1
|
Bejaoui YKJ, Philippi F, Stammler HG, Radacki K, Zapf L, Schopper N, Goloviznina K, Maibom KAM, Graf R, Sprenger JAP, Bertermann R, Braunschweig H, Welton T, Ignat'ev NV, Finze M. Insights into structure-property relationships in ionic liquids using cyclic perfluoroalkylsulfonylimides. Chem Sci 2023; 14:2200-2214. [PMID: 36845914 PMCID: PMC9945419 DOI: 10.1039/d2sc06758g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Room temperature ionic liquids of cyclic sulfonimide anions ncPFSI (ring size: n = 4-6) with the cations [EMIm]+ (1-ethyl-3-methylimidazolium), [BMIm]+ (1-butyl-3-methylimidazolium) and [BMPL]+ (BMPL = 1-butyl-1-methylpyrrolidinium) have been synthesized. Their solid-state structures have been elucidated by single-crystal X-ray diffraction and their physicochemical properties (thermal behaviour and stability, dynamic viscosity and specific conductivity) have been assessed. In addition, the ion diffusion was studied by pulsed field gradient stimulated echo (PFGSTE) NMR spectroscopy. The decisive influence of the ring size of the cyclic sulfonimide anions on the physicochemical properties of the ILs has been revealed. All ILs show different properties compared to those of the non-cyclic TFSI anion. While these differences are especially distinct for ILs with the very rigid 6cPFSI anion, the 5-membered ring anion 5cPFSI was found to result in ILs with relatively similar properties. The difference between the properties of the TFSI anion and the cyclic sulfonimide anions has been rationalized by the rigidity (conformational lock) of the cyclic sulfonimide anions. The comparison of selected IL properties was augmented by MD simulations. These highlight the importance of π+-π+ interactions between pairs of [EMIm]+ cations in the liquid phase. The π+-π+ interactions are evident for the solid state from the molecular structures of the [EMIm]+-ILs with the three cyclic imide anions determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Younes K J Bejaoui
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Frederik Philippi
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub White City Campus London W12 0BZ UK
| | - Hans-Georg Stammler
- Universität Bielefeld, Fakultät für Chemie, Lehrstuhl für Anorganische Chemie und Strukturchemie (ACS), Centre for Molecular Materials (CM2) Universitätsstr. 25 D-33615 Bielefeld Germany
| | - Krzysztof Radacki
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Ludwig Zapf
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Nils Schopper
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Kateryna Goloviznina
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux F-75005 Paris France
| | - Kristina A M Maibom
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Roland Graf
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Jan A P Sprenger
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Rüdiger Bertermann
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| | - Tom Welton
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub White City Campus London W12 0BZ UK
| | - Nikolai V Ignat'ev
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
- Consultant, Merck KGaA 64293 Darmstadt Germany
| | - Maik Finze
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse mit Bor (ICB) Am Hubland 97074 Würzburg Germany
| |
Collapse
|
2
|
Yue K, Doherty B, Acevedo O. Comparison between Ab Initio Molecular Dynamics and OPLS-Based Force Fields for Ionic Liquid Solvent Organization. J Phys Chem B 2022; 126:3908-3919. [PMID: 35594504 DOI: 10.1021/acs.jpcb.2c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OPLS-based force fields (FFs) have been shown to provide accurate bulk-phase properties for a wide variety of imidazolium-based ionic liquids (ILs). However, the ability of OPLS to reproduce an IL solvent structure is not as well-validated given the relative lack of high-level theoretical or experimental data available for comparison. In this study, ab initio molecular dynamics (AIMD) simulations were performed for three widely used ILs: the 1-butyl-3-methylimidazolium cation with chloride, tetrafluoroborate, or hexafluorophosphate anions, that is, [BMIM][Cl], [BMIM][BF4], and [BMIM][PF6], respectively, as a basis for further assessment of two unique IL FFs: the ±0.8 charge-scaled OPLS-2009IL FF and the OPLS-VSIL FF. The OPLS-2009IL FF employs a traditional all-atom functional form, whereas the OPLS-VSIL FF was developed using a virtual site that offloads negative charge to inside the plane of the ring with careful attention given to reproducing hydrogen bonding. Detailed comparisons between AIMD and the OPLS FFs were made based on radial distribution functions (RDFs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) to examine cation-anion interactions and π+-π+ stacking between the imidazolium rings. While both FFs were able to correctly capture the general solvent structure of these popular ILs, the OPLS-VSIL FF quantitatively reproduced interaction distances more accurately. In addition, this work provides further insights into the different short- and long-range structure patterns of these popular ILs.
