1
|
Kropaneva M, Khramtsov P, Bochkova M, Lazarev S, Kiselkov D, Rayev M. Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. BIOSENSORS 2023; 13:857. [PMID: 37754091 PMCID: PMC10526127 DOI: 10.3390/bios13090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Point-of-care tests play an important role in serological diagnostics of infectious diseases and post-vaccination immunity monitoring, including in COVID-19. Currently, lateral flow tests dominate in this area and show good analytical performance. However, studies to improve the effectiveness of such tests remain important. In comparison with lateral flow tests, vertical flow immunoassays allow for a reduction in assay duration and the influence of the hook effect. Additionally, the use of carbon black nanoparticles (CNPs) as a color label can provide a lower detection limit (LOD) compared to conventional colloidal gold. Therefore, we have developed a vertical flow immunoassay for the detection of IgG against SARS-CoV-2 spike protein in human serum samples by applying a conjugate of CNPs with anti-human IgG mouse monoclonal antibodies (CNP@MAb). The vertical flow assay device consists of a plastic cassette with a hole on its top containing a nitrocellulose membrane coated with spike protein and an absorbent pad. The serum sample, washing buffer, and CNP@MAb flow vertically through the nitrocellulose membrane and absorbent pads, reducing assay time and simplifying the procedure. In positive samples, the interaction of CNP@MAb with anti-spike antibodies leads to the appearance of black spots, which can be visually detected. The developed method allows for rapid visual detection (5-7 min) of IgG vs. spike protein, with a LOD of 7.81 BAU/mL. It has been shown that an untrained operator can perform the assay and visually evaluate its results. Thus, the presented assay can be used in the further development of test systems for the serological diagnostics of COVID-19 or post-vaccination immunity monitoring.
Collapse
Affiliation(s)
- Maria Kropaneva
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Pavel Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Sergey Lazarev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Dmitriy Kiselkov
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, 614013 Perm, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| |
Collapse
|
2
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Alnajjar K, Adeeb S, Al Eman N, Ahmed Z, Shakir I, Al-Kattan K, Yaqinuddin A. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers (Basel) 2023; 15:3414. [PMID: 37444523 DOI: 10.3390/cancers15133414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the most commonly diagnosed of all cancers and one of the leading causes of cancer deaths among men and women worldwide, causing 1.5 million deaths every year. Despite developments in cancer treatment technologies and new pharmaceutical products, high mortality and morbidity remain major challenges for researchers. More than 75% of lung cancer patients are diagnosed in advanced stages, leading to poor prognosis. Lung cancer is a multistep process associated with genetic and epigenetic abnormalities. Rapid, accurate, precise, and reliable detection of lung cancer biomarkers in biological fluids is essential for risk assessment for a given individual and mortality reduction. Traditional diagnostic tools are not sensitive enough to detect and diagnose lung cancer in the early stages. Therefore, the development of novel bioanalytical methods for early-stage screening and diagnosis is extremely important. Recently, biosensors have gained tremendous attention as an alternative to conventional methods because of their robustness, high sensitivity, inexpensiveness, and easy handling and deployment in point-of-care testing. This review provides an overview of the conventional methods currently used for lung cancer screening, classification, diagnosis, and prognosis, providing updates on research and developments in biosensor technology for the detection of lung cancer biomarkers in biological samples. Finally, it comments on recent advances and potential future challenges in the field of biosensors in the context of lung cancer diagnosis and point-of-care applications.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Salma Adeeb
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
3
|
