1
|
Nakasone Y, Murakami H, Tokonami S, Oda T, Terazima M. Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response. J Biol Chem 2023; 299:105285. [PMID: 37742920 PMCID: PMC10634658 DOI: 10.1016/j.jbc.2023.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are multidomain BLUF proteins that regulate the cellular levels of cAMP in a light-dependent manner. The signaling route and dynamics of PAC from Oscillatoria acuminata (OaPAC), which consists of a light sensor BLUF domain, an adenylate cyclase domain, and a connector helix (α3-helix), were studied by detecting conformational changes in the protein moiety. Although circular dichroism and small-angle X-ray scattering measurements did not show significant changes upon light illumination, the transient grating method successfully detected light-induced changes in the diffusion coefficient (diffusion-sensitive conformational change (DSCC)) of full-length OaPAC and the BLUF domain with the α3-helix. DSCC of full-length OaPAC was observed only when both protomers in a dimer were photoconverted. This light intensity dependence suggests that OaPAC is a cyclase with a nonlinear light intensity response. The enzymatic activity indeed nonlinearly depends on light intensity, that is, OaPAC is activated under strong light conditions. It was also found that both DSCC and enzymatic activity were suppressed by a mutation in the W90 residue, indicating the importance of the highly conserved Trp in many BLUF domains for the function. Based on these findings, a reaction scheme was proposed together with the reaction dynamics.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroto Murakami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takashi Oda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Iwashita T, Nagao M, Yoshimori A, Terazima M, Akiyama R. Usefulness of higher-order system-size correction for macromolecule diffusion coefficients: A molecular dynamics study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochem Photobiol Sci 2022; 21:493-507. [PMID: 35391638 DOI: 10.1007/s43630-022-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
BLUF (blue light sensor using flavin) proteins are the blue light receptors that consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region shifts to red. Light signal received in the BLUF domain is intramolecularly or intermolecularly transmitted to the functional region. In this review, the reactions of three BLUF proteins with similar EAL functional groups within the protein (BlrP1, and YcgF), or with a separated target protein (PapB) are described using time-resolved diffusion technique. The diffusion coefficients (D) of the BLUF domains did not significantly change upon photoexcitation, whereas those of the full-length proteins BlrP1 and YcgF and the PapB-PapA system significantly decreased. The changes in D should be due to diffusion-sensitive conformational changes (DSCC) that alter the friction of diffusion. The time constants of the major D changes of BlrP1 and PapB-PapA were similar (~ 20 ms), although the magnitude of the friction change depended on the proteins. Similarities and differences among the reactions of these proteins were clarified from the viewpoint of DSCC.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Applications of Time-Resolved Thermodynamics for Studies on Protein Reactions. J 2022. [DOI: 10.3390/j5010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thermodynamics and kinetics are two important scientific fields when studying chemical reactions. Thermodynamics characterize the nature of the material. Kinetics, mostly based on spectroscopy, have been used to determine reaction schemes and identify intermediate species. They are certainly important fields, but they are almost independent. In this review, our attempts to elucidate protein reaction kinetics and mechanisms by monitoring thermodynamic properties, including diffusion in the time domain, are described. The time resolved measurements are performed mostly using the time resolved transient grating (TG) method. The results demonstrate the usefulness and powerfulness of time resolved studies on protein reactions. The advantages and limitations of this TG method are also discussed.
Collapse
|
5
|
Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics. Biophys Rev 2021; 13:1053-1059. [DOI: 10.1007/s12551-021-00868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
|
6
|
Kim S, Nakasone Y, Takakado A, Yamazaki Y, Kamikubo H, Terazima M. A unique photochromic UV-A sensor protein, Rc-PYP, interacting with the PYP-binding protein. Phys Chem Chem Phys 2021; 23:17813-17825. [PMID: 34397052 DOI: 10.1039/d1cp02731j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactive yellow protein (PYP) is one of the typical light sensor proteins. Although its photoreaction has been extensively studied, no downstream partner protein has been identified to date. In this study, the intermolecular interaction dynamics observed between PYP from Rhodobacter capsulatus (Rc-PYP) and a possible downstream protein, PYP-binding protein (PBP), were investigated. It was found that UV light induced a long-lived product (pUV*), which interacts with PBP to form a stable hetero-hexamer (Complex-2). The reaction scheme for this interaction was revealed using transient absorption and transient grating methods. Time-resolved diffusion detection showed that a hetero-trimer (Complex-1) is formed transiently, which produced Complex-2 via a second-order reaction. Any other intermediates, including those from pBL, do not interact with PBP. The reaction scheme and kinetics are determined. Interestingly, long-lived Complex-2 dissociates upon excitation with blue light. These results demonstrate that Rc-PYP is a photochromic and new type of UV sensor to sense the relative intensities of UV-A and blue light.
