Poly( N-isopropylacrylamide) toward an Artificial Light-Harvesting System. J Am Chem Soc 2020; 142:1822-1831. [PMID: 31904965 DOI: 10.1021/jacs.9b10080] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Artificial protein assemblies inspired by nature have significant potential in development of emergent functional materials. In order to construct an artificial protein assembly, we employed a mutant of a thermostable hemoprotein, hexameric tyrosine-coordinated heme protein (HTHP), as a building block. The HTHP mutant which has cysteine residues introduced on the bottom surface of its columnar structure was reacted with maleimide-tethering thermoresponsive poly(N-isopropylacrylamide), PNIPAAm, to generate the protein assembly upon heating. The site-specific modification of the cysteine residues with PNIPAAm on the protein surface was confirmed by SDS-PAGE and analytical size exclusion chromatography (SEC). The PNIPAAm-modified HTHP (PNIPAAm-HTHP) is found to provide a 43 nm spherical structure at 60 °C, and the structural changes observed between the assembled and the disassembled forms were duplicated at least five times. High-speed atomic force microscopic measurements of the micellar assembly supported by cross-linkage with glutaraldehyde indicate that the protein matrices are located on the surface of the sphere and cover the inner PNIPAAm core. Furthermore, substitution of heme with a photosensitizer, Zn protoporphyrin IX (ZnPP), in the micellar assembly provides an artificial light-harvesting system. Photochemical measurements of the ZnPP-substituted micellar assembly demonstrate that energy migration among the arrayed ZnPP molecules occurs within the range of several tens of picoseconds. Our present work represents the first example of an artificial light-harvesting system based on an assembled hemoprotein oligomer structure to replicate natural light-harvesting systems.
Collapse
Affiliation(s)
| | | | - Takayuki Uchihashi
- Department of Physics , Nagoya University , Nagoya 464-8602 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , Okazaki 444-8787 , Japan
| | | |
Collapse
|
18
|
Abstract
This review discusses the history of reversible-deactivation radical ring-opening polymerization of cyclic ketene acetals, focusing on the preparation of degradable complex polymeric architectures.
Collapse
Affiliation(s)
- Alexander W. Jackson
- Agency for Science
- Technology and Engineering (A*Star)
- Institute of Chemical and Engineering Sciences (ICES)
- Functional Molecules and Polymers (FMP) Division
- Jurong Island
| |
Collapse
|
19
|
Liu R, Liu S, Hu G, Lindsey JS. Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP). NEW J CHEM 2020. [DOI: 10.1039/d0nj04413j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Snapping a heterotelechelic amphiphilic polymer onto a tetrapyrrole imparts aqueous solubility to the otherwise hydrophobic macrocycle as demonstrated for a chlorin, bacteriochlorin and phthalocyanine.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Sijia Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Gongfang Hu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
20
|
Easterling CP, Coste G, Sanchez JE, Fanucci GE, Sumerlin BS. Post-polymerization modification of polymethacrylates enabled by keto–enol tautomerization. Polym Chem 2020. [DOI: 10.1039/d0py00383b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a post-polymerization modification strategy to functionalize methacrylic copolymers through enol-ester transesterification.
