1
|
Pandey A, Roy S, Srivatsan SG. Probing the Competition between Duplex, G-Quadruplex and i-Motif Structures of the Oncogenic c-Myc DNA Promoter Region. Chem Asian J 2023; 18:e202300510. [PMID: 37541298 DOI: 10.1002/asia.202300510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Indexed: 08/06/2023]
Abstract
Development of probe systems that provide unique spectral signatures for duplex, G-quadruplex (GQ) and i-motif (iM) structures is very important to understand the relative propensity of a G-rich-C-rich promoter region to form these structures. Here, we devise a platform using a combination of two environment-sensitive nucleoside analogs namely, 5-fluorobenzofuran-modified 2'-deoxyuridine (FBF-dU) and 5-fluoro-2'-deoxyuridine (F-dU) to study the structures adopted by a promoter region of the c-Myc oncogene. FBF-dU serves as a dual-purpose probe containing a fluorescent and 19 F NMR label. When incorporated into the C-rich sequence, it reports the formation of different iMs via changes in its fluorescence properties and 19 F signal. F-dU incorporated into the G-rich ON reports the formation of a GQ structure whose 19 F signal is clearly different from the signals obtained for iMs. Rewardingly, the labeled ONs when mixed with respective complementary strands allows us to determine the relative population of different structures formed by the c-Myc promoter by the virtue of the probe's ability to produce distinct and resolved 19 F signatures for different structures. Our results indicate that at physiological pH and temperature the c-Myc promoter forms duplex, random coil and GQ structures, and does not form an iM. Whereas at acidic pH, the mixture largely forms iM and GQ structures. Taken together, our system will complement existing tools and provide unprecedented insights on the population equilibrium and dynamics of nucleic acid structures under different conditions.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Hong SW, Oh GJ, Hwang GT. 2‐Dimethylaminofluorene‐Labeled 2'‐Deoxyuridine as a Turn‐On Fluorescent Probe for i‐Motif DNA. ChemistrySelect 2021. [DOI: 10.1002/slct.202102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seung Woo Hong
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Gon Ji Oh
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| |
Collapse
|
3
|
Podder A, Lee HJ, Kim BH. Fluorescent Nucleic Acid Systems for Biosensors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arup Podder
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
4
|
Kumar V, Nguyen TJD, Palmfeldt J, Gothelf KV. Formation of i-motifs from acyclic (l)-threoninol nucleic acids. Org Biomol Chem 2019; 17:7655-7659. [PMID: 31360984 DOI: 10.1039/c9ob01220f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acyclic (l)-threoninol nucleic acids ((l)-aTNA) containing poly-cytosines are prepared and investigated at various pH values, revealing the formation of a highly stable structure at lower pH that have the characteristics of an i-motif. Depending on the sequence, the aTNA forms inter-, bi- and intra-molecular i-motif structures. Pyrene was conjugated to aTNA sequences and both monomeric and excimer fluorescence were efficiently quenched by the i-motif structures and thus demonstrated that the aTNA i-motif can serve as a pH switch.
Collapse
Affiliation(s)
- Vipin Kumar
- Center for Multifunctional Biomolecular Drug Design (CEMBID), iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| | - Thuy J D Nguyen
- Center for Multifunctional Biomolecular Drug Design (CEMBID), iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| | - Johan Palmfeldt
- Department of Clinical Medicine - Research Unit for Molecular Medicine Aarhus University, 8200 Aarhus N, Denmark
| | - Kurt V Gothelf
- Center for Multifunctional Biomolecular Drug Design (CEMBID), iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Dvoráková Z, Renciuk D, Kejnovská I, Školáková P, Bednárová K, Sagi J, Vorlícková M. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res 2019; 46:1624-1634. [PMID: 29378012 PMCID: PMC5829569 DOI: 10.1093/nar/gky035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 12/01/2022] Open
Abstract
i-Motif (iM) is a four stranded DNA structure formed by cytosine-rich sequences, which are often present in functionally important parts of the genome such as promoters of genes and telomeres. Using electronic circular dichroism and UV absorption spectroscopies and electrophoretic methods, we examined the effect of four naturally occurring DNA base lesions on the folding and stability of the iM formed by the human telomere DNA sequence (C3TAA)3C3T. The results demonstrate that the TAA loop lesions, the apurinic site and 8-oxoadenine substituting for adenine, and the 5-hydroxymethyluracil substituting for thymine only marginally disturb the formation of iM. The presence of uracil, which is formed by enzymatic or spontaneous deamination of cytosine, shifts iM formation towards substantially more acidic pH values and simultaneously distinctly reduces iM stability. This effect depends on the position of the damage sites in the sequence. The results have enabled us to formulate additional rules for iM formation.