Deng M, Li J, Xiao B, Ren Z, Li Z, Yu H, Li J, Wang J, Chen Z, Wang X. Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal Chem 2022; 94:3320-3327. [PMID: 35147418 DOI: 10.1021/acs.analchem.1c05309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing highly sensitive, reliable, cost-effective label-free DNA biosensors is challenging with traditional fluorescence, electrochemical, and other techniques. Most conventional methods require labeling fluorescence, enzymes, or other complex modification. Herein, we fabricate carbon quantum dot (CQD)-functionalized solution-gated graphene transistors for highly sensitive label-free DNA detection. The CQDs are immobilized on the surface of the gate electrode through mercaptoacetic acid with the thiol group. A single-stranded DNA (ssDNA) probe is immobilized on CQDs by strong π-π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, which led to a shift of Dirac voltage and the channel current response. The limit of detection can reach 1 aM which is 2-5 orders of magnitude lower than those of other methods reported previously. The sensor also exhibits a good linear range from 1 aM to 0.1 nM and has good specificity. It can effectively distinguish one-base mismatched target DNA. The response time is about 326 s for the 1 aM target DNA molecules. This work provides good perspectives on the applications in biosensors.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bichen Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Haiyang Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
4
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Kim Y, Inoue Y, Hasegawa H, Yoshida Y, Sakata T. In Situ Electrical Monitoring of Methylated DNA Based on Its Conformational Change to G-Quadruplex Using a Solution-Gated Field-Effect Transistor. Anal Chem 2021; 93:16709-16717. [PMID: 34859677 DOI: 10.1021/acs.analchem.1c04466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methylated DNA is not only a diagnostic but also a prognostic biomarker for early-stage cancer. However, sodium bisulfite sequencing as a "gold standard" method for detection of methylation markers has some drawbacks such as its time-consuming and labor-intensive procedures. Therefore, simple and reliable methods are required to analyze DNA sequences with or without methylated residues. Herein, we propose a simple and direct method for detecting DNA methylation through its conformation transition to G-quadruplex using a solution-gated field-effect transistor (SG-FET) without using labeled materials. The BCL-2 gene, which is involved in the development of various human tumors, contains G-rich segments and undergoes a conformational change to G-quadruplex depending on the K+ concentration. Stacked G-quadruplex strands move close to the SG-FET sensor surface, resulting in large electrical signals based on intrinsic molecular charges. In addition, a dense hydrophilic polymer brush is grafted using surface-initiated atom transfer radical polymerization onto the SG-FET sensor surface to reduce electrical noise based on nonspecific adsorption of interfering species. In particular, control of the polymer brush thickness induces electrical signals based on DNA molecular charges in the diffusion layer, according to the Debye length limit. A platform based on the SG-FET sensor with a well-defined polymer brush is suitable for in situ monitoring of methylated DNA and realizes a point-of-care device with a high signal-to-noise ratio and without the requirement for additional processes such as bisulfite conversion and polymerase chain reaction.
Collapse
Affiliation(s)
- Yeji Kim
- Advanced Technology Research Dept., LG Japan Lab Inc., Glass Cube Shinagawa, 4-13-14 Higashi Shinagawa, Shinagawa-ku, Tokyo 140-0002, Japan
| | - Yuuki Inoue
- Advanced Technology Research Dept., LG Japan Lab Inc., Glass Cube Shinagawa, 4-13-14 Higashi Shinagawa, Shinagawa-ku, Tokyo 140-0002, Japan
| | - Hijiri Hasegawa
- Advanced Technology Research Dept., LG Japan Lab Inc., Glass Cube Shinagawa, 4-13-14 Higashi Shinagawa, Shinagawa-ku, Tokyo 140-0002, Japan
| | | | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Mukherjee I, Ghosh A, Purkayastha P. Förster Resonance Energy Transfer from Carbon Nanoparticles to a DNA-Bound Compound: A Method to Detect the Nature of Binding. J Phys Chem B 2021; 125:10126-10137. [PMID: 34465085 DOI: 10.1021/acs.jpcb.1c05149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A drug molecule can bind in various orientations to a DNA strand. Nature of the binding decides the functionality and efficacy of the drug. To innovate a new method to detect the nature of binding of a drug to DNA strands, herein we have used the dipole-dipole interaction driven Förster resonance energy transfer (FRET) between carbon nanoparticles (CNPs) and a DNA-bound small molecule, (E)-3-ethyl-2-(4-(pyrrolidin-1-yl)styryl)benzo[d]thiazol-3-ium (EPSBT), which belongs to the hemicyanine family and binds typically to the minor groove of a DNA duplex. EPSBT was designed to obtain appreciable fluorescence quantum yield, which constructed an efficient FRET pair with the synthesized CNPs. The tested compound prefers the thymine nucleobase to bind to the DNA strand. Orientation of its dipole on attachment to the DNA strand and the donor-acceptor distance dictate the FRET efficiency with the CNPs. The results provided a precise estimation of the nature of binding of EPSBT to the DNA backbone and, hence, supposedly will help in deciding the functional efficacy.