Collapse
Affiliation(s)
- Charles P. Easterling
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Guilhem Coste
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Jose E. Sanchez
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Gail E. Fanucci
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|
21
|
Zhang L, Baker SL, Murata H, Harris N, Ji W, Amitai G, Matyjaszewski K, Russell AJ. Tuning Butyrylcholinesterase Inactivation and Reactivation by Polymer-Based Protein Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901904. [PMID: 31921563 PMCID: PMC6947490 DOI: 10.1002/advs.201901904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Indexed: 05/11/2023]
Abstract
Organophosphate nerve agents rapidly inhibit cholinesterases thereby destroying the ability to sustain life. Strong nucleophiles, such as oximes, have been used as therapeutic reactivators of cholinesterase-organophosphate complexes, but suffer from short half-lives and limited efficacy across the broad spectrum of organophosphate nerve agents. Cholinesterases have been used as long-lived therapeutic bioscavengers for unreacted organophosphates with limited success because they react with organophosphate nerve agents with one-to-one stoichiometries. The chemical power of nucleophilic reactivators is coupled to long-lived bioscavengers by designing and synthesizing cholinesterase-polymer-oxime conjugates using atom transfer radical polymerization and azide-alkyne "click" chemistry. Detailed kinetic studies show that butyrylcholinesterase-polymer-oxime activity is dependent on the electrostatic properties of the polymers and the amount of oxime within the conjugate. The covalent coupling of oxime-containing polymers to the surface of butyrylcholinesterase slows the rate of inactivation of paraoxon, a model nerve agent. Furthermore, when the enzyme is covalently inhibited by paraoxon, the covalently attached oxime induced inter- and intramolecular reactivation. Intramolecular reactivation will open the door to the generation of a new class of nerve agent scavengers that couple the speed and selectivity of biology to the ruggedness and simplicity of synthetic chemicals.
Collapse
Affiliation(s)
- Libin Zhang
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Stefanie L. Baker
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Hironobu Murata
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Nicholas Harris
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biotechnology EngineeringORT Braude Academic CollegeKarmielPOB78Israel
| | - Weihang Ji
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Gabriel Amitai
- Wohl Drug Discovery InstituteNancy and Stephen Grand Israel National Center for Personalized Medicine (G‐INCPM)Weizmann Institute of ScienceRehovot760001Israel
| | - Krzysztof Matyjaszewski
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Alan J. Russell
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| |
Collapse
|
22
|
Xu M, Zeng R, Xiang J, Yan Q. Shaping Protein Amphiphilic Assemblies via Allosteric Effect: From 1D Nanofilament to 2D Rectangular Nanosheet. J Am Chem Soc 2019; 141:13724-13728. [DOI: 10.1021/jacs.9b05946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Rongjin Zeng
- State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jun Xiang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Yan
- State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Roh YH, Lee HJ, Moon HJ, Kim SM, Bong KW. Post-synthesis functionalized hydrogel microparticles for high performance microRNA detection. Anal Chim Acta 2019; 1076:110-117. [PMID: 31203954 DOI: 10.1016/j.aca.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Encoded hydrogel microparticles, synthesized by Stop Flow Lithography (SFL), have shown great potential for microRNA assays for their capability to provide high multiplexing capacity and solution-like hybridization kinetics. However, due to the low conversion of copolymerization during particle synthesis, current hydrogel microparticles can only utilize ∼10% of the input probes that functionalize the particles for miRNA assay. Here, we present a novel method of functionalizing hydrogel microparticles after particle synthesis by utilizing unconverted double bonds remaining inside the hydrogel particles to maximize functional probe incorporation and increase the performance of miRNA assay. This allows covalent bonding of functional probes to the hydrogel network after particle synthesis. Because of the abundance of the unconverted double bonds and accessibility of all probes, the probe density increases about 8.2 times compared to that of particles functionalized during the synthesis. This results lead to an enhanced miRNA assay performance that improves the limit of detection from 4.9 amol to 1.5 amol. In addition, higher specificity and shorter assay time are achieved compared to the previous method. We also demonstrate a potential application of our particles by performing multiplexed miRNA detections in human plasma samples.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Jee Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun June Moon
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sun Min Kim
- Department of Obstetrics & Gynecology, Seoul National University Seoul Metropolitan Government Borame Medical Center, 20, Borame-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Park S, Kilgallon LJ, Yang Z, Ryu DY, Ryu CY. Molecular Origin of the Induction Period in Photoinitiated Cationic Polymerization of Epoxies and Oxetanes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sungmin Park
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Landon J. Kilgallon
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zheqin Yang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Chang Y. Ryu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
25
|
Huang J, Qin H, Chen X, Wang B, Liang H, Lu J. Synthesis of an ortho-phthalaldehyde-functionalized copolymer for rapid, chemoselective and efficient conjugation with native proteins under physiological conditions. Polym Chem 2019. [DOI: 10.1039/c9py00365g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anortho-phthalaldehyde-containing copolymer was designed and synthesized for rapid, chemoselective and efficient conjugation with proteins under physiological conditions.
