1
|
Li YS, Feng CF, Chen HR, Yang WG, Liu F, Su ML, Yuan R, Zhang LQ, Liang WB. Concentration and activation biresponsive strategy in one analysis system with simultaneous use of G4 structure-specific signal probe and enzyme-catalyzed reaction. Anal Chim Acta 2024; 1329:343246. [PMID: 39396307 DOI: 10.1016/j.aca.2024.343246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Enzymes with critical effects on life systems are regulated by expression and activation to modulate life processes. However, further insights into enzyme functions and mechanisms in various physiological processes are limited to concentration or activation analysis only. Currently, enzyme analysis has received notable attention, particularly simultaneous analysis of their concentration and activation in one system. Herein, N-methyl mesoporphyrin IX (NMM), a specific dye with notable structural selectivity for parallel G-quadruplex nucleic acid enzyme (G4h DNAzyme), is employed for the analysis of its concentration. In addition, the peroxidase activity of G4h DNAzyme is characterized based on G4h DNAzyme-catalyzed decomposition of H2O2 to continuously consume luminol. Accordingly, an increased fluorescence (FL) response of NMM and a decreased FL response of luminol could be simultaneously employed to analyze the concentration and activation of G4h DNAzyme. RESULT Herein, a novel concentration and activation biresponsive strategy is proposed using a G4h DNAzyme-based model that simultaneously employs a G4h structure-specific signal probe for enzyme concentration analysis and G4h DNAzyme-catalyzed reactions for enzyme activation analysis. Under optimal conditions, the biresponsive strategy can be effectively used for the simultaneous analysis of G4h DNAzyme concentration and activation, with detection limits of 718.7 pM and 233.4 nM respectively, delivering acceptable performances both in cell and in vitro. SIGNIFICANCE This strategy can not only be applied to concentration and activation analyses of G4h DNAzyme but can also be easily extended to other enzymes by simultaneously combining concentration analysis via target-induced direct reaction and activation analysis via target-induced catalytic reaction, offering deeper insights into various enzymes and enabling their effective implementation in bioanalysis and biochemistry.
Collapse
Affiliation(s)
- Yu-Shu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Feng Feng
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Fei Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Li-Qun Zhang
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Qiu L, Gao M, Li J, Xu G, Wei F, Yang J, Hu Q, Cen Y. Fluorometric Assay of Tyrosinase and Atrazine Based on the Use of Carbon Dots and the Inhibition of Tyrosinase Activity. J Fluoresc 2024; 34:765-774. [PMID: 37358758 DOI: 10.1007/s10895-023-03308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Sensitive and convenient strategy of tyrosinase (TYR) and its inhibitor atrazine is in pressing demand for essential research as well as pragmatic application. In this work, an exquisite label-free fluorometric assay with high sensitivity, convenience and efficiency was described for detecting TYR and the herbicide atrazine on the basis of fluorescent nitrogen-doped carbon dots (CDs). The CDs were prepared via one-pot hydrothermal reaction starting from citric acid and diethylenetriamine. TYR catalyzed the oxidation of dopamine to dopaquinone derivative which could quench the fluorescence of CDs through a fluorescence resonance energy transfer (FRET) process. Thus, a sensitive and selective quantitative evaluation of TYR can be constructed on the basis of the relationship between the fluorescence of CDs and TYR activity. Atrazine, a typical inhibitor of TYR, inhibited the catalytic activity of TYR, leading to the reduced dopaquinone and the fluorescence was retained. The strategy covered a broad linear range of 0.1-150 U/mL and 4.0-80.0 nM for TYR and atrazine respectively with a low detection limit of 0.02 U/mL and 2.4 nM/mL. It is also demonstrated that the assay can be applied to detect TYR and atrazine in spiked complex real samples, which provides infinite potential in application of disease monitoring along with environmental analysis.
Collapse
Affiliation(s)
- Lei Qiu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Department of Pharmacy, Jiuting hospital of Songjiang District, Shanghai, 201651, PR China
| | - Mingcong Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jiawei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
3
|
Li S, Zhang G, Peng Y, Chen P, Li J, Wang X, Wang Z. Tyrosinase-activated Nanocomposites for Double-Modals Imaging Guided Photodynamic and Photothermal Synergistic Therapy. Adv Healthc Mater 2023; 12:e2300327. [PMID: 37003298 DOI: 10.1002/adhm.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tyrosinase (TYR) is an important biomarker of melanoma. The exploration of fluorescent pr-obes-based composites is beneficial to build an integrative platform for the diagnosis and treatment of melanoma. Herein, a multifunctional nanocomposite IOBOH@BSA activated by TYR is developed for selective imaging and ablation of melanoma. The chemical structure of IOBOH enables the fluorescence (FL) imaging activated by TYR, photoacoustic (PA) imaging, and photodynamic-photothermal activity by regulating the balance between radiative decay and non-radiative decay. IOBOH combined with bovine serum albumin (IOBOH@BSA) presents the response to TYR and realizes FL imaging with mitochondria-targeting in melanoma. Moreover, IOBOH@BSA shows excellent photothermal ability and is applied for PA imaging. After IOBOH@BSA is activated by TYR, the singlet oxygen generation increases obviously. IOBOH@BSA can realize TYR-activated imaging and photodynamic-photothermal therapy of melanoma. The development of TYR-activated multifunctional nanocomposites promotes the precise imaging and improves the therapeutic effect of melanoma.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuefei Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
5
|
Hao XL, Guo JF, Ren AM, Zhou L. Persistent and Efficient Multimodal Imaging for Tyrosinase Based on Two-Photon Excited Fluorescent and Room-Temperature Phosphorescent Probes. J Phys Chem A 2022; 126:7650-7659. [PMID: 36240504 DOI: 10.1021/acs.jpca.2c05482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosinase is crucial to regulate the metabolism of phenol derivatives, playing an important role in the biosynthesis of melanin pigments, whereas an abnormal level of tyrosinase would lead to severe diseases. It is rather necessary to develop a sensitive and selective imaging tool to assess the level of tyrosinase in vivo. We thoroughly researched the luminous mechanism of the existing TPTYR probe and provided design strategies to improve its two-photon excited fluorescence properties. The designed probes benza2-TPTYR and product benza2-TPTYR-coumarin have large two-photon absorption cross sections at the NIR spectral region (41 GM/706 nm, 71 GM/852 nm), while benza2-TPTYR-coumarin possesses easily distinguishable spectrum in the visible region and a high fluorescence efficiency (ΦF = 0.27). What is more, novel two-photon excited multimodal imaging based on the pure organic small molecule benza1-TPTYR-coumarin (61 GM/936 nm) is proposed first, simultaneously possessing strong instantaneous fluorescent (563.79 nm) and persistent room-temperature phosphorescent emissions (767.68 nm, 0.54 ms).