Collapse
Affiliation(s)
- Ishani Mukherjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741246, India
| | - Ashutosh Ghosh
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741246, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741246, India
| |
Collapse
|
7
|
Wang HH, Li MJ, Tu YP, Wang HJ, Chai YQ, Li ZH, Yuan R. Fullerenol as a photoelectrochemical nanoprobe for discrimination and ultrasensitive detection of amplification-free single-stranded DNA. Biosens Bioelectron 2020; 173:112802. [PMID: 33220534 DOI: 10.1016/j.bios.2020.112802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Traditional approaches for nucleic acids detection require prior amplification of target genes, while nanomaterials-aided DNA biosensors are very magnificent but still suffer from the nanomaterial acquirement and limited sensitivity (above picomolar level). Herein, fullerenol C60(OH)25, a representative fullerene derivative, was employed as a photoelectrochemical (PEC) nanoprobe to achieve discrimination and ultrasensitive detection of amplification-free single-stranded DNA (ssDNA) down to sub-femtomolar level. The bonded hydroxyl groups with intense density endowed fullerenol to directly recognize and capture ssDNA-AuNPs via the hydrogen bonding interactions (H-bonds), leading to a sharply decreased photocurrent with quenching efficiency up to 85%, which could be attributed to the photo-generated electrons on the conduction band of fullerenol (-4.66 eV) preferentially migrating to the Fermi level of AuNPs (-5.1 eV) rather than the electrode. In the presence of target gene (mutant human p53 gene fragment), the H-bonds between fullerenol and ssDNA were competitively depleted during the base pairing process of complete hybridization between ssDNA and target, making double-stranded DNA-AuNPs (dsDNA-AuNPs) depart so that the photocurrent powerfully recovered. On basis of the photocurrent variation before and after target introduction, this proposed simple, rapid and ultrasensitive PEC biosensor for amplification-free target gene detection illustrated a wide liner ranged from 1 fM to 100 pM and a detection limit of 0.338 fM. This work presented an ingenious strategy for the discrimination and ultrasensitive detection of nucleic acids, and the well-designed PEC biosensor was further conducive to the impetus of clinic diagnostics.
Collapse
Affiliation(s)
- Hai-Hua Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Meng-Jie Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yu-Peng Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Hai-Jun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhao-Hui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
8
|
Yan XL, Xue XX, Deng XM, Jian YT, Luo J, Jiang MM, Zheng XJ. Chemiluminescence strategy induced by HRP-sandwich structure based on strand displacement for sensitive detection of DNA methyltransferase. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Duan M, Xiao X, Huang Y, Li G, Shan S, Lv X, Zhou H, Peng S, Liu C, Liu D, Lai W. Immuno-HCR based on contact quenching and fluorescence resonance energy transfer for sensitive and low background detection of Escherichia coli O157:H7. Food Chem 2020; 334:127568. [PMID: 32712489 DOI: 10.1016/j.foodchem.2020.127568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/10/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
Escherichia coli O157:H7 makes a major threat to human health. Aiming to detect Escherichia coli O157:H7 sensitively, hybridization chain reaction signal amplified immunoassay (immuno-HCR) based on contact quenching (CQ) and fluorescence resonance energy transfer (FRET) was developed. The background of the new designed HCR hairpins (CQ-FRET hairpins) was reduced by contact-quenching fluorescein (FAM) and breaking FRET from donor (FAM) to acceptor (Cy5). The F/F0 ratio of CQ-FRET hairpins (37.02) was obviously higher than that of two other common HCR fluorescent hairpins (CQ hairpins, 21.45; FRET hairpins, 4.61). The limit of detection of the assay was 3.5 × 101 CFU/mL and obviously lower than that of CQ hairpins based immuno-HCR (3.28 × 103 CFU/mL) and FRET hairpins based immuno-HCR (6.49 × 104 CFU/mL). The proposed low fluorescent background immuno-HCR with high sensitivity which was verified in contaminated milk samples could be potentially used in the detection of various pathogens.
Collapse
Affiliation(s)
- Miaolin Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Yanmei Huang
- Jiangxi YeLi Medical Device Co., Ltd, 2799 TianXiang Avenue, Nanchang 330008, China
| | - Guoqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Shan Shan
- Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Xi Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Houde Zhou
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Silu Peng
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Chengwei Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China.
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Jia Y, Li F, Jia T, Wang Z. Meso-tetra(4-carboxyphenyl)porphine-Enhanced DNA Methylation Sensing Interface on a Light-Addressable Potentiometric Sensor. ACS OMEGA 2019; 4:12567-12574. [PMID: 31460377 PMCID: PMC6682126 DOI: 10.1021/acsomega.9b00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
DNA methylation (DNAm) sensors are an emerging branch in the discipline of sensors. It is believed to be able to promote the next generation of epigenetics-based diagnostic technology. Differing from the traditional biochemical sensors that aimed at individual molecules, the challenge in DNAm sensors is how to determine the amount of 5-methylcytosine (5mC) in a continuous nucleotide sequence. Here, we report a comparative study about meso-tetra(4-carboxyphenyl)porphine (TCPP)-based DNAm sensing interfaces on a light-addressable potentiometric sensor (LAPS), depending on TCPP's postures that are flat in the π-conjugated TCPP layer on reduced-graphene-oxide-decorated LAPS (#1) and stand-up in the covalently anchored TCPP on glutaraldehyde (GA)-treated LAPS (#2), along with the blank one (only GA-treated LAPS, #3). These DNAm sensing interfaces are also distinct from the traditional biosensing interface on LAPS, that is: it is not functionalized by the sensing indicator (5mC antibody, in this case) but by the target nucleotide sequence. The surface characterization techniques such as Raman spectra, scanning electron microscopy, and X-ray photoelectron spectroscopy are conducted to prove the decorations, as well as the anchored nucleotides. It is found that, though all of them can detect as low as one 5mC in the target sequence, the enhanced DNAm sensitivity is obtained by #2, which is evidenced by the higher output-voltage changing ratio for the 5mC site of #2 than those of #1 and #3. Furthermore, the underlying causes for the improved sensitivity in #2 are proposed, according to the conformational and electronic properties of TCPP molecules. Conclusively, TCPP's synergetic function, including the molecular configuration and the activate (carboxyl) groups on its peripheral substituents, to improve the DNAm sensing interface on LAPS is investigated and demonstrated. This can shed light on a new approach for DNA methylation detection, with the merits of low cost, independence on bisulfite conversion, and polymerase chain reaction.