Collapse
Affiliation(s)
- Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Herong Qin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Xu Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Biyun Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Resin-based Composites
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
26
|
Kulai I, Karpus A, Soroka L, Valyaev DA, Bourdon V, Manoury E, Poli R, Destarac M, Mazières S. Manganese phosphinocarbodithioate for RAFT polymerisation with sunlight-induced chain end post-treatment. Polym Chem 2019. [DOI: 10.1039/c8py01279b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new manganese complex of the formula Cp(CO)2MnP(Ph)2C(S)SCH(CH3)Ph is an efficient RAFT agent for the preparation of SH-terminated polymers by simple visible light photocleavage of the organometallic end-group.
Collapse
Affiliation(s)
- Ihor Kulai
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Andrii Karpus
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Liubov Soroka
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Dmitry A. Valyaev
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Valérie Bourdon
- ICT – Service de spectrométrie de masse – Université Paul Sabatier
- 31062 Toulouse
- France
| | - Eric Manoury
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Rinaldo Poli
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Mathias Destarac
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Stéphane Mazières
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| |
Collapse
|
27
|
Hou W, Wei L, Liu L, Zhao H. Surface Coassembly of Polymer Brushes and Polymer–Protein Bioconjugates: An Efficient Approach to the Purification of Bioconjugates under Mild Conditions. Biomacromolecules 2018; 19:4463-4471. [DOI: 10.1021/acs.biomac.8b01355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Sims MB, Lessard JJ, Bai L, Sumerlin BS. Functional Diversification of Polymethacrylates by Dynamic β-Ketoester Modification. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01343] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael B. Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Jacob J. Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Lian Bai
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
29
|
Cai Y, Peng W, Demeshko S, Tian J, Vana P. Silica-Coated Magnetite Nanoparticles Carrying a High-Density Polymer Brush Shell of Hydrophilic Polymer. Macromol Rapid Commun 2018; 39:e1800226. [PMID: 29876994 DOI: 10.1002/marc.201800226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Indexed: 01/22/2023]
Abstract
Integrating the properties of magnetite nanoparticles (MNPs) and high-density polymer brushes in one structure requires sophisticated synthetic designs and effective chemical approaches. A simple and versatile strategy for the fabrication of hydrophilic-polymer-capped magnetite-core-silica-shell nanohybrids with well-defined structure employing reverse microemulsion technique and reversible addition-fragmentation chain transfer (RAFT) polymerization is presented. The high-density polymer brush allows precise patterning of the magnetic nanohybrids with a tunable interparticle distance ranging from 20 nm to 80 nm by controlling the polymer size. The high structural precision provides a near stand-alone state of the MNPs in the nanohybrids with effectively inhibited magnetic interaction, as shown by superconducting quantum interference device (SQUID) measurements.
Collapse
Affiliation(s)
- Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, Göttinge, 37077, Germany
| | - Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, Göttinge, 37077, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, Göttinge, 37077, Germany
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, Göttinge, 37077, Germany
| |
Collapse
|
30
|
Bi J, Song K, Wu S, Zhang Y, Wang Y, Liu T. Effect of thermal-responsive surfaces based on PNIPAAm on cell adsorption/desorption. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2016.1252359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jiajie Bi
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
31
|
Wagner J, Peng W, Vana P. Polyethylene-Grafted Gold and Silver Nanoparticles Using Catalyzed Chain Growth (CCG). Polymers (Basel) 2018; 10:E407. [PMID: 30966442 PMCID: PMC6415259 DOI: 10.3390/polym10040407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 11/16/2022] Open
Abstract
We report an efficient synthesis route for the formation of gold/silver-core⁻PE-shell nanohybrids in a simple self-assembly approach using PE with strong aurophilicity and argentophilicity, via thiol- and trithiocarbonate terminated moieties. This united the unique properties of polyethylene (PE) with gold and silver nanoparticles, using the well-defined end-group design of PE. These nanocomposites showed a similar solubility as PE, as confirmed by dynamic light scattering, and could be fully incorporated into a polyethylene matrix with different particle contents, as visualized by transmission electron microscopy. Using UV/vis-spectroscopy, we observed reversible, thermoresponsive aggregation/deaggregation properties in the nanohybrids, validating the strong and effective anchoring of PE on gold/silver surfaces.