Collapse
Affiliation(s)
- Zuzana Dvoráková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Daniel Renciuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Školáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Klára Bednárová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| | - Michaela Vorlícková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
6
|
Sabale PM, Tanpure AA, Srivatsan SG. Probing the competition between duplex and G-quadruplex/i-motif structures using a conformation-sensitive fluorescent nucleoside probe. Org Biomol Chem 2019; 16:4141-4150. [PMID: 29781489 PMCID: PMC6086326 DOI: 10.1039/c8ob00646f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Double-stranded segments of a genome that can potentially form G-quadruplex (GQ) and/or i-motif (iM) structures are considered to be important regulatory elements. Hence, the development of a common probe that can detect GQ and iM structures and also distinguish them from a duplex structure will be highly useful in understanding the propensity of such segments to adopt duplex or non-canonical four-stranded structures. Here, we describe the utility of a conformation-sensitive fluorescent nucleoside analog, which was originally developed as a GQ sensor, in detecting the iM structures of C-rich DNA oligonucleotides (ONs). The analog is based on a 5-(benzofuran-2-yl)uracil scaffold, which when incorporated into C-rich ONs (e.g., telomeric repeats) fluorescently distinguishes an iM from random coil and duplex structures. Steady-state and time-resolved fluorescence techniques enabled the determination of transition pH for the transformation of a random coil to an iM structure. Furthermore, a qualitative understanding on the relative population of duplex and GQ/iM forms under physiological conditions could be gained by correlating the fluorescence, CD and thermal melting data. Taken together, this sensor could provide a general platform to profile double-stranded promoter regions in terms of their ability to adopt four-stranded structures, and also could support approaches to discover functional GQ and iM binders.
Collapse
Affiliation(s)
- Pramod M Sabale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India.
| | | | | |
Collapse
|
7
|
Li L, Jiang Y, Cui C, Yang Y, Zhang P, Stewart K, Pan X, Li X, Yang L, Qiu L, Tan W. Modulating Aptamer Specificity with pH-Responsive DNA Bonds. J Am Chem Soc 2018; 140:13335-13339. [PMID: 30212189 DOI: 10.1021/jacs.8b08047] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aptamers that recognize specific cells in a complex environment have emerged as invaluable molecular tools in bioanalysis and in the development of targeted therapeutics. The selective recognition of aptamers, however, can be compromised by the coexistence of target receptors on both target cells and other cells. To address this problem, we constructed a structure-switchable aptamer (SW-Apt) with reconfigurable binding affinity in accordance with the microenvironment of target cells. The SW-Apt makes use of i-motifs, which are quadruplex structures that form in sequences rich in cytosine. More specifically, we report the design of single-stranded, pH-responsive i-motif-modified aptamers able to bind specifically with target cells by exploiting their pH. Here, the i-motif serves as a structural domain to either facilitate the binding ability of aptamers to target cells or suppress the binding ability of aptamers to nontarget cell based on the pH of the cellular microenvironment. SW-Apt exhibited high binding ability with target cells at acidic pH, while no obvious binding was observed at physiological pH. The i-motif-induced structure-switching was verified with Förster resonance energy transfer and circular dichroism spectroscopy. Notably, SW-Apt exhibits high specificity in serum and excellent stability, likely attributed to the folded quadruplex i-motif structure. This study provides a simple and efficient strategy to chemically modulate aptamer binding ability and thus improve aptamer binding specificity to target cells, irrespective of the coexistence of identical receptors on target and nontarget cells.
Collapse
Affiliation(s)
- Long Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Ying Jiang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Yu Yang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Penghui Zhang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Kimberly Stewart
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Xiaoshu Pan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Xiaowei Li
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Lu Yang
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , P. R. China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
8
|
Ro JJ, Lee HJ, Kim BH. PyA-cluster system for the detection and imaging of miRNAs in living cells through double-three-way junction formation. Chem Commun (Camb) 2018; 54:7471-7474. [PMID: 29915829 DOI: 10.1039/c8cc03982h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we describe an extended version of a fluorescence probe for detecting miRNAs through the novel application of a PyA-cluster system. By testing various (CG)n sequences in the middle of the oligonucleotide strand of the probe, we obtained an optimal sequence that formed a double-three-way-junction structure, with two PyA units positioned close together, in the presence of the target miRNA. This system readily detected the locations of target miRNAs in living cells and allowed visualization of structural changes through variations in the color of the fluorescence.