Collapse
|
11
|
Chen Y, Meng XZ, Gu HW, Yi HC, Sun WY. A dual-response biosensor for electrochemical and glucometer detection of DNA methyltransferase activity based on functionalized metal-organic framework amplification. Biosens Bioelectron 2019; 134:117-122. [DOI: 10.1016/j.bios.2019.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022]
|
12
|
Rafiei S, Dadmehr M, Hosseini M, Kermani HA, Ganjali MR. A fluorometric study on the effect of DNA methylation on DNA interaction with graphene quantum dots. Methods Appl Fluoresc 2019; 7:025001. [DOI: 10.1088/2050-6120/aaff95] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Photoelectrochemical determination of the activity of M.SssI methyltransferase, and a method for inhibitor screening. Mikrochim Acta 2018; 185:498. [DOI: 10.1007/s00604-018-3033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
|
14
|
Syedmoradi L, Esmaeili F, Norton ML. Towards DNA methylation detection using biosensors. Analyst 2018; 141:5922-5943. [PMID: 27704092 DOI: 10.1039/c6an01649a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
15
|
Kermani HA, Hosseini M, Miti A, Dadmehr M, Zuccheri G, Hosseinkhani S, Ganjali MR. A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal Bioanal Chem 2018; 410:4943-4952. [DOI: 10.1007/s00216-018-1143-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
|
16
|
Wang L, Huang Z, Wang R, Liu Y, Qian C, Wu J, Liu J. Transition Metal Dichalcogenide Nanosheets for Visual Monitoring PCR Rivaling a Real-Time PCR Instrument. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4409-4418. [PMID: 29327589 DOI: 10.1021/acsami.7b15746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monitoring the progress of polymerase chain reactions (PCRs) is of critical importance in bioanalytical chemistry and molecular biology. Although real-time PCR thermocyclers are ideal for this purpose, their high cost has limited their applications in resource-poor areas. Direct visual detection would be a more attractive alternative. To monitor the PCR amplification, DNA-staining dyes, such as SYBR Green I (SG), are often used. Although these dyes give higher fluorescence when binding to double-stranded DNA products, they also yield strong background fluorescence in the presence of a high concentration of single-stranded (ss) DNA primers. In this work, we screened various nanomaterials and found that graphene oxide (GO), reduced GO, molybdenum disulfide (MoS2), and tungsten disulfide (WS2) can quench the fluorescence of nonamplified negative samples while still retaining strong fluorescence of positive ones. The signal ratio of positive-over-negative samples was enhanced by around 50-fold in the presence of these materials. In particular, MoS2 and WS2 nearly fully retained the fluorescence of the positive samples. The mechanism for MoS2 and WS2 to enhance PCR signaling is attributed to the adsorption of both the ssDNA PCR primers and SG with an appropriate strength. MoS2 can also suppress nonspecific amplification caused by excess polymerase. Finally, this method was used to detect extracted transgenic soya GTS 40-3-2 DNA after PCR amplification. Compared with the samples without nanomaterials, the addition of MoS2 could better distinguish the concentration difference of the template DNA, and the sensitivity of visual detection rivaled that from a real-time PCR instrument.
