1
|
Wang Y, Li X, Wei J, Zhang X, Liu Y. Mechanism of Sugar Ring Contraction and Closure Catalyzed by UDP-d-apiose/UDP-d-xylose Synthase (UAXS). J Chem Inf Model 2022; 62:632-646. [PMID: 35043627 DOI: 10.1021/acs.jcim.1c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uridine diphosphate (UDP)-apiose/UDP-xylose synthase (UAXS) is a member of the short-chain dehydrogenase/reductase superfamily (SDR), which catalyzes the ring contraction and closure of UDP-d-glucuronic acid (UDP-GlcA), affording UDP-apiose and UDP-xylose. UAXS is a special enzyme that integrates ring-opening, decarboxylation, rearrangement, and ring closure/contraction in a single active site. Recently, the ternary complex structure of UAXS was crystallized from Arabidopsis thaliana. In this work, to gain insights into the detailed formation mechanism of UDP-apiose and UDP-xylose, an enzyme-substrate reactant model has been constructed and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation results reveal that the reaction starts from the C4-OH oxidation, which is accompanied by the conformational transformation of the sugar ring from chair type to boat type. The sugar ring-opening is prior to decarboxylation, and the deprotonation of the C2-OH group is the prerequisite for sugar ring-opening. Moreover, the keto-enol tautomerization of the decarboxylated intermediate is a necessary step for ring closure/contraction. Based on our calculation results, more UDP-apiose product was expected, which is in line with the experimental observation. Three titratable residues, Tyr185, Cys100, and Cys140, steer the reaction by proton transfer from or to UDP-GlcA, and Arg182, Glu141, and D337 constitute a proton conduit for sugar C2-OH deprotonation. Although Thr139 and Tyr105 are not directly involved in the enzymatic reaction, they are responsible for promoting the catalysis by forming hydrogen-bonding interactions with GlcA. Our calculations may provide useful information for understanding the catalysis of the SDR family.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
2
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
3
|
Savino S, Borg AJE, Dennig A, Pfeiffer M, de Giorgi F, Weber H, Dubey KD, Rovira C, Mattevi A, Nidetzky B. Deciphering the enzymatic mechanism of sugar ring contraction in UDP-apiose biosynthesis. Nat Catal 2019; 2:1115-1123. [PMID: 31844840 PMCID: PMC6914363 DOI: 10.1038/s41929-019-0382-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
D-Apiose is a C-branched pentose sugar important for plant cell wall development. Its biosynthesis as UDP-D-apiose involves decarboxylation of the UDP-D-glucuronic acid precursor coupled to pyranosyl-to-furanosyl sugar ring contraction. This unusual multistep reaction is catalyzed within a single active site by UDP-D-apiose/UDP-D-xylose synthase (UAXS). Here, we decipher the UAXS catalytic mechanism based on crystal structures of the enzyme from Arabidopsis thaliana, molecular dynamics simulations expanded by QM/MM calculations, and mutational-mechanistic analyses. Our studies show how UAXS uniquely integrates a classical catalytic cycle of oxidation and reduction by a tightly bound nicotinamide coenzyme with retro-aldol/aldol chemistry for the sugar ring contraction. They further demonstrate that decarboxylation occurs only after the sugar ring opening and identify the thiol group of Cys100 in steering the sugar skeleton rearrangement by proton transfer to and from the C3’. The mechanistic features of UAXS highlight the evolutionary expansion of the basic catalytic apparatus of short-chain dehydrogenases/reductases for functional versatility in sugar biosynthesis.