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, P. R. China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
6
|
Kishikawa N, El-Maghrabey M, Tsubokami A, Hori H, Kuroda N. Development of a Selective Assay of Tyrosine and Its Producing and Metabolizing Enzymes Utilizing Pulse-UV Irradiation-Induced Chemiluminescence. Anal Chem 2022; 94:11529-11537. [PMID: 35938883 DOI: 10.1021/acs.analchem.2c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new pulse UV irradiation-induced chemiluminescence (CL) determination method was developed for l-tyrosine using the luminol derivative L-012. The proposed method depends on the formation of reactive oxygen species (ROS) upon pulse UV irradiation of l-tyrosine; then, these ROS react with L-012 producing strong CL. The proposed method showed excellent sensitivity and ultraselectivity toward l-tyrosine. The mechanism of the developed CL method was studied using ROS scavengers, HPLC, and mass spectrometry. The method was linear for l-tyrosine in the range of 0.03-50 μM. Minor changes in the l-tyrosine structure, including hydroxylation, dehydroxylation, phosphorylation, or decarboxylation, were found to lead to a strong decrease in CL. Using the excellent selectivity of the proposed method for l-tyrosine, we have developed a CL assay for measuring alkaline phosphatase activity in the range of 0.02-15 U/L with the limit of detection (LOD) of 4 mU/L using the nonchemiluminescent O-phospho-l-tyrosine as a substrate. Furthermore, the CL reaction was applied for tyrosinase activity assay as this enzyme can convert l-tyrosine to the nonchemiluminescent l-dopa. The decrease in CL is correlated with the tyrosinase activity in the range of 0.025-0.75 U/mL with an LOD of 1.5 mU/mL. Moreover, the tyrosinase activity assay was successfully applied for the determination of IC50 of the tyrosinase inhibitors kojic acid and benzoic acid. Therefore, our novel pulse UV irradiation CL method for the determination of l-tyrosine was not only suitable for the determination of this vital amino acid but also extended to the successful determination of its producing and metabolizing enzymes and their inhibitors.
Collapse
Affiliation(s)
- Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35116, Egypt
| | - Ayaka Tsubokami
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroki Hori
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
7
|
Liu SY, Wang H, Nie G. Ultrasensitive Fibroblast Activation Protein-α-Activated Fluorogenic Probe Enables Selective Imaging and Killing of Melanoma In Vivo. ACS Sens 2022; 7:1837-1846. [PMID: 35713201 DOI: 10.1021/acssensors.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma is a malignant cancer with a high risk of metastasis and continued increase in death rates over the past decades, and its prognosis is highly related to the disease's stage, while early detection and treatment of melanoma are significant to the improvement of its therapy outcome. Different from the traditional methods for disease diagnosis, enzyme-activated fluorescent probes were developed rapidly due to their high sensitivity and temporal-spatial ratio and have been widely applied in tumor detection, surgical navigation, and cancer-related research. Fibroblast activation protein-α (FAPα), a serine-type cell surface protease that plays important roles in cell invasion and extracellular matrix degradation, is widely involved in tumor progression such as malignant melanoma, so developing a FAPα activity-based molecular tool would be of great potential for the early diagnosis and therapy of melanoma. However, few fluorescent probes targeting FAPα have been applied in melanoma-related studies, and thus, the construction of FAPα activity-based fluorescent probes for melanoma detection is in urgent need. By incorporating the selective recognition unit with a red-emission fluorophore, cresyl violet, we herein report an ultrasensitive (limit of detection = 5.3 ng/mL) fluorogenic probe for FAPα activity sensing, named CV-FAP; the acquired probe showed a significantly higher binding affinity (15.7-fold) and overall catalytic efficiency (2.6-fold) when compared with those of the best reported FAPα probes. The good performance of CV-FAP made it possible to discriminate malignant melanoma cells and tumor-bearing mice from normal cells and mice with high contrast. More importantly, CV-FAP showed significant antitumor activity toward melanoma in cultured cells and tumor-bearing nude mice (over 95% inhibited tumor growth) with good safety, which made it an ideal theranostic agent for melanoma.
Collapse
Affiliation(s)
- Shi-Yu Liu
- Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P. R. China
| | - Huiling Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
8
|
Gurubasavaraj PM, Sajjan VP, Muñoz-Flores BM, Jiménez Pérez VM, Hosmane NS. Recent Advances in BODIPY Compounds: Synthetic Methods, Optical and Nonlinear Optical Properties, and Their Medical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061877. [PMID: 35335243 PMCID: PMC8949266 DOI: 10.3390/molecules27061877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Organoboron compounds are attracting immense research interest due to their wide range of applications. Particularly, low-coordinate organoboron complexes are receiving more attention due to their improbable optical and nonlinear optical properties, which makes them better candidates for medical applications. In this review, we summarize the various synthetic methods including multicomponent reactions, microwave-assisted and traditional pathways of organoboron complexes, and their optical and nonlinear properties. This review also includes the usage of organoboron complexes in various fields including biomedical applications.
Collapse
Affiliation(s)
- Prabhuodeyara M. Gurubasavaraj
- Department of Chemistry, Rani Channamma University, Belagavi 591156, India;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | | | - Blanca M. Muñoz-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Víctor M. Jiménez Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| |
Collapse
|
9
|
Quinoline-functionalized BODIPY dyes: Structural and photophysical properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Ding Y, Yang L, Shen J, Wei Y, Wang C. A novel fluorescent off–on probe based on 4-methylumbelliferone for highly sensitive determination of tyrosinase. NEW J CHEM 2022. [DOI: 10.1039/d2nj00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent probe for high-sensitivity determination of tyrosinase, with 4-methylumbelliferone as the fluorophore and 3-hydroxybenzyl as the recognition group.