Collapse
Affiliation(s)
- Liu Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Rui Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| | - Cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou 310058, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
17
|
Commercial glucometer as signal transducer for simple evaluation of DNA methyltransferase activity and inhibitors screening. Anal Chim Acta 2018; 1001:18-23. [DOI: 10.1016/j.aca.2017.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
|
18
|
Gao F, Fan T, Ou S, Wu J, Zhang X, Luo J, Li N, Yao Y, Mou Y, Liao X, Geng D. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens Bioelectron 2017; 99:201-208. [PMID: 28759870 DOI: 10.1016/j.bios.2017.07.063] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
In this paper, we reported a sensitive and selective electrochemical method for quantify DNA methylation, analyzing DNA MTase activity and screening of MTase inhibitor based on silver nanoparticles (Ag NPs) decorated carbon nanocubes (CNCs) as signal tag. The Ag NPs/CNCs was prepared by in situ growth of nanosilver on carboxylated CNCs and used as a tracing tag to label antibody. The sensor was prepared by immobilizing the double DNA helix structure on the surface of gold electrode. When DNA MTase was introduced, the probe was methylated. Successively, anti-5-methylcytosine antibody labeled Ag NPs/CNCs was specifically conjugated on the CpG methylation site. The electrochemical stripping signal of the Ag NPs was used to monitor the activity of MTase. The electrochemical signal has a linear relationship with M.SssI activities ranging from 0.05 to 120U/mL with a detection limit of 0.03U/mL. In addition, we also demonstrated the method could be used for rapid evaluation and screening of the inhibitors of MTase. The newly designed strategy avoid the requirement of deoxygenation for electrochemical assay, and thus provide a promising potential in clinical application.
Collapse
Affiliation(s)
- Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Taotao Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shanshan Ou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jing Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Xing Zhang
- The Graduate School, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jianjun Luo
- The Graduate School, Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yingfeng Mou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000 Baise, China.
| | - Deqin Geng
- The Graduate School, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
19
|
Peng Z, Han X, Li S, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Magnetic bead-liposome hybrids enable sensitive and portable detection of DNA methyltransferase activity using personal glucose meter. Biosens Bioelectron 2017; 87:537-544. [DOI: 10.1016/j.bios.2016.08.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022]
|
21
|
Jiang B, Wei Y, Xu J, Yuan R, Xiang Y. Coupling hybridization chain reaction with DNAzyme recycling for enzyme-free and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal Chim Acta 2017; 949:83-88. [DOI: 10.1016/j.aca.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 11/05/2016] [Indexed: 12/20/2022]
|
22
|
Chen K, Zhang M, Chang YN, Xia L, Gu W, Qin Y, Li J, Cui S, Xing G. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation. NANOSCALE RESEARCH LETTERS 2016; 11:304. [PMID: 27325520 PMCID: PMC4916073 DOI: 10.1186/s11671-016-1487-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met-p16). The probe, paired with Met-p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.
Collapse
Affiliation(s)
- Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mingyi Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Lin Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Yanxia Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Suxia Cui
- School of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China.
| |
Collapse
|
23
|
Zhang H, Dong H, Yang G, Chen H, Cai C. Sensitive Electrochemical Detection of Human Methyltransferase Based on a Dual Signal Amplification Strategy Coupling Gold Nanoparticle–DNA Complexes with Ru(III) Redox Recycling. Anal Chem 2016; 88:11108-11114. [DOI: 10.1021/acs.analchem.6b03163] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhang
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Huilei Dong
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Guoqing Yang
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Hongfei Chen
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Chenxin Cai
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| |
Collapse
|
24
|
Li X, Meng M, Zheng L, Xu Z, Song P, Yin Y, Eremin SA, Xi R. Chemiluminescence Immunoassay for S-Adenosylhomocysteine Detection and Its Application in DNA Methyltransferase Activity Evaluation and Inhibitors Screening. Anal Chem 2016; 88:8556-61. [DOI: 10.1021/acs.analchem.6b01579] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaogang Li
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Meng Meng
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Lei Zheng
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Zhihuan Xu
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Pei Song
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Yongmei Yin
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Sergei A. Eremin
- Faculty
of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Rimo Xi
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| |
Collapse
|
25
|
Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters. Anal Bioanal Chem 2016; 408:4311-8. [DOI: 10.1007/s00216-016-9522-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 01/24/2023]
|
26
|