Collapse
Affiliation(s)
- Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
3
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Ninković D, Blagojević Filipović JP, Hall MB, Brothers EN, Zarić SD. What Is Special about Aromatic-Aromatic Interactions? Significant Attraction at Large Horizontal Displacement. ACS CENTRAL SCIENCE 2020; 6:420-425. [PMID: 32232142 PMCID: PMC7099588 DOI: 10.1021/acscentsci.0c00005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 05/22/2023]
Abstract
High-level ab initio calculations show that the most stable stacking for benzene-cyclohexane is 17% stronger than that for benzene-benzene. However, as these systems are displaced horizontally the benzene-benzene attraction retains its strength. At a displacement of 5.0 Å, the benzene-benzene attraction is still ∼70% of its maximum strength, while benzene-cyclohexane attraction has fallen to ∼40% of its maximum strength. Alternatively, the radius of attraction (>2.0 kcal/mol) for benzene-benzene is 250% larger than that for benzene-cyclohexane. Thus, at relatively large distances aromatic rings can recognize each other, a phenomenon that helps explain their importance in protein folding and supramolecular structures.
Collapse
Affiliation(s)
- Dragan
B. Ninković
- Innovation
Center of the Faculty of Chemistry in Belgrade, Studentski trg 12-16, Belgrade 11001, Serbia
| | | | - Michael B. Hall
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- E-mail:
| | - Edward N. Brothers
- Department
of Chemistry, Texas A&M University at
Qatar, P.O. Box 23874, Doha, Qatar
| | - Snežana D. Zarić
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
- Department
of Chemistry, Texas A&M University at
Qatar, P.O. Box 23874, Doha, Qatar
- E-mail:
| |
Collapse
|
5
|
Taylor R, Wood PA. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem Rev 2019; 119:9427-9477. [PMID: 31244003 DOI: 10.1021/acs.chemrev.9b00155] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The founding in 1965 of what is now called the Cambridge Structural Database (CSD) has reaped dividends in numerous and diverse areas of chemical research. Each of the million or so crystal structures in the database was solved for its own particular reason, but collected together, the structures can be reused to address a multitude of new problems. In this Review, which is focused mainly on the last 10 years, we chronicle the contribution of the CSD to research into molecular geometries, molecular interactions, and molecular assemblies and demonstrate its value in the design of biologically active molecules and the solid forms in which they are delivered. Its potential in other commercially relevant areas is described, including gas storage and delivery, thin films, and (opto)electronics. The CSD also aids the solution of new crystal structures. Because no scientific instrument is without shortcomings, the limitations of CSD research are assessed. We emphasize the importance of maintaining database quality: notwithstanding the arrival of big data and machine learning, it remains perilous to ignore the principle of garbage in, garbage out. Finally, we explain why the CSD must evolve with the world around it to ensure it remains fit for purpose in the years ahead.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Peter A Wood
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
6
|
Wang YL. Competitive Microstructures Versus Cooperative Dynamics of Hydrogen Bonding and π-Type Stacking Interactions in Imidazolium Bis(oxalato)borate Ionic Liquids. J Phys Chem B 2018; 122:6570-6585. [DOI: 10.1021/acs.jpcb.8b02899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Lei Wang
- Department of Chemistry, Stanford University,
Stanford, California 94305, United States
| |
Collapse
|
7
|
Azizi A, Ebrahimi A. Theoretical investigation of the π + -π + stacking interactions in substituted pyridinium ion. J Mol Graph Model 2017; 77:225-231. [DOI: 10.1016/j.jmgm.2017.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
|
8
|
Izgorodina EI, Seeger ZL, Scarborough DLA, Tan SYS. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem Rev 2017; 117:6696-6754. [PMID: 28139908 DOI: 10.1021/acs.chemrev.6b00528] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accurate prediction of physicochemical properties of condensed systems is a longstanding goal of theoretical (quantum) chemistry. Ionic liquids comprising entirely of ions provide a unique challenge in this respect due to the diverse chemical nature of available ions and the complex interplay of intermolecular interactions among them, thus resulting in the wide variability of physicochemical properties, such as thermodynamic, transport, and spectroscopic properties. It is well understood that intermolecular forces are directly linked to physicochemical properties of condensed systems, and therefore, an understanding of this relationship would greatly aid in the design and synthesis of functionalized materials with tailored properties for an application at hand. This review aims to give an overview of how electronic structure properties obtained from quantum chemical methods such as interaction/binding energy and its fundamental components, dipole moment, polarizability, and orbital energies, can help shed light on the energetic, physical, and spectroscopic properties of semi-Coulomb systems such as ionic liquids. Particular emphasis is given to the prediction of their thermodynamic, transport, spectroscopic, and solubilizing properties.