Collapse
Affiliation(s)
- Yu Ding
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Lihong Yang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Jiwei Shen
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Yinmao Wei
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Chaozhan Wang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| |
Collapse
|
11
|
Wang H, Wang X, Li P, Dong M, Yao SQ, Tang B. Fluorescent probes for visualizing ROS-associated proteins in disease. Chem Sci 2021; 12:11620-11646. [PMID: 34659698 PMCID: PMC8442704 DOI: 10.1039/d1sc02165f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormal expression of proteins, including catalytic and expression dysfunction, is directly related to the development of various diseases in living organisms. Reactive oxygen species (ROS) could regulate protein expression by redox modification or cellular signal pathway and thus influence the development of disease. Determining the expression level and activity of these ROS-associated proteins is of considerable importance in early-stage disease diagnosis and the identification of new drug targets. Fluorescence imaging technology has emerged as a powerful tool for specific in situ imaging of target proteins by virtue of its non-invasiveness, high sensitivity and good spatiotemporal resolution. In this review, we summarize advances made in the past decade for the design of fluorescent probes that have contributed to tracking ROS-associated proteins in disease. We envision that this review will attract significant attention from a wide range of researchers in their utilization of fluorescent probes for in situ investigation of pathological processes synergistically regulated by both ROS and proteins.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Mingyan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
12
|
Cui Y, Park SJ, Wu X, Wang R, Qi S, Kim HM, Yoon J. Highly selective two-photon fluorescent off-on probes for imaging tyrosinase activity in living cells and tissues. Chem Commun (Camb) 2021; 57:6911-6914. [PMID: 34152336 DOI: 10.1039/d1cc02374h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A coumarin-based two-photon (TP) fluorescent off-on probe has been developed for detecting tyrosinase activity. High selectivity, sensitivity and biocompatibility enable the probes to successfully image tyrosinase activity in live cells and tissues using TP microscopy.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Sang Jun Park
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon, 443-749, Korea.
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Sujie Qi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Hwan Myung Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon, 443-749, Korea.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
13
|
Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. BIOSENSORS 2021; 11:290. [PMID: 34436092 PMCID: PMC8393227 DOI: 10.3390/bios11080290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.
Collapse
Affiliation(s)
- Yu-Fan Fan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Si-Xing Zhu
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Fan-Bin Hou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Dong-Fang Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Qiu-Sha Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| |
Collapse
|
14
|
|
15
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
16
|
Ding XM, Cai SX, Wang L, Zhang YC. Electrocatalytic performance of tyrosinase detection in Penaeus vannamei based on a [(PSS/PPy)(P 2Mo 18/PPy) 5] multilayer composite film modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1392-1403. [PMID: 33650584 DOI: 10.1039/d0ay02328k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyoxometalates (POMs) are widely used in the preparation of sensors that detect the content of substances because of their excellent electron transfer capabilities. In this paper, a [(PSS/PPy)(P2Mo18/PPy)5] multilayer composite film modified electrode was prepared by the potentiostatic deposition method. The electrochemical performance of the modified electrode was studied by cyclic voltammetry under the conditions of different modified layers, different supporting electrolytes and different sweep rates. Different concentrations of tyrosinase were catalyzed by the modified electrode under a suitable supporting electrolyte, and the electrochemical sensing of tyrosinase by the modified electrode was studied. The research results show that the modified electrode has good stability and reproducibility for electrochemical sensing of tyrosinase, and the response current has a good linear relationship with the amount of tyrosinase added. Taking peak III as an example, the detection limit (S/N = 3) was 2.7649 U mL-1. It can be known from the timing ampere curve that as the concentration of tyrosinase in the reaction system continues to increase, its response current increases stepwise, providing a linear curve in the range of 3.66 U mL-1 to 26.87 U mL-1, and the minimum detection limit (S/N = 3) reaches 0.0021 U mL-1. The [(PSS/PPy)(P2Mo18/PPy)5] multilayer composite membrane modified electrode was used to detect tyrosinase in Penaeus vannamei. The spiked recovery of the sample was 96.3-100.8%, indicating that the modified electrode has high accuracy and can be used for the detection of tyrosinase in actual samples.
Collapse
Affiliation(s)
- Xiao-Mei Ding
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, P. R. China.
| | | | | | | |
Collapse
|
17
|
Chai Z, Shang J, Shi W, Li X, Ma H. Increase of tyrosinase activity at the wound site in zebrafish imaged by a new fluorescent probe. Chem Commun (Camb) 2021; 57:2764-2767. [PMID: 33595549 DOI: 10.1039/d0cc08134e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tyrosinase plays a pivotal role in the hyperpigmentation of wounds. Here, we develop a new fluorescent probe and with it, we reveal an increase of tyrosinase activity at the wound site in zebrafish.
Collapse
Affiliation(s)
- Ziyin Chai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhen Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Huang S, Li W, Zhou X, Xie M, Luo Q, Wen H, Luo Y, Xue W. One-step synthesis of levodopa functionalized carbon quantum dots for selective detection of tyrosinase and inhibitor screening. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Chaves OA, Calheiro TP, Netto-Ferreira JC, de Oliveira MC, Franceschini SZ, de Salles CMC, Zanatta N, Frizzo CP, Iglesias BA, Bonacorso HG. Biological assays of BF2-naphthyridine compounds: Tyrosinase and acetylcholinesterase activity, CT-DNA and HSA binding property evaluations. Int J Biol Macromol 2020; 160:1114-1129. [DOI: 10.1016/j.ijbiomac.2020.05.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
|
20
|
Stockert JC. Lipid Peroxidation Assay Using BODIPY-Phenylbutadiene Probes: A Methodological Overview. Methods Mol Biol 2020; 2202:199-214. [PMID: 32857357 DOI: 10.1007/978-1-0716-0896-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The assessment of reactive oxygen species has increasing importance in biomedical sciences, due to their biological role in signaling pathways and induction of cell damage at low and high concentrations, respectively. Detection of lipid peroxidation with sensing probes such as some BODIPY dyes has now wide application in studies using fluorescent microplate readers, flow cytometry, and fluorescence microscopy. Two phenylbutadiene derivatives of BODIPY are commonly used as peroxidation probes, non-oxidized probes and oxidized products giving red and green fluorescence, respectively. Peculiar features of lipoperoxidation and BODIPY dye properties make this assessment a rather complex process, not exempt of doubts and troubles. Color changes and fluorescence fading that are not due to lipid peroxidation must be taken into account to avoid misleading results. As a characteristic feature of lipoperoxidation is the propagation of peroxyl radicals, pitfalls and advantages of a delayed detection by BODIPY probes should be considered.
Collapse
Affiliation(s)
- Juan C Stockert
- Instituto de Oncología "Angel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina. .,Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Chen HY, Yeh YC. Detection of tyrosine and monitoring tyrosinase activity using an enzyme cascade-triggered colorimetric reaction. RSC Adv 2020; 10:29745-29750. [PMID: 35518243 PMCID: PMC9056160 DOI: 10.1039/d0ra05581f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The aromatic amino acid tyrosine is an essential precursor for the synthesis of catecholamines, including l-DOPA, tyramine, and dopamine. A number of metabolic disorders have been linked to abnormal tyrosine levels in biological fluids. In this study, we developed an enzyme cascade-triggered colorimetric reaction for the detection of tyrosine, based on the formation of yellow pigment (betalamic acid) and red fluorometric betaxanthin. Tyrosinase converts tyrosine to l-DOPA, and DOPA-dioxygenase catalyzes oxidative cleavage of l-DOPA into betalamic acid. Response is linear for tyrosine from 5 to 100 μM, and the detection limit (LOD) is 2.74 μM. The enzyme cascade reaction was applied to monitor tyrosinase activity and tyrosinase inhibition assays. Lastly, the performance of the proposed biosensor proved successful in the analysis of urine samples without the need for pre-treatment.