Collapse
Affiliation(s)
- Jong Jin Ro
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
9
|
Li Z, Zhu J, He J. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives. Org Biomol Chem 2018; 14:9846-9858. [PMID: 27714317 DOI: 10.1039/c6ob01702a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
10-23 DNAzyme is a small catalytic DNA molecule. Studies on its conformation in solution are critical for understanding its catalytic mechanism and functional optimization. Based on our previous research, two fluorescent nucleoside analogues 1 and 2 were designed for the introduction of a pyrenyl group at one of the five dA residues in the catalytic core and the unpaired adenosine residue in its full-DNA substrate, respectively. Ten pyrenyl-pyrenyl pairs are formed in the DNAzyme-substrate complexes in solution for sensing the spacial positions of the five dA residues relative to the cleavage site using fluorescence spectra. The position-dependent quenching effect of pyrene emission fluorescence by nucleobases, especially the pyrenyl-pyrenyl interaction, was observed for some positions. The adenine residues in the 3'-part of the catalytic loop seem to be closer to the cleavage site than the adenine residues in the 5'-part, which is consistent with the molecular dynamics simulation result. The catalytic activities and Tm changes also confirmed the effect of the pyrenyl-nucleobase and pyrenyl-pyrenyl pair interactions. Together with functional group mutations, catalytically relevant nucleobases will be identified for understanding the catalytic mechanism of 10-23 DNAzyme.
Collapse
Affiliation(s)
- Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
10
|
Ro JJ, Go GH, Wilhelmsson LM, Kim BH. Fluorescence properties of 6-aryl-2'-deoxy-furanouridine and -pyrrolocytidine and their derivatives. Methods Appl Fluoresc 2017; 6:015004. [PMID: 28933349 DOI: 10.1088/2050-6120/aa8e19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
2'-deoxyfuranouridine derivatives presenting various aryl groups have been synthesized through Cu(I)-catalyzed intramolecular cyclizations. Moreover, corresponding pyrrolo-dC derivatives have been synthesized and both families of compounds thoroughly characterized using UV/vis and fluorescence spectroscopy as well as time-dependent density functional theory calculations. The photophysical characterization, show that our newly synthesized derivatives of the important pyrrolo-dC family have high fluorescence quantum yields (QYs) and brightness values. Pyrrolo-dC derivative, 3a, shows an environment sensitive QY of up to >60% and brightness of almost 3000, in low polarity solvents and excitation and emission maxima between 365-381 nm and 479-510 nm, respectively, in solvents of different polarities. Two other derivatives, 3b and 3c, show high QYs and brightness values of up to 3300 that are fairly insensitive to their microenvironment. These promising photophysical features suggest future applicability as fluorescent nucleobase analogs.
Collapse
Affiliation(s)
- Jong Jin Ro
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
12
|
Nim-Anussornkul D, Vilaivan T. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid bearing a base discriminating fluorescence nucleobase 8-(pyrene-1-yl)-ethynyladenine. Bioorg Med Chem 2017; 25:6388-6397. [PMID: 29111370 DOI: 10.1016/j.bmc.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
A combination of fluorophore and nucleobase through a π-conjugated rigid linker integrates the base pairing and the fluorescence change into a single event. Such base discriminating fluorophore can change its fluorescence as a direct response to the base pairing event and therefore have advantages over tethered labels or base surrogates lacking the hydrogen-bonding ability. 8-(Pyrene-1-yl)ethynyl-adenine (APyE) has been extensively used as fluorescence labels in DNA and LNA, but it showed little discrimination between different nucleobases. Herein we investigated the synthesis, base pairing ability and optical properties of APyE in pyrrolidinyl peptide nucleic acid - a DNA mimic that shows much stronger affinity and specificity towards DNA than natural oligonucleotides. The APyE in PNA pairs specifically with thymine in the DNA strand, and resulted in 1.5-5.2-fold enhanced and blue-shifted fluorescence emission. Fluorescence quenching was observed in the presence of mismatched base or abasic site directly opposite to the APyE. The behavior of APyE in acpcPNA is distinctively different from DNA whereby a fluorescence was increased selectively upon duplex formation with complementary DNA and therefore emphasizing the unique advantages of using PNA as alternative oligonucleotide probes. Applications as color-shifting probe for detection of trinucleotide repeats in DNA were demonstrated, and the performance of the probe was further improved by combination with reduced graphene oxide as an external nanoquencher.