Sun H, Ren J, Qu X. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications. Acc Chem Res 2016; 49:461-70. [PMID: 26907723 DOI: 10.1021/acs.accounts.5b00515] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA is polymorphic. Increasing evidence has indicated that many biologically important processes are related to DNA's conformational transition and assembly states. In particular, noncanonical DNA structures, such as the right-handed A-form, the left-handed Z-form, the triplex, the G-quadruplex, the i-motif, and so forth, have been specific targets for the diagnosis and therapy of human diseases. Meanwhile, they have been widely used in the construction of smart DNA nanomaterials and nanoarchitectures. As rising stars in materials science, the family of carbon nanomaterials (CNMs), including two-dimensional graphene, one-dimensional carbon nanotubes (CNTs), and zero-dimensional graphene or carbon quantum dots (GQDs or CQDs), interact with DNA and are able to regulate the conformational transitions of DNA. The interaction of DNA with CNMs not only opens new opportunities for specific molecular recognition, but it also expands the promising applications of CNMs from materials science to biotechnology and biomedicine. In this Account, we focus on our contributions to the field of interactions between CNMs and DNA in which we have explored their promising applications in nanodevices, sensing, materials synthesis, and biomedicine. For one-dimensional CNTs, two-dimensional graphene, and zero-dimensional GQDs and CQDs, the basic principles, binding modes, and applications of the interactions between CNMs and DNA are reviewed. We aim to give prominence to the important status of CNMs in the field of molecular recognition for DNA. First, we summarized our discovery of the interactions between single-walled carbon nanotubes (SWNTs) with duplex, triplex, and human telomeric i-motif DNA and their interesting applications. For example, SWNTs are the first chemical agents that can selectively stabilize human telomeric i-motif DNA and induce its formation under physiological conditions. On the basis of this principle, two types of nanodevices were designed. One was used for highly sensitive detection of ppm levels of SWNTs in cells, and the other monitored i-motif DNA formation. Further studies indicated that SWNTs could inhibit telomerase activity in living cells and cause telomere dysfunction, providing new insight into the biological effects of SWNTs. Then, some applications that are based on the interactions between graphene and DNA are also summarized. Combined with other nanomaterials, such as metal and upconversion nanoparticles, several hybrid nanomaterials were successfully constructed, and a series of DNA logic gates were successfully developed. Afterwards, the newcomer of the carbon nanomaterials family, carbon quantum dots (CQDs), were found to be capable of modulating right-handed B-form DNA to left-handed Z-form DNA. These were further used to design FRET logic gates that were based on the CQD-derived DNA conformational transition. Taking into account the remaining challenges and promising aspects, CNM-based DNA nanotechnology and its biomedical applications will attract more attention and produce new breakthroughs in the near future.
Collapse
Affiliation(s)
- Hanjun Sun
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate
School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinsong Ren
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
27
|
Sensitive detection of DNA methyltransferase activity based on supercharged fluorescent protein and template-free DNA polymerization. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5564-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Cui W, Wang L, Jiang W. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification. Biosens Bioelectron 2016; 77:650-5. [DOI: 10.1016/j.bios.2015.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
29
|
Han J, Zou HY, Gao MX, Huang CZ. A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta 2016; 148:279-84. [DOI: 10.1016/j.talanta.2015.10.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
|
30
|
Zhan Z, Cai J, Wang Q, Su Y, Zhang L, Lv Y. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP. LUMINESCENCE 2015; 31:626-32. [PMID: 26359586 DOI: 10.1002/bio.3002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 11/11/2022]
Abstract
Fluorescent carbon nanoparticles (CPs), a fascinating class of recently discovered nanocarbons, have been widely known as some of the most promising sensing probes in biological or chemical analysis. In this study, we demonstrate a green synthetic methodology for generating water-soluble CPs with a quantum yield of approximately 24% via a simple heating process using yum mucilage as a carbon source. The prepared carbon nanoparticles with an ~10 nm size possessed excellent fluorescence properties, and the fluorescence of the CPs was strongly quenched by Fe(3+), and recovered by adenosine triphosphate (ATP), thus, an 'off' and 'on' system can be easily established. This 'CPs-Fe(3+)-ATP' strategy was sensitive and selective at detecting ATP with the linear range of 0.5 µmol L(-1) to 50 µmol L(-1) and with a detection limit of 0.48 µmol L(-1).
Collapse
Affiliation(s)
- Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jiao Cai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qi Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.,Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi, 030008, China
| | - Yingying Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
31
|
Proximity-based electrochemical biosensor for highly sensitive determination of methyltransferase activity using gold nanoparticle-based cooperative signal amplification. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1564-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Li W, Liu X, Hou T, Li H, Li F. Ultrasensitive homogeneous electrochemical strategy for DNA methyltransferase activity assay based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens Bioelectron 2015; 70:304-9. [DOI: 10.1016/j.bios.2015.03.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
|
33
|
Liu W, Lai H, Huang R, Zhao C, Wang Y, Weng X, Zhou X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5’-C-rich/G-rich-3’ tails. Biosens Bioelectron 2015; 68:736-740. [DOI: 10.1016/j.bios.2015.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/25/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
|
34
|
Lin X, Cui L, Huang Y, Lin Y, Xie Y, Zhu Z, Yin B, Chen X, Yang CJ. Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chem Commun (Camb) 2015; 50:7646-8. [PMID: 24898824 DOI: 10.1039/c4cc02184c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Based on the protective properties of carbon nanoparticles for aptamers against the digestion of nuclease, we have developed a nuclease-assisted target recycling signal amplification method for highly sensitive detection of biomolecules, such as ATP and kanamycin. The high binding specificity between aptamers and targets leads to excellent selectivity of the assay.