Collapse
Affiliation(s)
- Huei-Yu Chen
- Department of Chemistry, National Taiwan Normal University Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University Taiwan
| |
Collapse
|
22
|
Qu Y, Zhan Q, Du S, Ding Y, Fang B, Du W, Wu Q, Yu H, Li L, Huang W. Catalysis-based specific detection and inhibition of tyrosinase and their application. J Pharm Anal 2020; 10:414-425. [PMID: 33133725 PMCID: PMC7591782 DOI: 10.1016/j.jpha.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tyrosinase is an important enzyme in controlling the formation of melanin in melanosome, and plays a key role in the pigmentation of hair and skin. The abnormal expression or activation of tyrosinase is associated with several diseases such as albinism, vitiligo, melanoma and Parkinson disease. Excessive deposition of melanin could cause diseases such as freckles and brown spots in the human body, and it is also closely related to browning of fruits and vegetables and insect molting. Detecting and inhibiting the activity of tyrosinase is of extraordinary value in the progress of diagnosis and treatment of these diseases. Therefore, many selective optical detection probes and small molecular inhibitors have been developed, and have made significant contributions to the basic and clinical research on these diseases. In this paper, the detection and inhibition of tyrosinase and their application in whitening products are reviewed, with special emphasis on development of fluorescent probes and inhibitors. Hopefully, this review will help design more efficient and sensitive tyrosinase probes and inhibitors, as well as shed light on novel treatment of diseases such as melanoma. The abnormal expression or activation of tyrosinase is the pathogenesis of several diseases such as albinism, vitiligo, and melanoma. Detecting and inhibiting tyrosinase activity is of great value in the diagnosis and treatment of these diseases. The detection/inhibition of tyrosinase and its application in whitening products are reviewed, with special emphasis on probes/inhibitors.
Collapse
Affiliation(s)
- Yunwei Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Qing Zhan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, Singapore
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Du
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
23
|
Detection of Lipase Activity in Cells by a Fluorescent Probe Based on Formation of Self-Assembled Micelles. iScience 2020; 23:101294. [PMID: 32623339 PMCID: PMC7334599 DOI: 10.1016/j.isci.2020.101294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Reliable and sensitive detection of lipase activity is essential for the early diagnosis and monitoring of acute pancreatitis or progression of digestive diseases. However, the available fluorescent probes for detection of lipase activity are only implemented in a hexane-water two-phase system due to the nature of heterogeneous catalysis of lipase, thus limiting their applications in direct imaging of lipase activity in living cells and tissues. Here we designed and synthesized a "turn on" fluorescent probe CPP based on self-assembled micelles for hydrolysis of lipase. The CPP probe exhibits high selectivity and excellent sensitivity for the detection of lipase in such a homogeneous system and is successfully applied for monitoring lipase activity in pancreatic AR42J cells, tissues, and serums. Taken together, the fluorescent CPP probe not only provides a tool for diagnostic potential in pancreatic disease but also demonstrates an application potential for micelle self-assembly-based development of biological probes.
Collapse
|
24
|
Yang S, Jiang J, Zhou A, Zhou Y, Ye W, Cao DS, Yang R. Substrate-Photocaged Enzymatic Fluorogenic Probe Enabling Sequential Activation for Light-Controllable Monitoring of Intracellular Tyrosinase Activity. Anal Chem 2020; 92:7194-7199. [PMID: 32309931 DOI: 10.1021/acs.analchem.0c00746] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tyrosinase (TYR) is a crucial enzyme involved in melanogenesis, and its overexpression is closely associated with melanoma. To precisely monitor intracellular TYR activity, remote control of a molecule imaging tool is highly meaningful but remains to be explored. In this work, we present the first photocaged tyrosinase fluorogenic probe by caging the substrate of the enzymatic probe with a photolabile group. Because of the sequential light and enzyme-activation feature, this probe exhibits photocontrollable "turn on" response toward TYR with good selectivity and high sensitivity (detection limit: 0.08 U/mL). Fluorescence imaging results validate that the caged probe possesses the capability of visualizing intracellular endogenous tyrosinase activity in a photocontrol fashion, thus offering a promising molecule imaging tool for investigating TYR-related physiological function and pathological role. Moreover, our sequential activation strategy has great potential for developing more photocontrollable enzymatic fluorogenic probes with spatiotemporal resolution.
Collapse
Affiliation(s)
- Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jiaxing Jiang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Anxin Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Wenling Ye
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| |
Collapse
|
25
|
CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinase. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9717-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Yin J, Jiao Y, Peng X, He H, Duan C. Ionic fluorescent sensor targeting receptor tyrosine kinases for biosystems imaging and application in flow cytometry. Biosens Bioelectron 2020; 153:112026. [PMID: 31989936 DOI: 10.1016/j.bios.2020.112026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Fluorescent imaging of receptor tyrosine kinases in living biosystems is an important means for the early diagnosis of cancer, herein an ionic fluorescent sensor (SNB) composed of targeting unit (sunitinib) and nile blue fluorophore linked via long flexible chain has been designed and evaluated. The SNB sensor exhibits distinct fluorescence responses to receptor tyrosine kinases derived from unfolding strategy and targeting ability, which were evaluated through 2D NMR analyses, optical studies, kinase activity assays. The SNB sensor has excellent membrane fluorescent imaging by electrostatic adsorption and can selectively insert into receptor tyrosine kinases domain pocket on the membrane of cancer cell lines. The SNB sensor has been successfully applied in flow cytometry for cell sorting and fluorescence imaging with tumor mouse model in vivo. The SNB senor may help transition the technology into a widely suitable tool for flow cytometry, imaging with confocal microscopes, whole animal imaging and possibly facilitating early diagnoses and treatment of cancer.
Collapse
Affiliation(s)
- Jiqiu Yin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China; College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Haiyang He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
27
|
Chen Y. Advances in fluorescent probes for detection and imaging of endogenous tyrosinase activity. Anal Biochem 2020; 594:113614. [DOI: 10.1016/j.ab.2020.113614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
28
|
Abstract
Tyrosinase is a key enzyme that has long been considered as a biomarker for melanoma as it catalyzes the oxidation of tyrosine and l-DOPA in melanogenesis. Recent studies also suggest a link between tyrosinase activity and Parkinson's disease; however, the mechanism of tyrosinase-mediated melanin formation in the brain is poorly understood. To better understand this connection, more advanced tools for the detection of tyrosinase in the brain are required. Herein, we successfully designed and synthesized a tyrosinase-targeting Gd(iii)-based MR contrast agent Tyr-GBCA 1. Tyr-GBCA 1 was synthesized by linking m-hydroxyphenyl to Gd-DOTA via a self-immolative linker. Tyr-GBCA 1 shows a 21% increase in the T1 relaxation rate (R1) in the presence of tyrosinase in artificial cerebral spinal fluid. Furthermore, Tyr-GBCA 1 is unreactive to hydrogen peroxide, which is a potential interferent in oxidation-based tyrosinase sensing systems. The reaction mechanism of the probe was studied by electrospray ionization (ESI) mass spectrometry and supports the cleavage of a reaction site.