Collapse
Affiliation(s)
- Jannik Wagner
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| | - Wentao Peng
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| | - Philipp Vana
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| |
Collapse
|
32
|
Chado GR, Holland EN, Tice AK, Stoykovich MP, Kaar JL. Modification of Lipase with Poly(4-acryloylmorpholine) Enhances Solubility and Transesterification Activity in Anhydrous Ionic Liquids. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Garrett R. Chado
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Elijah N. Holland
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Andrew K. Tice
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
33
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
34
|
Jiang L, Bonde JS, Ye L. Temperature and pH Controlled Self-Assembly of a Protein-Polymer Biohybrid. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lingdong Jiang
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Johan Svensson Bonde
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| |
Collapse
|
35
|
Ma L, Wu P. The role of unique spatial structure in the volume phase transition behavior of poly(N-isopropylacrylamide)-based interpenetrating polymer network microgels including a thermosensitive poly(ionic liquid). Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00340h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By comparing with the linear homopolymer mixture, the influence of spatial structure on the phase behavior of thermosensitive interpenetrating polymer network (IPN) microgels was clarified.
Collapse
Affiliation(s)
- Lan Ma
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Peiyi Wu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
36
|
Wang Y, Wu C. Quantitative Study of the Oligomerization of Yeast Prion Sup35NM Proteins. Biochemistry 2017; 56:6575-6584. [DOI: 10.1021/acs.biochem.7b00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yanjing Wang
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chi Wu
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
38
|
Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th Anniversary Perspective: Polymer Functionalization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00465] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Eva Blasco
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael B. Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anja S. Goldmann
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher Barner-Kowollik
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
39
|
Liu Y, Hou W, Sun H, Cui C, Zhang L, Jiang Y, Wu Y, Wang Y, Li J, Sumerlin BS, Liu Q, Tan W. Thiol-ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chem Sci 2017; 8:6182-6187. [PMID: 28989650 PMCID: PMC5628335 DOI: 10.1039/c7sc01447c] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/15/2017] [Indexed: 01/06/2023] Open
Abstract
Bioconjugation based on crosslinking primary amines to carboxylic acid groups has found broad applications in protein modification, drug development, and nanomaterial functionalization.
Bioconjugation based on crosslinking primary amines to carboxylic acid groups has found broad applications in protein modification, drug development, and nanomaterial functionalization. However, proteins, which are made up of amino acids, typically give nonselective bioconjugation when using primary amine-based crosslinking. In order to control protein orientation and activity after conjugation, selective bioconjugation is desirable. We herein report an efficient and cysteine-selective thiol–ene click reaction-based bioconjugation strategy using colloidal nanoparticles. The resulting thiol–ene based aptamer and enzyme nanoconjugates demonstrated excellent target binding ability and enzymatic activity, respectively. Thus, thiol–ene click chemistry can provide a stable and robust crosslinker in a biocompatible manner for bioconjugation of any thiol-containing biomolecule with nanomaterials. This will open more opportunities for applications of thiol–ene reactions and functional colloidal nanoparticles in chemical biology.