Collapse
Affiliation(s)
- Duangrat Nim-Anussornkul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Sheng Q, Neaverson JC, Mahmoud T, Stevenson CEM, Matthews SE, Waller ZAE. Identification of new DNA i-motif binding ligands through a fluorescent intercalator displacement assay. Org Biomol Chem 2017; 15:5669-5673. [PMID: 28567459 PMCID: PMC5708337 DOI: 10.1039/c7ob00710h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This work describes a new way to screen for i-motif binding compounds and several new families of ligands with potential for use in experiments into the structure and function of i-motif DNA.
i-Motifs are quadruplex DNA structures formed from sequences rich in cytosine and held together by intercalated, hemi-protonated cytosine–cytosine base pairs. These sequences are prevalent in gene promoter regions and may play a role in gene transcription. Targeting these structures with ligands could provide a novel way to target genetic disease but there are very few ligands which have been shown to interact with i-motif DNA. Fluorescent intercalator displacement (FID) assays are a simple way to screen ligands against DNA secondary structures. Here we characterise how thiazole orange interacts with i-motif DNA and assess its ability for use in a FID assay. Additionally, we report FID-based ligand screening using thiazole orange against the i-motif forming sequence from the human telomere to reveal new i-motif binding compounds which have the potential for further development.
Collapse
Affiliation(s)
- Qiran Sheng
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Joseph C Neaverson
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Tasnim Mahmoud
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan E Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. and Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
14
|
Xu B, Wu X, Yeow EKL, Shao F. A single thiazole orange molecule forms an exciplex in a DNA i-motif. Chem Commun (Camb) 2016; 50:6402-5. [PMID: 24811922 DOI: 10.1039/c4cc01147c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fluorescent exciplex of thiazole orange (TO) is formed in a single-dye conjugated DNA i-motif. The exciplex fluorescence exhibits a large Stokes shift, high quantum yield, robust response to pH oscillation and little structural disturbance to the DNA quadruplex, which can be used to monitor the folding of high-order DNA structures.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | | | | | | |
Collapse
|
15
|
Imincan G, Pei F, Yu L, Jin H, Zhang L, Yang X, Zhang L, Tang X. Microenvironmental Effect of 2'-O-(1-Pyrenylmethyl)uridine Modified Fluorescent Oligonucleotide Probes on Sensitive and Selective Detection of Target RNA. Anal Chem 2016; 88:4448-55. [PMID: 27021236 DOI: 10.1021/acs.analchem.6b00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
2'-O-(1-Pyrenylmethyl)uridine modified oligoribonucleotides provide highly sensitive pyrene fluorescent probes for detecting specific nucleotide mutation of RNA targets. To develop more stable and cost-effective oligonucleotide probes, we investigated the local microenvironmental effects of nearby nucleobases on pyrene fluorescence in duplexes of RNAs and 2'-O-(1-pyrenylmethyl)uridine modified oligonucleotides. By incorporation of deoxyribonucleotides, ribonucleotides, 2'-MeO-nucleotides and 2'-F-nucleotides at both sides of 2'-O-(1-pyrenylmethyl)uridine (U(p)) in oligodeoxynucleotide probes, we synthesized a series of pyrene modified oligonucleotide probes. Their pyrene fluorescence emission spectra indicated that only two proximal nucleotides have a substantial effect on the pyrene fluorescence properties of these oligonucleotide probes hybridized with target RNA with an order of fluorescence sensitivity of 2'-F-nucleotides > 2'-MeO-nucleotides > ribonucleotides ≫ deoxyribonucleotides. While based on circular dichroism spectra, overall helix conformations (either A- or B-form) of the duplexes have marginal effects on the sensitivity of the probes. Instead, the local substitution reflected the propensity of the nucleotide sugar ring to adopt North type conformation and, accordingly, shifted their helix geometry toward a more A-type like conformation in local microenvironments. Thus, higher enhancement of pyrene fluorescence emission favored local A-type helix structures and more polar and hydrophobic environments (F > MeO > OH at 2' substitution) of duplex minor grooves of probes with the target RNA. Further dynamic simulation revealed that local microenvironmental effect of 2'-F-nucleotides or ribonucleotides was enough for pyrene moiety to move out of nucleobases to the minor groove of duplexes; in addition, 2'-F-nucleotide had less effect on π-stack of pyrene-modified uridine with upstream and downstream nucleobases. The present oligonucleotide probes successfully distinguished target RNA from single-mutated RNA analyte during an in vitro assay of RNA synthesis.