Collapse
Affiliation(s)
- Hyewon Seo
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Zhao J, Liu G, Sun J, Wang Q, Li ZJ, Yang X. Dual-Readout Tyrosinase Activity Assay Facilitated by a Chromo-Fluorogenic Reaction between Catechols and Naphthoresorcin. Anal Chem 2020; 92:2316-2322. [PMID: 31859491 DOI: 10.1021/acs.analchem.9b05204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analyte-responsive chromo-fluorogenic reactions under accessible conditions are important for designing small-molecule spectroscopic probes. We describe a series of newly constructed motifs based on the chromo-fluorogenic reaction between catechol derivatives (typically hydroxytyrosol, dopamine, and levodopa) and naphthoresorcin (NR) in aqueous solution under ambient conditions. The weakly absorptive and fluorogenic catechols/NR was converted to products having visible absorption and bright fluorescence within several minutes. The chromo-fluorophores produced from this reaction had a maximum absorbance at 458 nm and emission at 480 nm with high fluorescence quantum yields (30-84%). Inspired by the tyrosinase-catalyzed hydroxylation of monophenols to catechols, the tyrosinase-enabled chromo-fluorogenic reaction was verified by using monophenol (typically tyrosol) as the substrate. In this regard, a dual-readout tyrosinase activity assay was developed by virtue of the in situ "turn-on" optical signals. Furthermore, a test of tyrosinase inhibition, by using a common inhibitor kojic acid, demonstrated the potential of the chromo-fluorogenic reaction for developing other tyrosinase related assays and signal transduction.
Collapse
Affiliation(s)
- Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guoyong Liu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Qifeng Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Organic Chemistry, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Zong-Jun Li
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
30
|
Kumar P, Biswas S, Koner AL. Fast tyrosinase detection in early stage melanoma with nanomolar sensitivity using a naphthalimide-based fluorescent read-out probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj02256j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report an expeditious approach for selective tyrosinase detection in early stage melanoma with nanomolar sensitivity using a napthalimide-based fluorescent probe.
Collapse
Affiliation(s)
- Prashant Kumar
- Bio-Nanotechnology Laboratory, Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal-462066
- India
| | - Suprakash Biswas
- Bio-Nanotechnology Laboratory, Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal-462066
- India
| | - Apurba Lal Koner
- Bio-Nanotechnology Laboratory, Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal-462066
- India
| |
Collapse
|
31
|
Sova S, Kelly LA. Enzyme Modification and Oxidative Cross-linking Using Carboxylate-, Phenol- and Catechol-Conjugated 1,8-Naphthalimides. Photochem Photobiol 2019; 95:1169-1178. [PMID: 30993721 DOI: 10.1111/php.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/10/2019] [Indexed: 11/27/2022]
Abstract
The ground- and excited-state interactions of β-alanine, tyrosine and l-dopa substituted 1,8 naphthalimides (NI-Ala, NI-Tyr and NI-Dopa) with lysozyme and mushroom tyrosinase were evaluated to understand the mechanism of oxidative modification. Photooxidative cross-linking of lysozyme was observed for all three conjugates. The yield was significantly reduced for NI-Tyr and NI-Dopa due to intramolecular electron transfer to the excited singlet state of the 1,8-naphthalimide. Incubation of NI-Tyr and NI-Dopa with mushroom tyrosinase resulted in an increased fluorescence from the naphthalimide, suggesting that the phenol and catechol portion of the conjugates are oxidized by the enzyme. This result demonstrates that the compounds bind in the active site of mushroom tyrosinase. The catalytic activity of mushroom tyrosinase to oxidize both tyrosine (monophenolase) and l-dopa (diphenolase) was modified by NI-Tyr and NI-Dopa. Monophenolase activity was inhibited, and the diphenolase activity was enhanced in the presence of these conjugates. Detailed Michaelis-Menten studies show that both Vmax and Km are modified, consistent with a mixed inhibition mechanism. Collectively, the results show that the compounds interact in the enzyme's active site, but also modify the distribution of the enzyme's oxidation states that are responsible for catalysis.
Collapse
Affiliation(s)
- Stacey Sova
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD
| | - Lisa A Kelly
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD
| |
Collapse
|
32
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Gao H, Liu H, Jiang L, Gai L, Shen Z. A near-infrared benzoquinone-coupled BODIPY: Synthesis, spectroscopic and electrochemical properties. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A near-infrared absorbing boron-dipyrromethene (BODIPY) chromophore coupled with two benzoquinone moieties at its 3,5-positions, 3, was prepared via Knoevenagel condensation of 1,3,5,7-tetramethyl-8-(4[Formula: see text]-benzonitrile) BODIPY 1 with 3,5-di-tert-butyl-4-hydroxybenzaldehyde to afford 1,7-dimethyl-3,5-di-(4[Formula: see text]-hydroxy-3[Formula: see text],5[Formula: see text]-di-tert-butyl styryl)-8-(4[Formula: see text]-benzonitrile) BODIPY 2, followed by oxidization with Ag2O in good yield (91%). The UV-vis-NIR absorption spectrum of 3 exhibits two major bands at 795 and 895 nm in the near-IR region, while 2shows maximum absorbance at 661 nm and strong fluorescence at 692 nm ([Formula: see text] 0.59). The cyclic voltammetry of 3 consists of two pairs of reversible one-electron reductions at -0.61 V and -0.88 V and two pairs of one-electron oxidation waves at 0.26 V and 0.54 V. Compared with the redox potentials of 2([Formula: see text] V and [Formula: see text] 0.25 V), the first reduction of 3 is anodically shifted for 710 mV, whereas the first oxidation potential is close. Theoretical calculation reveals that conjugation with the benzoquinone moieties on the BODIPY chromophore significantly lowers the LUMO energy level and the HOMO–LUMO energy gap, resulting in a dramatic bathochromic shift of the S0–S1 transition of 3 compared with that of 2. X-ray crystallographic analysis of 3 reveals that the whole molecule adopts a V-type twisted conformation along the delocalized [Formula: see text]-conjugated pathway.