Collapse
Affiliation(s)
- Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Zoe L Seeger
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - David L A Scarborough
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Samuel Y S Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Srour H, Deffo Ayagou MD, Nguyen TTT, Taberlet N, Manneville S, Andraud C, Monnereau C, Leocmach M. Ion pairing controls rheological properties of "processionary" polyelectrolyte hydrogels. SOFT MATTER 2016; 12:9749-9758. [PMID: 27886321 DOI: 10.1039/c6sm02022d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrated recently that polyelectrolytes with cationic moieties along the chain and a single anionic head are able to form physical hydrogels due to the reversible nature of the head-to-body ionic bond. Here we generate a variety of such polyelectrolytes with various cationic moieties and counterion combinations starting from a common polymeric platform. We show that the rheological properties (shear modulus, critical strain) of the final hydrogels can be modulated over three orders of magnitude depending on the cation/anion pair. Our data fit remarkably well within a scaling model involving a supramolecular head-to-tail single file between cross-links, akin to the behaviour of pine-processionary caterpillar. This model allows the quantitative measure of the amount of counterion condensation from standard rheology procedure.
Collapse
Affiliation(s)
- Hassan Srour
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Chimie, F-69342 Lyon, France.
| | - Martien Duvall Deffo Ayagou
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Chimie, F-69342 Lyon, France.
| | - Thi Thanh-Tam Nguyen
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Chimie, F-69342 Lyon, France.
| | - Nicolas Taberlet
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Sébastien Manneville
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Chantal Andraud
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Chimie, F-69342 Lyon, France.
| | - Cyrille Monnereau
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Chimie, F-69342 Lyon, France.
| | - Mathieu Leocmach
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| |
Collapse
|
10
|
Rao SS, Gejji SP. Electronic Structure, NMR, Spin-Spin Coupling, and Noncovalent Interactions in Aromatic Amino Acid Based Ionic Liquids. J Phys Chem A 2016; 120:5665-84. [PMID: 27336283 DOI: 10.1021/acs.jpca.6b03985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Noncovalent interactions accompanying phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr) amino acids based ionic liquids (AAILs) composed of 1-methyl-3-butyl-imidazole and its methyl-substituted derivative as cations have been analyzed employing the dispersion corrected density functional theory. It has been shown that cation-anion binding in these bioionic ILs is primarily facilitated through hydrogen bonding in addition to lp---π and CH---π interactions those arising from aromatic moieties which can be probed through (1)H and (13)C NMR spectra calculated from the gauge independent atomic orbital method. Characteristic NMR spin-spin coupling constants across hydrogen bonds of ion pair structures viz., Fermi contact, spin-orbit and spin-dipole terms show strong dependence on mutual orientation of cation with the amino acid anion. The spin-spin coupling mechanism transmits spin polarization via electric field effect originating from lp---π interactions whereas the electron delocalization from lone pair on the carbonyl oxygen to antibonding C-H orbital is facilitated by hydrogen bonding. It has been demonstrated that indirect spin-spin coupling constants across the hydrogen bonds correlate linearly with hydrogen bond distances. The binding energies and dissected nucleus independent chemical shifts (NICS) document mutual reduction of aromaticity of hydrogen bonded ion pairs consequent to localization of π-character. Moreover the nature and type of such noncovalent interactions governing the in-plane and out-of-plane NICS components provide a measure of diatropic and paratropic currents for the aromatic rings of varying size in AAILs. Besides the direction of frequency shifts of characteristic C═O and NH stretching vibrations in the calculated vibrational spectra has been rationalized.