Collapse
Affiliation(s)
- Gülnur Imincan
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - Fen Pei
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - Xiaoda Yang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| | - XinJing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University , Beijing, 100191, China
| |
Collapse
|
16
|
El-Sayed AA, Pedersen EB, Khaireldin NY. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201500140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Singleton DG, Hussain R, Siligardi G, Kumar P, Hrdlicka PJ, Berova N, Stulz E. Increased duplex stabilization in porphyrin-LNA zipper arrays with structure dependent exciton coupling. Org Biomol Chem 2016; 14:149-57. [PMID: 26416024 PMCID: PMC4766578 DOI: 10.1039/c5ob01681a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022]
Abstract
Porphyrins were attached to LNA uridine building blocks via rigid 5-acetylene or more flexible propargyl-amide linkers and incorporated into DNA strands. The systems show a greatly increased thermodynamic stability when using as little as three porphyrins in a zipper arrangement. Thermodynamic analysis reveals clustering of the strands into more ordered duplexes with both greater negative ΔΔS and ΔΔH values, and less ordered duplexes with small positive ΔΔS differences, depending on the combination of linkers used. The exciton coupling between the porphyrins is dependent on the flanking DNA sequence in the single stranded form, and on the nature of the linker between the nucleobase and the porphyrin in the double stranded form; it is, however, also strongly influenced by intermolecular interactions. This system is suitable for the formation of stable helical chromophore arrays with sequence and structure dependent exciton coupling.
Collapse
Affiliation(s)
- Daniel G. Singleton
- School of Chemistry and Institute for Life Sciences , University of Southampton , Highfield , Southampton , SO17 1BJ , UK . ; http://www.southampton.ac.uk/chemistry/about/staff/est.page?
| | - Rohanah Hussain
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0DE , UK
| | - Giuliano Siligardi
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0DE , UK
| | - Pawan Kumar
- Department of Chemistry , University of Idaho , Moscow , ID 83844 , USA
| | | | - Nina Berova
- Department of Chemistry , Columbia University , 3000 Broadway , New York , NY 10027 , USA
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences , University of Southampton , Highfield , Southampton , SO17 1BJ , UK . ; http://www.southampton.ac.uk/chemistry/about/staff/est.page?
| |
Collapse
|
18
|
Tokugawa M, Masaki Y, Canggadibrata JC, Kaneko K, Shiozawa T, Kanamori T, Grøtli M, Wilhelmsson LM, Sekine M, Seio K. 7-(Benzofuran-2-yl)-7-deazadeoxyguanosine as a fluorescence turn-ON probe for single-strand DNA binding protein. Chem Commun (Camb) 2016; 52:3809-12. [DOI: 10.1039/c5cc09700b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
7-(Benzofuran-2-yl)-7-deazadeoxyguanosine (BFdG) was synthesized and incorporated into an oligodeoxynucleotide (ODN).
Collapse
Affiliation(s)
- Munefumi Tokugawa
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Yoshiaki Masaki
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | | | - Kazuhei Kaneko
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takashi Shiozawa
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takashi Kanamori
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- S-41296 Gothenburg
- Sweden
| | - L. Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry
- Chalmers University of Technology
- S-41296 Gothenburg
- Sweden
| | - Mitsuo Sekine
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Kohji Seio
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| |
Collapse
|
19
|
Mutsamwira S, Ainscough EW, Partridge AC, Derrick PJ, Filichev VV. DNA-Based Assemblies for Photochemical Upconversion. J Phys Chem B 2015; 119:14045-52. [DOI: 10.1021/acs.jpcb.5b07489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saymore Mutsamwira
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Eric W. Ainscough
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Ashton C. Partridge
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
- Department
of Physics and School of Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
| | - Peter J. Derrick
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
- Department
of Physics and School of Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
| | - Vyacheslav V. Filichev
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
20
|
Steady-State Fluorescence and Lifetime Emission Study of pH-Sensitive Probes Based on i-motif Forming Oligonucleotides Single and Double Labeled with Pyrene. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3030211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Reilly SM, Lyons DF, Wingate SE, Wright RT, Correia JJ, Jameson DM, Wadkins RM. Folding and hydrodynamics of a DNA i-motif from the c-MYC promoter determined by fluorescent cytidine analogs. Biophys J 2015; 107:1703-11. [PMID: 25296324 DOI: 10.1016/j.bpj.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022] Open
Abstract