Collapse
Affiliation(s)
- Hu Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Hui Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Liang Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Lizhi Gai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| |
Collapse
|
34
|
Zhang J, Li Z, Tian X, Ding N. A novel hydrosoluble near-infrared fluorescent probe for specifically monitoring tyrosinase and application in a mouse model. Chem Commun (Camb) 2019; 55:9463-9466. [DOI: 10.1039/c9cc04714j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel hydrosoluble near-infrared fluorescent probe is applied to imaging and detection of endogenous tyrosinase in living cells, zebrafish and a mouse model.
Collapse
Affiliation(s)
- Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi’an 710062
- China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi’an 710062
- China
| | - Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi’an 710062
- China
| | - Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi’an 710062
- China
| |
Collapse
|
35
|
Tang C, Jin L, Lin Y, Su J, Sun Y, Liu P, Li Q, Wang G, Zhang Z, Du L, Li M. Aminoluciferin 4-hydroxyphenyl amide enables bioluminescence detection of endogenous tyrosinase. Org Biomol Chem 2018; 16:9197-9203. [PMID: 30467562 DOI: 10.1039/c8ob01777h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyrosinase, a copper-containing enzyme existing widely in plants, animals and microorganisms, usually serves as an important biomarker in melanoma, and is also related to hyperpigmentation of the skin, melasma, age spots and albinism. At present, only one bioluminescent probe has been applied to image tyrosinase in cells. Thus, it's of great significance to develop a new bioluminescent probe that can detect tyrosinase in living cells and in live animals. In the current work, we report a new BL probe, TyrBP-3, which not detect tyrosinase in vitro and in living cells, but can also visualize the level of tyrosinase activity in tumors of living animals. In summary, TyrBP-3 is the first bioluminescent probe that can image tyrosinase on a cellular level. Hence, we anticipate that TyrBP-3 can be a good tool to monitor tyrosinase in complex biosystems in the future.
Collapse
Affiliation(s)
- Chunchao Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu G, Zhao J, Lu S, Wang S, Sun J, Yang X. Polymethyldopa Nanoparticles-Based Fluorescent Sensor for Detection of Tyrosinase Activity. ACS Sens 2018; 3:1855-1862. [PMID: 30149701 DOI: 10.1021/acssensors.8b00684] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Being a typical copper-containing oxidase, tyrosinase plays critical roles in biological activity, and its aberrant expression might cause diverse skin diseases. Herein, we, for the first time, have found an interesting green fluorogenic reaction between methyldopa and ethanolamine. By combining transmission electron microscopy, UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and MALDI-TOF mass spectrum analysis, we have confirmed that there is a reliable method for preparing the bright green fluorescent polymethyldopa nanoparticles (PMNPs) by simply mixing methyldopa and ethanolamine at room temperature. Inspired by such a simple and convenient fluorogenic reaction, a novel polymethyldopa nanoparticles-based fluorescent sensor for detection of tyrosinase activity was developed by using the commercially available metyrosine as a substrate, accompanied by the tyrosinase-catalyzed specific conversion of metyrosine into methyldopa. According to the intrinsic sensitivity/selectivity of fluorescence technology and unambiguous response mechanism, our fluorescent sensor exhibits excellent sensing performance and can be utilized in the determination of the tyrosinase activity in real biological samples and inhibitor screening.
Collapse
Affiliation(s)
- Guoyong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Zhao J, Wang S, Lu S, Bao X, Sun J, Yang X. An Enzyme Cascade-Triggered Fluorogenic and Chromogenic Reaction Applied in Enzyme Activity Assay and Immunoassay. Anal Chem 2018; 90:7754-7760. [DOI: 10.1021/acs.analchem.8b01845] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingfu Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
38
|
Peng M, Wang Y, Fu Q, Sun F, Na N, Ouyang J. Melanosome-Targeting Near-Infrared Fluorescent Probe with Large Stokes Shift for in Situ Quantification of Tyrosinase Activity and Assessing Drug Effects on Differently Invasive Melanoma Cells. Anal Chem 2018; 90:6206-6213. [PMID: 29696968 DOI: 10.1021/acs.analchem.8b00734] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosinase (TYR) plays a vital role in melanin biosynthesis and is widely regarded as a relatively specific marker for melanocytic lesions which involve vitiligo, malignant cutaneous melanoma, Parkinson's disease (PD), etc. However, the detection of TYR in living cells with fluorescent probes is usually interfered by diverse endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS). Herein, we synthesized a melanosome-targeting near-infrared (NIR) fluorescent probe (HB-NP) with a large Stokes shift (195 nm), achieving a highly sensitive and selective in situ detection for intracellular TYR, by incorporating a m-hydroxybenzyl moiety that recognizes TYR specifically and the morpholine unit which facilitates the probe accumulating in the melanosome into a salicyladazine skeleton. When treated with TYR, the probe itself with weak fluorescence is lit up via an inhibited photoinduced electron-transfer (PET) effect and HB-NP shows a strong fluorescence signal (nearly 48-fold enhancement) with a low detection limit of 0.5 U mL-1. HB-NP has been successfully applied in visualizing and in situ quantification of the intracellular TYR activity. Moreover, owing to the different expression levels of TYR, two human uveal melanoma cells with different invasive behaviors are distinguished by means of bioimaging and the effects of the inhibitor, kojic acid, and the up-regulating treatment, psoralen/ultraviolet A, on TYR activity of the two melanoma cells are evaluated. HB-NP is expected to be a useful tool to monitor diseases associated with the abnormal level of melanin and screen medicines for TYR disorder more effectively.
Collapse
Affiliation(s)
- Manshu Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Qiang Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Feifei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
39
|
A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening. Anal Bioanal Chem 2018; 410:4145-4152. [PMID: 29663060 DOI: 10.1007/s00216-018-1063-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 01/20/2023]
Abstract
In this work, a novel simple fluorescent biosensor for the highly sensitive and selective detection of adrenaline was established. Firstly, water-soluble CuInS2 quantum dots (QDs) capped by L-Cys were synthesized via a hydrothermal synthesis method. Then, the positively charged adrenaline was assembled on the surface of CuInS2 QDs due to the electrostatic interactions and hydrogen bonding, which led to the formation of adrenaline-CuInS2 QD (Adr-CuInS2 QD) electrostatic complexes. Tyrosinase (TYR) can catalyze adrenaline to generate H2O2, and additionally oxidize the adrenaline to adrenaline quinone. Both the H2O2 and the adrenaline quinone can quench the fluorescence of the CuInS2 QDs through the electron transfer (ET) process. Thus, the determination of adrenaline could be facilely achieved by taking advantage of the fluorescence "turn off" feature of CuInS2 QDs. Under the optimum conditions, the fluorescence quenching ratio If/If0 (If and If0 were the fluorescence intensity of Adr-CuInS2 QDs in the presence and absence of TYR, respectively) was proportional to the logarithm of adrenaline concentration in the range of 1 × 10-8-1 × 10-4 mol L-1 with the detection limit of 3.6 nmol L-1. The feasibility of the proposed biosensor in real sample assay was also studied and satisfactory results were obtained. Significantly, the proposed fluorescent biosensor can also be utilized to screen TYR inhibitors. Graphical abstract Schematic illustration of the fluorescent biosensor for adrenaline detection (A) and tyrosinase inhibitor screening (B).