Collapse
Affiliation(s)
- Xiaoyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang Z, Wang F, Wang M, Yin H, Ai S. A novel signal-on strategy for M.SssI methyltransfease activity analysis and inhibitor screening based on photoelectrochemical immunosensor. Biosens Bioelectron 2015; 66:109-14. [DOI: 10.1016/j.bios.2014.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
|
36
|
Taleat Z, Mathwig K, Sudhölter EJ, Rassaei L. Detection strategies for methylated and hypermethylated DNA. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Hu S, Trinchi A, Atkin P, Cole I. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Hu S, Trinchi A, Atkin P, Cole I. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew Chem Int Ed Engl 2015; 54:2970-4. [DOI: 10.1002/anie.201411004] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/10/2022]
|
39
|
Ma Y, Zhao J, Li X, Zhang L, Zhao S. A label free fluorescent assay for uracil-DNA glycosylase activity based on the signal amplification of exonuclease I. RSC Adv 2015. [DOI: 10.1039/c5ra12958c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A label free fluorescent assay for uracil-DNA glycosylase activity was developed based on the signal amplification of exonuclease I.
Collapse
Affiliation(s)
- Yefei Ma
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Jingjin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Xuejun Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
40
|
Zou HY, Gao PF, Gao MX, Huang CZ. Polydopamine-embedded Cu2−xSe nanoparticles as a sensitive biosensing platform through the coupling of nanometal surface energy transfer and photo-induced electron transfer. Analyst 2015; 140:4121-9. [DOI: 10.1039/c5an00221d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study innovatively highlights the mechanistic details of NSET and PET (NSET©PET) coupling processes, and the disclosed mechanism provides new opportunities for sensitive biosensing applications.
Collapse
Affiliation(s)
- Hong Yan Zou
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| | - Peng Fei Gao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| | - Ming Xuan Gao
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing
| |
Collapse
|
41
|
Deng H, Yang X, Gao Z. MoS2nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection. Analyst 2015; 140:3210-5. [DOI: 10.1039/c4an02133a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A fluorometric DNA methyltransferase activity assay is described. MoS2nanosheets are employed as the fluorescence quencherviavan der Waals interactions with fluorophore labeled substrate DNA.
Collapse
Affiliation(s)
- Huimin Deng
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Xinjian Yang
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Zhiqiang Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
42
|
Ma Y, Chen L, Zhang L, Liao S, Zhao J. A sensitive strategy for the fluorescence detection of DNA methyltransferase activity based on the graphene oxide platform and T7 exonuclease-assisted cyclic signal amplification. Analyst 2015; 140:4076-82. [DOI: 10.1039/c5an00417a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A sensitive fluorescence detection method for DNA methyltransferase is developed based on graphene oxide and T7 exonuclease-assisted signal amplification.
Collapse
Affiliation(s)
- Yefei Ma
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Lini Chen
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Suqi Liao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Jingjin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of Education Ministry
| |
Collapse
|
43
|
Xue Q, Zhang Y, Xu S, Li H, Wang L, Li R, Zhang Y, Yue Q, Gu X, Zhang S, Liu J, Wang H. Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Analyst 2015; 140:7637-44. [DOI: 10.1039/c5an01546d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A magnetic nanoparticles-cooperated fluorescence sensor for DNA methyltransferase activity was developed by coupling with exonuclease III-assisted target recycling.
Collapse
|
44
|
Luo X, Li Y, Zheng J, Qi H, Liang Z, Ning X. The determination of DNA methyltransferase activity by quenching of tris(2,2′-bipyridine)ruthenium electrogenerated chemiluminescence with ferrocene. Chem Commun (Camb) 2015; 51:9487-90. [DOI: 10.1039/c5cc02817e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrogenerated chemiluminescence biosensing method for the determination of DNA methyltransferase activity is developed by the quenching of tris(2,2′-bipyridine)ruthenium ECL by ferrocene.
Collapse
Affiliation(s)
- Xiaoe Luo
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| | - Yan Li
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| | - Jianbin Zheng
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Xiaohui Ning
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
45
|
Xue Q, Wang L, Jiang W. Label-free molecular beacon-based quadratic isothermal exponential amplification: a simple and sensitive one-pot method to detect DNA methyltransferase activity. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc05410a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An illustration of the label-free molecular beacon-mediated quadratic isothermal exponential amplification strategy (LFMB-QIEA) for target Dam MTase detection.