The four-stranded i-motif (iM) conformation of cytosine-rich DNA has importance to a wide variety of biochemical systems that range from their use in nanomaterials to potential roles in oncogene regulation. The iM structure is formed at slightly acidic pH, where hemiprotonation of cytosine results in a stable C-C(+) basepair. Here, we performed fundamental studies to examine iM formation from a C-rich strand from the promoter of the human c-MYC gene. We used a number of biophysical techniques to characterize both the hydrodynamic properties and folding kinetics of a folded iM. Our hydrodynamic studies using fluorescence anisotropy decay and analytical ultracentrifugation show that the iM structure has a compact size in solution and displays the rigidity of a double strand. By studying the rates of circular dichroism spectral changes and quenching of fluorescent cytidine analogs, we also established a mechanism for the folding of a random coil oligo into the iM. In the course of determining this folding pathway, we established that the fluorescent dC analogs tC° and PdC can be used to monitor individual residues of an iM structure and to determine the pKa of an iM. We established that the C-C(+) hydrogen bonding of certain bases initiates the folding of the iM structure. We also showed that substitutions in the loop regions of iMs give a distinctly different kinetic signature during folding compared with bases that are intercalated. Our data reveal that the iM passes through a distinct intermediate form between the unfolded and folded forms. Taken together, our results lay the foundation for using fluorescent dC analogs to follow structural changes during iM formation. Our technique may also be useful for examining folding and structural changes in more complex iMs.
Collapse
Affiliation(s)
- Samantha M Reilly
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
| | - Daniel F Lyons
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara E Wingate
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
| | - Robert T Wright
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - John J Correia
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Randy M Wadkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi.
| |
Collapse
|
22
|
Doluca O, Withers JM, Loo TS, Edwards PJB, González C, Filichev VV. Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Org Biomol Chem 2015; 13:3742-8. [DOI: 10.1039/c4ob02499k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our results demonstrate the expanded capabilities of G-quadruplex DNAs for directed chromophore arrangements and show new perspectives in the design of G-quadruplexes governed by non-guanine moieties.
Collapse
Affiliation(s)
- Osman Doluca
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Jamie M. Withers
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Trevor S. Loo
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Patrick J. B. Edwards
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | | | - Vyacheslav V. Filichev
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| |
Collapse
|
23
|
Pawar MG, Nuthanakanti A, Srivatsan SG. Heavy atom containing fluorescent ribonucleoside analog probe for the fluorescence detection of RNA-ligand binding. Bioconjug Chem 2014; 24:1367-77. [PMID: 23841942 DOI: 10.1021/bc400194g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although numerous biophysical tools have provided effective systems to study nucleic acids, our current knowledge on how RNA structure complements its function is limited. Therefore, development of robust tools to study the structure–function relationship of RNA is highly desired. Toward this endeavor, we have developed a new ribonucleoside analog, based on a (selenophen-2-yl)pyrimidine core, which could serve as a fluorescence probe to study the function of RNA in real time and as an anomalous scattering label (selenium atom) for the phase determination in X-ray crystallography. The fluorescent selenophene-modified uridine analog is minimally perturbing and exhibits probe-like properties such as sensitivity to microenvironment and conformation changes. Utilizing these properties and amicability of the corresponding ribonucleotide analog to enzymatic incorporation, we have synthesized a fluorescent bacterial ribosomal decoding site (A-site) RNA construct and have developed a fluorescence binding assay to effectively monitor the binding of aminoglycoside antibiotics to the A-site. Our results demonstrate that this simple approach of building a dual probe could provide new avenues to study the structure–function relationship of not only nucleic acids, but also other biomacromolecules.
Collapse
|
24
|
Perlíková P, Karlsen KK, Pedersen EB, Wengel J. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability. Chembiochem 2014; 15:146-56. [PMID: 24501777 DOI: 10.1002/cbic.201300567] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene-modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady-state fluorescence emission studies of oligonucleotides containing pyrene-modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.
Collapse
|
25
|
Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 2014; 22:4407-18. [PMID: 24957878 DOI: 10.1016/j.bmc.2014.05.047] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.