Collapse
|
40
|
Naidu Bobba K, Won M, Shim I, Velusamy N, Yang Z, Qu J, Kim JS, Bhuniya S. A BODIPY-based two-photon fluorescent probe validates tyrosinase activity in live cells. Chem Commun (Camb) 2018; 53:11213-11216. [PMID: 28956555 DOI: 10.1039/c7cc05043g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report rational design, synthesis, and application of a two-photon fluorescent probe (Tyro-1) for tracking intracellular tyrosinase activity. The chemoselective detection of tyrosinase is precluded from interference of other competitive omnipresent oxidizing entities in cellular milieu. The probe showed 12.5-fold fluorescence enhancement at λem = 450 nm in the presence of tyrosinase. The nontoxic probe Tyro-1 provides information about H2O2-mediated upregulation of tyrosinase through cellular imaging. Its two-photon imaging ability makes it a noninvasive tool for validating the expression of tyrosinase in the live cells.
Collapse
Affiliation(s)
- Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang GL, Li XQ, Cao GX, Yuan F, Dong Y, Li Z. A novel photoswitchable enzyme cascade for powerful signal amplification in versatile bioassays. Chem Commun (Camb) 2018; 53:11165-11168. [PMID: 28951901 DOI: 10.1039/c7cc05771g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This report outlines the construction of an advanced, exquisite photoswitchable enzyme cascade on the basis that tyrosinase (TYR) catalyzes the generation of dihydroxyphenylalanine (DOPA) coordinated TiO2 nanoparticles (NPs) to form a light responsive nano-trigger that subsequently photoactivates the enzymatic activity of horseradish peroxidase (HRP). This photoswitchable enzyme cascade has a powerful signal transduction/amplification ability in TYR-based bioassays, and holds great promise to be applied in versatile applications.
Collapse
Affiliation(s)
- Guang-Li Wang
- The Key Laboratory of Synthetic Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | |
Collapse
|
42
|
Li Z, Wang YF, Zeng C, Hu L, Liang XJ. Ultrasensitive Tyrosinase-Activated Turn-On Near-Infrared Fluorescent Probe with a Rationally Designed Urea Bond for Selective Imaging and Photodamage to Melanoma Cells. Anal Chem 2018; 90:3666-3669. [DOI: 10.1021/acs.analchem.7b05369] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhipeng Li
- College of Life Science and Bioengineering, Beijing University of Technology & Beijing Key Laboratory of Environmental and Oncology, Beijing 100124, P. R. China
| | - Yi-Feng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengchu Zeng
- College of Life Science and Bioengineering, Beijing University of Technology & Beijing Key Laboratory of Environmental and Oncology, Beijing 100124, P. R. China
| | - Liming Hu
- College of Life Science and Bioengineering, Beijing University of Technology & Beijing Key Laboratory of Environmental and Oncology, Beijing 100124, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
43
|
An P, Lewandowski TM, Lin Q. Design and Synthesis of a BODIPY-Tetrazole Based "Off-On" in-Cell Fluorescence Reporter of Hydrogen Peroxide. Chembiochem 2018; 19:1326-1333. [PMID: 29385317 DOI: 10.1002/cbic.201700656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 12/21/2022]
Abstract
BODIPY-linked bithiophene-tetrazoles were designed and synthesized for bioorthogonal photoclick reactions in vitro and in vivo. The reactivity of these tetrazoles toward dimethyl fumarate was found to depend on the BODIPY attachment site, with the meta-linked BODIPY-tetrazole being the most reactive. The resulting pyrazoline cycloadduct showed drastically reduced BODIPY fluorescence. However, BODIPY fluorescence recovered after treatment with hydrogen peroxide. This turn-on effect was attributed to conversion from the pyrazoline to a pyrazole. Finally, we showed that this unique BODIPY-tetrazole off-on fluorescence probe can be used to detect hydrogen peroxide inside HeLa cells.
Collapse
Affiliation(s)
- Peng An
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| | - Tracey M Lewandowski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| |
Collapse
|
44
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
45
|
Kilic A, Koyuncu I, Durgun M, Ozaslan I, Kaya İH, Gönel A. Synthesis and Characterization of the Hemi-Salen Ligands and Their Triboron Complexes: Spectroscopy and Examination of Anticancer Properties. Chem Biodivers 2017; 15. [PMID: 29032600 DOI: 10.1002/cbdv.201700428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 11/07/2022]
Abstract
The synthesis, spectroscopic properties, and in vitro cytotoxicity activity of a series of various salen-based triboron complexes have been designed and prepared from hemi-salen (L1 H3 - L4 H3 ) ligands and BF3 ·Et2 O or BPh3 under simple reaction conditions. The hemi-salen (L1 H3 - L4 H3 ) ligands and their BF2 or BPh2 chelating triboron complexes were characterized by means of NMR (1 H, 13 C, 19 F, and 11 B) spectra, FT-IR spectra, UV/VIS spectra, fluorescence spectra, mass spectra, melting point, as well as elemental analysis. The triboron [L(1 - 4) (BF2 )3 ] and [L(1 - 4) (BPh2 )3 ] complexes were investigated for their absorption and emission properties, and these complexes are also good chelates towards boron(III) fragments such as BF2 or BPh2 quantum yield in solution reaching up to 38%. The hemi-salen (L1 H3 - L4 H3 ) ligands and their BF2 or BPh2 chelating triboron complexes were tested for the in vitro anticancer activity against various cancer and normal cells (HeLa, DLD-1, ECC-1, PC-3, PNT-1A, and CRL-4010), and it was found that the cell viability of cancer cells was decreased while most of the healthy cells could still be viable. Also, the cytotoxicity studies showed that anticancer activity of hemi-salen (L1 H3 - L4 H3 ) ligands is higher than that of triboron [L(1 - 4) (BF2 )3 ] and [L(1 - 4) (BPh2 )3 ] complexes. The hemi-salen (L1 H3 - L4 H3 ) ligands showing the strongest cytotoxic effect in PC-3 cells were found to exhibit anticancer activity with apoptosis by increasing the level of ROS in the PC-3 cells.