Collapse
Affiliation(s)
- Simone Savino
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Alexander Dennig
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Francesca de Giorgi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Kshatresh Dutta Dubey
- Department of Inorganic and Organic Chemistry (Organic Chemistry Section) & Institute of Computational and Theoretical Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Department of Inorganic and Organic Chemistry (Organic Chemistry Section) & Institute of Computational and Theoretical Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Catalan Institution for Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
4
|
Carter MS, Zhang X, Huang H, Bouvier JT, Francisco BS, Vetting MW, Al-Obaidi N, Bonanno JB, Ghosh A, Zallot RG, Andersen HM, Almo SC, Gerlt JA. Functional assignment of multiple catabolic pathways for D-apiose. Nat Chem Biol 2018; 14:696-705. [PMID: 29867142 DOI: 10.1038/s41589-018-0067-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022]
Abstract
Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions. The new enzymes include D-apionate oxidoisomerase, which catalyzes hydroxymethyl group migration, as well as 3-oxo-isoapionate-4-phosphate decarboxylase and 3-oxo-isoapionate-4-phosphate transcarboxylase/hydrolase, which are RuBisCO-like proteins (RLPs). The web tools for generating SSNs and GNNs are publicly accessible ( http://efi.igb.illinois.edu/efi-est/ ), so similar 'genomic enzymology' strategies for discovering novel pathways can be used by the community.
Collapse
Affiliation(s)
- Michael S Carter
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xinshuai Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Huang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason T Bouvier
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nawar Al-Obaidi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi G Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Harvey M Andersen
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Barnes WJ, Anderson CT. Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. MOLECULAR PLANT 2018; 11:31-46. [PMID: 28859907 DOI: 10.1016/j.molp.2017.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/20/2023]
Abstract
Plant cell walls contain elaborate polysaccharide networks and regulate plant growth, development, mechanics, cell-cell communication and adhesion, and defense. Despite conferring rigidity to support plant structures, the cell wall is a dynamic extracellular matrix that is modified, reorganized, and degraded to tightly control its properties during growth and development. Far from being a terminal carbon sink, many wall polymers can be degraded and recycled by plant cells, either via direct re-incorporation by transglycosylation or via internalization and metabolic salvage of wall-derived sugars to produce new precursors for wall synthesis. However, the physiological and metabolic contributions of wall recycling to plant growth and development are largely undefined. In this review, we discuss long-standing and recent evidence supporting the occurrence of cell-wall recycling in plants, make predictions regarding the developmental processes to which wall recycling might contribute, and identify outstanding questions and emerging experimental tools that might be used to address these questions and enhance our understanding of this poorly characterized aspect of wall dynamics and metabolism.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Eixelsberger T, Horvat D, Gutmann A, Weber H, Nidetzky B. Reaktion von UDP-Apiose/UDP-Xylose-Synthase mit isotopenmarkierten Substraten: Hinweise auf einen Mechanismus mit gekoppelter Oxidation und Aldolspaltung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Eixelsberger
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
| | - Doroteja Horvat
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
| | - Alexander Gutmann
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
| | - Hansjörg Weber
- Institut für Organische Chemie; Technische Universität Graz; NAWI Graz; Stremayrgasse 16 8010 Graz Österreich
| | - Bernd Nidetzky
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (acib); Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
7
|
Eixelsberger T, Horvat D, Gutmann A, Weber H, Nidetzky B. Isotope Probing of the UDP-Apiose/UDP-Xylose Synthase Reaction: Evidence of a Mechanism via a Coupled Oxidation and Aldol Cleavage. Angew Chem Int Ed Engl 2017; 56:2503-2507. [PMID: 28102965 PMCID: PMC5324594 DOI: 10.1002/anie.201609288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Indexed: 12/05/2022]
Abstract
The C-branched sugar d-apiose (Api) is essential for plant cell-wall development. An enzyme-catalyzed decarboxylation/pyranoside ring-contraction reaction leads from UDP-α-d-glucuronic acid (UDP-GlcA) to the Api precursor UDP-α-d-apiose (UDP-Api). We examined the mechanism of UDP-Api/UDP-α-d-xylose synthase (UAXS) with site-selectively 2 H-labeled and deoxygenated substrates. The analogue UDP-2-deoxy-GlcA, which prevents C-2/C-3 aldol cleavage as the plausible initiating step of pyranoside-to-furanoside conversion, did not give the corresponding Api product. Kinetic isotope effects (KIEs) support an UAXS mechanism in which substrate oxidation by enzyme-NAD+ and retro-aldol sugar ring-opening occur coupled in a single rate-limiting step leading to decarboxylation. Rearrangement and ring-contracting aldol addition in an open-chain intermediate then give the UDP-Api aldehyde, which is intercepted via reduction by enzyme-NADH.