Collapse
Affiliation(s)
- Yuan Liu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . .,Center for Research at Bio/Nano Interface , Department of Chemistry , Department of Physiology and Functional Genomics , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Weijia Hou
- Center for Research at Bio/Nano Interface , Department of Chemistry , Department of Physiology and Functional Genomics , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Cheng Cui
- Center for Research at Bio/Nano Interface , Department of Chemistry , Department of Physiology and Functional Genomics , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Liqin Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China .
| | - Ying Jiang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . .,Center for Research at Bio/Nano Interface , Department of Chemistry , Department of Physiology and Functional Genomics , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Yongxiang Wu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China .
| | - Yanyue Wang
- Center for Research at Bio/Nano Interface , Department of Chemistry , Department of Physiology and Functional Genomics , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Juan Li
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China .
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China .
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Life Sciences , College of Chemistry and Chemical Engineering , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . .,Center for Research at Bio/Nano Interface , Department of Chemistry , Department of Physiology and Functional Genomics , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA .
| |
Collapse
|
40
|
You XR, Ju XJ, He F, Wang Y, Liu Z, Wang W, Xie R, Chu LY. Polymersomes with Rapid K +-Triggered Drug-Release Behaviors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19258-19268. [PMID: 28514157 DOI: 10.1021/acsami.7b05701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel type of smart polymersomes with rapid K+-triggered drug-release properties is developed in this work. Block copolymers with biocompatible poly(ethylene glycol) (PEG) as the hydrophilic block and poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (PNB) copolymer as the K+-responsive block are successfully synthesized. Because of the presence of 18-crown-6 units, the PEG-b-PNB block copolymers exhibit excellent K+-dependent phase-transition behaviors, which show a hydrophilic-hydrophobic state in simulated extracellular fluid and present a hydrophilic-hydrophilic state in simulated intracellular fluid. Polymersomes with regular spherical shape and good monodispersity are prepared by the self-assembly of the PEG-b-PNB block copolymers. Both hydrophilic fluorescein isothiocyanate-dextran and hydrophobic doxorubicin are selected as model drugs and are successfully encapsulated into the PEG-b-PNB polymersomes. After being placed in a simulated intracellular fluid with high K+ concentration, the PEG-b-PNB polymersomes immediately disassemble accompanied by the rapid and complete release of drugs. Such K+-responsive polymersomes with the desired drug-release properties provide a novel strategy for advanced intracellular drug delivery and release, which can enhance the safety and efficacy of cancer therapy.
Collapse
Affiliation(s)
- Xiang-Ru You
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Fan He
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Yuan Wang
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
41
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Jackson AW. Octreotide end-functionalized diblock copolymers facilitated by RAFT polymerization. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1220-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Wong ASM, Czuba E, Chen MZ, Yuen D, Cupic KI, Yang S, Hodgetts RY, Selby LI, Johnston APR, Such GK. pH-Responsive Transferrin-pHlexi Particles Capable of Targeting Cells in Vitro. ACS Macro Lett 2017; 6:315-320. [PMID: 35650909 DOI: 10.1021/acsmacrolett.7b00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting nanoparticles to specific cellular receptors has the potential to deliver therapeutic compounds to target sites while minimizing side effects. To this end, we have conjugated a targeting protein, holo-transferrin (holo-Tf), to pH-responsive polymers, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(2-(diethylamino)ethyl methacrylate)-ran-poly(2-(diisopropylamino)ethyl methacrylate (PDEAEMA-r-PDPAEMA). These protein-polymer hybrid materials were observed to self-assemble when the pH is increased above the pKa of the polymer. We demonstrate that their response to pH could be tuned depending on the polymer constituent attached to holo-Tf. Importantly, the targeting behavior of these nanoparticles could be maximized by tuning the density of holo-Tf on the nanoparticle surface by the introduction of a (PDEAEMA-r-PDPAEMA)-b-poly(ethylene glycol) (PEG) copolymer.