Collapse
Affiliation(s)
- Henry A Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Pavlos Pavlou
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
26
|
Tanpure AA, Srivatsan SG. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the Lucifer chromophore. Chembiochem 2014; 15:1309-16. [PMID: 24861713 DOI: 10.1002/cbic.201402052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
Abstract
The majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield. Importantly, when incorporated into ON duplexes it retains appreciable fluorescence efficiency and is sensitive to the neighbouring base environment. Notably, the nucleoside signals the presence of purine repeats in ON duplexes with an enhancement in fluorescence intensity, a property rarely displayed by other nucleoside analogues.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)
| | | |
Collapse
|
27
|
Kim KT, Kim HW, Moon D, Rhee YM, Kim BH. (DNS)C: a fluorescent, environmentally sensitive cytidine derivative for the direct detection of GGG triad sequences. Org Biomol Chem 2014; 11:5605-14. [PMID: 23846401 DOI: 10.1039/c3ob41222a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the goal of developing a fluorescent nucleoside sensitive to its environment, in this study we synthesized (DNS)C, a novel modified 2'-deoxycytidine bearing a 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) moiety at the N4 position, and tested its properties in monomeric and oligomeric states. (DNS)C undergoes intramolecular photoinduced electron transfer between its dansyl and cytosine units, resulting in remarkable changes in fluorescence that depend on the choice of solvent. In addition, the fluorescence behavior and thermal stability of oligonucleotides containing (DNS)C are dependent on the nature of the flanking and neighboring bases. Notably, (DNS)C exhibits fluorescence enhancement only in fully matched duplex DNA containing a GGG triad sequence. The environmental sensitivity of (DNS)C can be exploited as a fluorescence tool for monitoring the interactions of DNA with other biomolecules, including DNA, RNA, and proteins.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | | | | |
Collapse
|
28
|
Lee JD, Cang J, Chen YC, Chen WY, Ou CM, Chang HT. Detection of adenosine 5'-triphosphate by fluorescence variation of oligonucleotide-templated silver nanoclusters. Biosens Bioelectron 2014; 58:266-71. [PMID: 24657647 DOI: 10.1016/j.bios.2014.02.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/25/2014] [Indexed: 11/18/2022]
Abstract
Oligonucleotide-templated Ag nanoclusters (DNA-Ag NCs) prepared from AgNO3 using an oligonucleotide (5'-TAACCCCTAACCCCT-3') as a template and NaBH4 as a reducing agent have been used for sensing of adenosine 5'-triphosphate (ATP). The fluorescence intensity and emission wavelength of DNA-Ag NCs are dependent on the pH value and ATP concentration. At pH 3.0 and 11.0, ATP shows greater effects on fluorescence of the DNA-Ag NCs. Upon increasing ATP concentration from 10 to 50μM, their emission wavelength at pH 3.0 shifts from 525 to 585nm. At pH 11.0, their fluorescence intensity (510nm) increases upon increasing ATP concentration. The circular dichroism (CD), electrospray ionization-mass spectrometry (ESI-MS), absorption, and fluorescence results indicate that ATP and pH affect the interactions between DNAs and Ag atoms, resulting in changes in their fluorescence. The DNA-Ag NCs allow detection of ATP over a concentration range of 0.1-10μM, with a limit of detection 33nM. Practicality of the DNA-Ag NCs probe has been validated with the determination of ATP concentrations in the lysate of MDA-MB-231 breast carcinoma cells.
Collapse
Affiliation(s)
- Jennifer Daneen Lee
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jinshun Cang
- Department of Chemical Engineering, Yancheng Institute of Industry Technology, Yancheng, Jiangsu, China
| | - Ying-Chieh Chen
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Yu Chen
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chung-Mao Ou
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
29
|
El-Sayed AA, Pedersen EB, Khaireldin NA. Studying the influence of the pyrene intercalator TINA on the stability of DNA i-motifs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 31:872-9. [PMID: 23215550 DOI: 10.1080/15257770.2012.742199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Certain cytosine-rich (C-rich) DNA sequences can fold into secondary structures as four-stranded i-motifs with hemiprotonated base pairs. Here we synthesized C-rich TINA-intercalating oligonucleotides by inserting a nonnucleotide pyrene moiety between two C-rich regions. The stability of their i-motif structures was studied by using UV melting temperature measurements and circular dichroism spectra at different pH values under noncrowding and crowding conditions (20% poly(ethylene glycol)). When TINA ((R)-3-((4-(1-pyrenylethynyl)benzyl)oxy) propane-1,2-diol) is inserted, the oligonucleotides could form an i-motif at a higher pH than observed for the corresponding wildtype oligonucleotide.