Collapse
Affiliation(s)
- Soniya S Rao
- Department of Chemistry, Savitribai Phule Pune University , Pune 411 007, India
| | - Shridhar P Gejji
- Department of Chemistry, Savitribai Phule Pune University , Pune 411 007, India
| |
Collapse
|
11
|
|
12
|
How the cation–cation π–π stacking occurs: A theoretical investigation into ionic clusters of imidazolium. J Mol Graph Model 2015; 60:118-23. [DOI: 10.1016/j.jmgm.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 11/19/2022]
|
13
|
Matthews RP, Welton T, Hunt PA. Hydrogen bonding and π–π interactions in imidazolium-chloride ionic liquid clusters. Phys Chem Chem Phys 2015; 17:14437-53. [DOI: 10.1039/c5cp00459d] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of 1° and 2° hydrogen-bonding and anion–π+ interactions for ionic liquid structuring.
Collapse
Affiliation(s)
| | - Tom Welton
- Department of Chemistry
- Imperial College London
- London
- UK
| | | |
Collapse
|
14
|
Matthews RP, Welton T, Hunt PA. Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. Phys Chem Chem Phys 2014; 16:3238-53. [PMID: 24407103 DOI: 10.1039/c3cp54672a] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this paper we have explored the structural and energetic landscape of potential π(+)-π(+) stacked motifs, hydrogen-bonding arrangements and anion-π(+) interactions for gas-phase ion pair (IP) conformers and IP-dimers of 1,3-dimethylimidazolium chloride, [C1C1im]Cl. We classify cation-cation ring stacking as an electron deficient π(+)-π(+) interaction, and a competitive anion on-top IP motif as an anion-donor π(+)-acceptor interaction. 21 stable IP-dimers have been obtained within an energy range of 0-126 kJ mol(-1). The structures have been found to exhibit a complex interplay of structural features. We have found that low energy IP-dimers are not necessarily formed from the lowest energy IP conformers. The sampled range of IP-dimers exhibits new structural forms that cannot be recovered by examining the ion-pairs alone, moreover the IP-dimers are recovering additional key features of the local liquid structure. Including dispersion is shown to impact both the relative energy ordering and the geometry of the IPs and IP-dimers, however the impact is found to be subtle and dependent on the underlying functional.
Collapse
|
15
|
Simeon TM, Ratner MA, Schatz GC. Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods. J Phys Chem A 2013; 117:7918-27. [PMID: 23941280 DOI: 10.1021/jp400051b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H···O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3]catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H···O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H···O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, we find that electrostatic interactions dominate the [C-H···O] hydrogen-bonding interactions, while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interaction energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correction have important differences compared to DFT-SAPT, while HF and even MP2 results are in poor agreement with DFT-SAPT.
Collapse
Affiliation(s)
- Tomekia M Simeon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
| | | | | |
Collapse
|
16
|
Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 2012; 112:6156-214. [PMID: 23009634 DOI: 10.1021/cr3000412] [Citation(s) in RCA: 1844] [Impact Index Per Article: 153.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Kar P, Biswas R, Drew MGB, Frontera A, Ghosh A. Host–Guest Supramolecular Interactions in the Coordination Compounds of 4,4′-Azobis(pyridine) with MnX2 (X = NCS–, NCNCN–, and PF6–): Structural Analyses and Theoretical Study. Inorg Chem 2012; 51:1837-51. [DOI: 10.1021/ic202129a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Paramita Kar
- Department of Chemistry, University
College of Science, University of Calcutta, 92, APC Road, Kolkata-700 009, India
| | - Rituparna Biswas
- Department of Chemistry, University
College of Science, University of Calcutta, 92, APC Road, Kolkata-700 009, India
| | - Michael G. B. Drew
- School of Chemistry, The University of Reading, P.O. Box 224, Whiteknights,
Reading RG6 6AD, U.K
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes Balears, Crta. de Valldemossa
km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University
College of Science, University of Calcutta, 92, APC Road, Kolkata-700 009, India
| |
Collapse
|