Collapse
Affiliation(s)
- Ahmet Kilic
- Department of Chemistry, Art and Science Faculty, Harran University, Sanliurfa, 63190, Turkey
| | - Ismail Koyuncu
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, 63290, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Art and Science Faculty, Harran University, Sanliurfa, 63190, Turkey
| | - Ismail Ozaslan
- Department of Chemistry, Art and Science Faculty, Harran University, Sanliurfa, 63190, Turkey
| | - İbrahim Halil Kaya
- Department of Chemistry, Art and Science Faculty, Harran University, Sanliurfa, 63190, Turkey
| | - Ataman Gönel
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, 63290, Turkey
| |
Collapse
|
46
|
Li H, Liu W, Zhang F, Zhu X, Huang L, Zhang H. Highly Selective Fluorescent Probe Based on Hydroxylation of Phenylboronic Acid Pinacol Ester for Detection of Tyrosinase in Cells. Anal Chem 2017; 90:855-858. [DOI: 10.1021/acs.analchem.7b03681] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huihui Li
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fengyuan Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinyue Zhu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Liqiu Huang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
47
|
Heitz MP, Rupp JW. Determining mushroom tyrosinase inhibition by imidazolium ionic liquids: A spectroscopic and molecular docking study. Int J Biol Macromol 2017; 107:1971-1981. [PMID: 29032215 DOI: 10.1016/j.ijbiomac.2017.10.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/30/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023]
Abstract
The inhibition effects of imidazolium ionic liquids (ILs) on the enzyme kinetics of mushroom tyrosinase is reported. A simple UV-VIS spectrophotometric assay was used to measure the reaction kinetics of the reaction between mushroom tyrosinase and L-dopa. Seven different imidazolium ILs, comprised of 1-alkyl-3-methylimidazolium ([Imn1+], n=2, 4, 6) cations paired with several anions that included Cl-, [NO3-], methanesulfonate ([MeSO3-]), trifluoromethanesulfonate (or triflate, [TFMS-]), and bis(trifluoromethylsulfonyl)imide ([Tf2N-]). Lineweaver-Burk plots were generated from the recovered kcat and Km parameters using four to six substrate concentrations per measurement. The results show that mushroom tyrosinase activity was consistently inhibited by all of the ILs and that the type of inhibition was non-competitive in nearly all cases. Only the data for [Im21+][Tf2N-] suggested that the inhibition mechanism was competitive with the substrate. Molecular docking simulations were performed using AutoDock4.2 and AutoDock Vina and revealed that all cations docked in the L-dopa active site. Anions showed varied results that included locations both within and outside of the active site.
Collapse
Affiliation(s)
- Mark P Heitz
- Department of Chemistry and Biochemistry, The College at Brockport, SUNY, 228, Smith Hall 350 New Campus Drive, Brockport, NY, 14420, United States.
| | - Jason W Rupp
- Department of Chemistry and Biochemistry, The College at Brockport, SUNY, 228, Smith Hall 350 New Campus Drive, Brockport, NY, 14420, United States
| |
Collapse
|
48
|
Zhao J, Bao X, Wang S, Lu S, Sun J, Yang X. In Situ Fluorogenic and Chromogenic Reactions for the Sensitive Dual-Readout Assay of Tyrosinase Activity. Anal Chem 2017; 89:10529-10536. [PMID: 28891289 DOI: 10.1021/acs.analchem.7b02739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a well-known copper-containing oxidase, tyrosinase has been anticipated to serve as the biomarker of skin diseases. We describe here an exquisite label-free fluorescent and colorimetric dual-readout assay of its activity, inspired by the specific oxidation ability of monophenolamine substrates to catecholamines and a unique fluorogenic reaction between resorcinol and catecholamines. By employing commercially available tyramine as the model substrate (dopamine as the product), it is found that the tyrosinase-incubated tyramine solution exhibits obvious pale yellow with intense blue fluorescence in the presence of resorcinol and O2, where the absorbance and fluorescence intensity are directly related to the concentration of added tyrosinase (i.e., the amount of conversion of tyramine to dopamine). The overall process of sensing tyrosinase activity takes less than 100 min at ambient temperature and pressure conditions with exceedingly simple operation procedure, explicit response mechanism, and formation of fluorophore with high quantum yield from scratch. Furthermore, such a convenient, rapid, cost-effective, and highly sensitive dual-readout assay exhibits promising prospect for the tyrosinase activity in extensive bioassays and clinic research as well as in screening potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xingfu Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| |
Collapse
|
49
|
Wang Q, Zhou H. Ammonium Arylspiroborate Compounds: Synthesis, Crystal Structure, Fluorescence Properties, and Antibacterial Activity. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qiaoyun Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, People’s Republic of China
| | - Hong Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, People’s Republic of China
| |
Collapse
|
50
|
Ibarra-Rodrı́guez M, Muñoz-Flores BM, Dias HVR, Sánchez M, Gomez-Treviño A, Santillan R, Farfán N, Jiménez-Pérez VM. Fluorescent Molecular Rotors of Organoboron Compounds from Schiff Bases: Synthesis, Viscosity, Reversible Thermochromism, Cytotoxicity, and Bioimaging Cells. J Org Chem 2017; 82:2375-2385. [DOI: 10.1021/acs.joc.6b02802] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marisol Ibarra-Rodrı́guez
- Facultad
de Ciencias Químicas, Ciudad Universitaria, Universidad Autónoma de Nuevo León, 66451 San Nicolás
de los Garza, Nuevo León Mexico
| | - Blanca M. Muñoz-Flores
- Facultad
de Ciencias Químicas, Ciudad Universitaria, Universidad Autónoma de Nuevo León, 66451 San Nicolás
de los Garza, Nuevo León Mexico
| | - H. V. Rasika Dias
- Department
of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Mario Sánchez
- Centro de Investigación en Materiales Avanzados, S.C., Alianza Norte 202, PIIT, Carretera Monterrey-Aeropuerto
Km 10, CP 66628, Apodaca, Nuevo León Mexico
| | - Alberto Gomez-Treviño
- Facultad
de Ciencias Químicas, Ciudad Universitaria, Universidad Autónoma de Nuevo León, 66451 San Nicolás
de los Garza, Nuevo León Mexico
| | - Rosa Santillan
- Departamento
de Química, Centro de Investigación y de Estudios Avanzados del IPN, A.P.
14-740, CP 07000 San Pedro Zacatenco, DF, Mexico
| | - Norberto Farfán
- Facultad
de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Víctor M. Jiménez-Pérez
- Facultad
de Ciencias Químicas, Ciudad Universitaria, Universidad Autónoma de Nuevo León, 66451 San Nicolás
de los Garza, Nuevo León Mexico
| |
Collapse
|