Collapse
Affiliation(s)
- Adelene S. M. Wong
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ewa Czuba
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Moore Z. Chen
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel Yuen
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kristofer I. Cupic
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shenglin Yang
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca Y. Hodgetts
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura I. Selby
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P. R. Johnston
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - Georgina K. Such
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Wang JT, Wang L, Ji X, Liu L, Zhao H. Synthesis of Zwitterionic Diblock Copolymers with Cleavable Biotin Groups at the Junction Points and Fabrication of Bioconjugates by Biotin–Streptavidin Coupling. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jin-Tao Wang
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Lin Wang
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xiaotian Ji
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional
Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
45
|
Ji X, Liu L, Zhao H. The synthesis and self-assembly of bioconjugates composed of thermally-responsive polymer chains and pendant lysozyme molecules. Polym Chem 2017. [DOI: 10.1039/c7py00315c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal-responsive polymer chains with pendant lysozyme molecules were prepared via a “grafting to” approach. The bioconjugates were able to self-assemble into mesoglobules at a temperature above their cloud point.
Collapse
Affiliation(s)
- Xiaotian Ji
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- China
| |
Collapse
|
46
|
Affiliation(s)
- Darryl A. Boyd
- Optical Sciences Division; US Naval Research Laboratory; 4555 Overlook Dr., SW Washington DC USA
| |
Collapse
|
47
|
Boyd DA. Sulfur and Its Role In Modern Materials Science. Angew Chem Int Ed Engl 2016; 55:15486-15502. [PMID: 27860133 DOI: 10.1002/anie.201604615] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 02/03/2023]
Abstract
Although well-known and studied for centuries, sulfur continues to be at the center of an extensive array of scientific research topics. As one of the most abundant elements in the Universe, a major by-product of oil refinery processes, and as a common reaction site within biological systems, research involving sulfur is both broad in scope and incredibly important to our daily lives. Indeed, there has been renewed interest in sulfur-based reactions in just the past ten years. Sulfur research spans the spectrum of topics within the physical sciences including research on improving energy efficiency, environmentally friendly uses for oil refinery waste products, development of polymers with unique optical and mechanical properties, and materials produced for biological applications. This Review focuses on some of the latest exciting ways in which sulfur and sulfur-based reactions are being utilized to produce materials for application in energy, environmental, and other practical areas.
Collapse
Affiliation(s)
- Darryl A Boyd
- Optical Sciences Division, US Naval Research Laboratory, 4555 Overlook Dr., SW, Washington, DC, USA
| |
Collapse
|
48
|
Cai L, Dewi RE, Goldstone AB, Cohen JE, Steele AN, Woo YJ, Heilshorn SC. Regulating Stem Cell Secretome Using Injectable Hydrogels with In Situ Network Formation. Adv Healthc Mater 2016; 5:2758-2764. [PMID: 27709809 PMCID: PMC5521188 DOI: 10.1002/adhm.201600497] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/22/2016] [Indexed: 12/23/2022]
Abstract
A family of shear-thinning hydrogels for injectable encapsulation and long-term delivery (SHIELD) has been designed and synthesized with controlled in situ stiffening properties to regulate the stem cell secretome. The authors demonstrate that SHIELD with an intermediate stiffness (200-400 Pa) could significantly promote the angiogenic potential of human adipose-derived stem cells.
Collapse
Affiliation(s)
- Lei Cai
- Department of Materials Science and Engineering, Stanford Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ruby E Dewi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey E Cohen
- Department of Cardiothoracic Surgery, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Zhang Y, Zhang J, Xing C, Zhang M, Wang L, Zhao H. Protein Nanogels with Temperature-Induced Reversible Structures and Redox Responsiveness. ACS Biomater Sci Eng 2016; 2:2266-2275. [DOI: 10.1021/acsbiomaterials.6b00490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yue Zhang
- Key
Laboratory of Functional Polymer Materials, Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiamin Zhang
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cheng Xing
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lianyong Wang
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- Key
Laboratory of Functional Polymer Materials, Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|