Collapse
Affiliation(s)
- Ahmed A El-Sayed
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
30
|
Lee DG, Kim IS, Park JW, Seo YJ. Multiplex fluorophore systems on DNA with new diverse fluorescence properties and ability to sense the hybridization dynamics. Chem Commun (Camb) 2014; 50:7273-6. [DOI: 10.1039/c4cc01378f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Park JW, Seo YJ, Kim BH. Fluorescence modification of the AAAA (4A) loop: toward a probe of the structural dynamics of the i-motif of the retinoblastoma gene. Chem Commun (Camb) 2014; 50:52-4. [DOI: 10.1039/c3cc46619a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Pawar MG, Srivatsan SG. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment. J Phys Chem B 2013; 117:14273-82. [PMID: 24161106 DOI: 10.1021/jp4071168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of fluorescent nucleoside analogue probes that have been used in the in vitro study of nucleic acids are not suitable for cell-based biophysical assays because they exhibit excitation maxima in the UV region and low quantum yields within oligonucleotides. Therefore, we propose that the photophysical characterization of oligonucleotides labeled with a fluorescent nucleoside analogue in reverse micelles (RM), which are good biological membrane models and UV-transparent, could provide an alternative approach to studying the properties of nucleic acids in a cell-like confined environment. In this context, we describe the photophysical properties of an environment-sensitive fluorescent uridine analogue (1), based on the 5-(benzo[b]thiophen-2-yl)pyrimidine core, in micelles and RM. The emissive nucleoside, which is polarity- and viscosity-sensitive, reports the environment of the surfactant assemblies via changes in its fluorescence properties. The nucleoside analogue, incorporated into an RNA oligonucleotide and hybridized to its complementary DNA and RNA oligonucleotides, exhibits a significantly higher fluorescence intensity, lifetime, and anisotropy in RM than in aqueous buffer, which is consistent with the environment of RM. Collectively, our results demonstrate that nucleoside 1 could be utilized as a fluorescent label to study the function of nucleic acids in a model cellular milieu.
Collapse
Affiliation(s)
- Maroti G Pawar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune , Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | | |
Collapse
|
33
|
Perumalla SR, Pedireddi VR, Sun CC. Design, Synthesis, and Characterization of New 5-Fluorocytosine Salts. Mol Pharm 2013; 10:2462-6. [DOI: 10.1021/mp400070a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sathyanarayana R. Perumalla
- Department of Pharmaceutics,
College of Pharmacy, University of Minnesota, 308 Harvard Street S.E. Minneapolis, Minnesota 55455, United States
| | | | - Changquan C. Sun
- Department of Pharmaceutics,
College of Pharmacy, University of Minnesota, 308 Harvard Street S.E. Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Tanpure AA, Pawar MG, Srivatsan SG. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201300010] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Choi J, Majima T. Reversible conformational switching of i-motif DNA studied by fluorescence spectroscopy. Photochem Photobiol 2013; 89:513-22. [PMID: 23311444 DOI: 10.1111/php.12042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022]
Abstract
Non-B DNAs, which can form unique structures other than double helix of B-DNA, have attracted considerable attention from scientists in various fields including biology, chemistry and physics etc. Among them, i-motif DNA, which is formed from cytosine (C)-rich sequences found in telomeric DNA and the promoter region of oncogenes, has been extensively investigated as a signpost and controller for the oncogene expression at the transcription level and as a promising material in nanotechnology. Fluorescence techniques such as fluorescence resonance energy transfer (FRET) and the fluorescence quenching are important for studying DNA and in particular for the visualization of reversible conformational switching of i-motif DNA that is triggered by the protonation. Here, we review the latest studies on the conformational dynamics of i-motif DNA as well as the application of FRET and fluorescence quenching techniques to the visualization of reversible conformational switching of i-motif DNA in nano-biotechnology.
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| | | |
Collapse
|
36
|
Lin YC, Chen CT. Alkaline Earth Metal Ion Induced Coil-Helix-Coil Transition of Lysine-Coumarin-Azacrown Hybrid Foldamers with OFF-OFF-ON Fluorescence Switching. Chemistry 2012. [DOI: 10.1002/chem.201202998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Li W, Feng L, Ren J, Wu L, Qu X. Visual Detection of Glucose Using Conformational Switch of i-Motif DNA and Non-Crosslinking Gold Nanoparticles. Chemistry 2012; 18:12637-42. [DOI: 10.1002/chem.201201914] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/08/2022]
|