Collapse
Affiliation(s)
- Qingwang Xue
- School of Pharmacy
- Shandong University
- Jinan 250012
- P. R. China
- Department of Chemistry
| | - Lei Wang
- School of Pharmacy
- Shandong University
- Jinan 250012
- P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
46
|
Wei W, Gao C, Xiong Y, Zhang Y, Liu S, Pu Y. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII. Talanta 2015; 131:342-7. [DOI: 10.1016/j.talanta.2014.07.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
|
47
|
Lan M, Zhang J, Chui YS, Wang H, Yang Q, Zhu X, Wei H, Liu W, Ge J, Wang P, Chen X, Lee CS, Zhang W. A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. J Mater Chem B 2015; 3:127-134. [DOI: 10.1039/c4tb01354a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hg2+quenched CNPs (CNP-Hg2+) as a highly sensitive and selective reversible probe for the detection of mercapto biomolecules in aqueous solutions and in living cells.
Collapse
|
48
|
Li X, Song T, Guo X. DNA methylation detection with end-to-end nanorod assembly-enhanced surface plasmon resonance. Analyst 2015; 140:6230-3. [DOI: 10.1039/c5an01015b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Au nanorod (AuNR) assembly-enhanced SPR system coupling with polymerization and nicking reactions was developed for amplified detection of DNA methylation and Dam MTase activity assay.
Collapse
Affiliation(s)
- Xuemei Li
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| | - Ting Song
- Center of Cooperative Innovation for Chemical Imaging Functional Probes in Universities of Shandong
- College of Chemistry
- Shandong Normal University
- Jinan 250014
- P.R. China
| | - Xilin Guo
- Center of Cooperative Innovation for Chemical Imaging Functional Probes in Universities of Shandong
- College of Chemistry
- Shandong Normal University
- Jinan 250014
- P.R. China
| |
Collapse
|
49
|
Lan M, Zhang J, Chui YS, Wang P, Chen X, Lee CS, Kwong HL, Zhang W. Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21270-8. [PMID: 25393954 DOI: 10.1021/am5062568] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A novel nanohybrid ratiometric fluorescence sensor is developed for selective detection of mercuric ions (Hg(2+)), and the application has been successfully demonstrated in HEPES buffer solution, lake water, and living cells. The sensor comprises water-soluble fluorescent carbon nanoparticles (CNPs) and Rhodamine B (RhB) and exhibits their corresponding dual emissions peaked at 437 and 575 nm, respectively, under a single excitation wavelength (350 nm). The photoluminescence of the CNPs in the nanohybrid system can be completely quenched by Hg(2+) through effective electron or energy transfer process due to synergetic strong electrostatic interaction and metal-ligand coordination between the surface functional group of CNPs and Hg(2+), while that of the RhB remains constant. This results in an obviously distinguishable fluorescence color variation (from violet to orange) of the nanohybrid solution. This novel sensor can effectively identify Hg(2+) from other metal ions with relatively low background interference even in a complex system such as lake water. The detection limit of this method is as low as 42 nM. Furthermore, the sensing technique is applicable to detect Hg(2+) in living cells.
Collapse
Affiliation(s)
- Minhuan Lan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong , Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xue Q, Lv Y, Xu S, Zhang Y, Wang L, Li R, Yue Q, Li H, Gu X, Zhang S, Liu J. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation. Biosens Bioelectron 2014; 66:547-53. [PMID: 25506903 DOI: 10.1016/j.bios.2014.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Site-specific identification of DNA methylation and assay of MTase activity are imperative for determining specific cancer types, provide insights into the mechanism of gene repression, and develop novel drugs to treat methylation-related diseases. Herein, we developed a highly sensitive fluorescence assay of DNA methyltransferase by methylation-sensitive cleavage-based primer generation exponential isothermal amplification (PG-EXPA) coupled with supramolecular fluorescent Zinc(II)-protoporphyrin IX (ZnPPIX)/G-quadruplex. In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn I. The cleaved hairpin probe then functions as a signal primer to initiate the exponential isothermal amplification reaction (EXPAR) by hybridizing with a unimolecular DNA containing three functional domains as the amplification template, producing a large number of G-quadruplex nanostructures by utilizing polymerases and nicking enzymes as mechanical activators. The G-quadruplex nanostructures act as host for ZnPPIX that lead to supramolecular complexes ZnPPIX/G-quadruplex, which provides optical labels for amplified fluorescence detection of Dam MTase. While in the absence of Dam MTase, neither methylation/cleavage nor PG-EXPA reaction can be initiated and no fluorescence signal is observed. The proposed method exhibits a wide dynamic range from 0.0002 to 20U/mL and an extremely low detection limit of 8.6×10(-5)U/mL, which is superior to most conventional approaches for the MTase assay. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in a complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.
Collapse
Affiliation(s)
- Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China.
| | - Yanqin Lv
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Shuling Xu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Yuanfu Zhang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Lei Wang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Rui Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Haibo Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Xiaohong Gu
- Shandong Provincial Key Lab of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuqiu Zhang
- Shandong Provincial Key Lab of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jifeng Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|