Collapse
Affiliation(s)
- Thomas Eixelsberger
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
| | - Doroteja Horvat
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of TechnologyNAWI GrazStremayrgasse 98010GrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
- Austrian Centre of Industrial Biotechnology (acib)Petersgasse 148010GrazAustria
| |
Collapse
|
8
|
Pičmanová M, Møller BL. Apiose: one of nature's witty games. Glycobiology 2016; 26:430-42. [DOI: 10.1093/glycob/cww012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 11/13/2022] Open
|
9
|
Dumont M, Lehner A, Bardor M, Burel C, Vauzeilles B, Lerouxel O, Anderson CT, Mollet JC, Lerouge P. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1137-51. [PMID: 26565655 DOI: 10.1111/tpj.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 05/21/2023]
Abstract
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Boris Vauzeilles
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182, Université de Paris Sud, 91405, Orsay, France
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
- Click4Tag, Zone Luminy Biotech, Case 922, 163 Avenue de Luminy, 13009, Marseille, France
| | - Olivier Lerouxel
- Centre de Recherches sur les Macromolécules Végétales (CERMAV) - CNRS BP 53, 38041, Grenoble Cedex 9, France
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Choi SH, Mansoorabadi SO, Liu YN, Chien TC, Liu HW. Analysis of UDP-D-apiose/UDP-D-xylose synthase-catalyzed conversion of UDP-D-apiose phosphonate to UDP-D-xylose phosphonate: implications for a retroaldol-aldol mechanism. J Am Chem Soc 2012; 134:13946-9. [PMID: 22830643 DOI: 10.1021/ja305322x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-D-apiose/UDP-D-xylose synthase (AXS) catalyzes the conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose. An acetyl-protected phosphonate analogue of UDP-D-apiose was synthesized and used in an in situ HPLC assay to demonstrate for the first time the ability of AXS to interconvert the two reaction products. Density functional theory calculations provided insight into the energetics of this process and the apparent inability of AXS to catalyze the conversion of UDP-D-xylose to UDP-D-apiose. The data suggest that this observation is unlikely to be due to an unfavorable equilibrium but rather results from substrate inhibition by the most stable chair conformation of UDP-D-xylose. The detection of xylose cyclic phosphonate as the turnover product reveals significant new details about the AXS-catalyzed reaction and supports the proposed retroaldol-aldol mechanism of catalysis.
Collapse
Affiliation(s)
- Sei-hyun Choi
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
11
|
Eixelsberger T, Sykora S, Egger S, Brunsteiner M, Kavanagh KL, Oppermann U, Brecker L, Nidetzky B. Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid. J Biol Chem 2012; 287:31349-58. [PMID: 22810237 PMCID: PMC3438964 DOI: 10.1074/jbc.m112.386706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-d-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD+ and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-d-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the d-glucuronyl ring accommodated by UXS features a marked 4C1chair to BO,3boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C4 (step 1) by aligning the enzymatic base Tyr147 with the reactive substrate hydroxyl and it brings the carboxylate group at C5 into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-d-glucuronic acid in the second chemical step. The protonated side chain of Tyr147 stabilizes the enolate of decarboxylated C4 keto species (2H1half-chair) that is then protonated from the Si face at C5, involving water coordinated by Glu120. Arg277, which is positioned by a salt-link interaction with Glu120, closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C4 keto group by NADH, assisted by Tyr147 as catalytic proton donor, yields UDP-xylose adopting the relaxed 4C1chair conformation (step 3).
Collapse
Affiliation(s)
- Thomas Eixelsberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|