Collapse
Affiliation(s)
- Suhyang Kim
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Photoreaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112252. [PMID: 34265548 DOI: 10.1016/j.jphotobiol.2021.112252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes PCC 7420 (mPAC), which consists of a Per-Arnt-Sim (PAS), a light‑oxygene-voltage (LOV), and an adenylate cyclase (AC) domain, was investigated mainly using the time-resolved transient grating method. An absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 0.66 μs. After this reaction, a significant diffusion coefficient (D)-change was observed with a time constant of 38 ms. The determined D-value was concentration-dependent indicating a rapid equilibrium between the dimer and tetramer. Combining the results of size exclusion chromatography and CD spectroscopy, we concluded that the photoinduced D-change was mainly attributed to the equilibrium shift from the dimer rich to the tetramer rich states upon light exposure. Since the reaction rate does not depend on concentration, the rate determining step of the tetramer formation is not the collision of proteins by diffusion, but a conformation change. The roles of the PAS and AC domains as well as the N- and C-terminal flanking helices of the LOV domain (A'α- and Jα-helices) were investigated using various truncated mutants. The PAS domain was found to be a strong dimerization site and is related to efficient signal transduction. It was found that simultaneous existence of the A'α- and Jα-helices in mPAC is important for the light-induced conformation change to lead the conformation change which induces the tetramer formation. The results suggest that the angle changes of the coiled-coil structures in the A'α and Jα-helices are essential for this conformation change. The reaction scheme of mPAC is proposed.
Collapse
|
8
|
Terazima M. Spectrally Silent Protein Reaction Dynamics Revealed by Time-Resolved Thermodynamics and Diffusion Techniques. Acc Chem Res 2021; 54:2238-2248. [PMID: 33886281 DOI: 10.1021/acs.accounts.1c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological functions essentially consist of a series of chemical reactions, including intermolecular interactions, and also involve the cooperation of a number of biological molecules performing these reactions. To understand this function at the molecular level, all steps of the reactions must be elucidated. However, since the biosystems including the surrounding environment are notably large, the reactions have to be elucidated from several different approaches. A variety of techniques have been developed to obtain structural information, and the knowledge of the three-dimensional structure of biomolecules has increased dramatically. Contrarily, the current information on reaction dynamics, which is essential for understanding reactions, is still not enough. Although frequently used techniques, such as spectroscopy, have revealed several important processes of reactions, there are various hidden dynamics that are not detected by these methods (silent dynamics). For example, although water molecules are essential for bioreactions, dynamics of the protein-water interaction are very difficult to trace and spectrally silent. Transient association/dissociations of proteins with partner proteins are difficult to observe. Another important property to understand the reaction of proteins is fluctuations, which are random movements that do not change the average structure and energy. The importance of fluctuations has been pointed out in order to explain enzymatic activity; however, it is extremely difficult to detect changes in fluctuation during a reaction. In this Account, unique time-resolved methods, time-resolved thermodynamics, and time-resolved diffusion methods, both of which are able to detect silent dynamics in solution at physiological temperature, are described.Thermodynamic properties are important for characterizing materials, in particular, macromolecules such as biomolecules. Therefore, the data available regarding these properties, for several stable proteins, is abundant. However, it is almost impossible to characterize short-lived intermediate species in irreversible reactions using traditional thermodynamic techniques. Similarly, although the translational diffusion coefficient is a useful property to determine the protein size and intermolecular interactions, there have been no reports revealing reaction dynamics. The transient grating (TG) method enables us to measure these quantities in a time-resolved manner for a variety of irreversible reactions. With this method, it is now possible to study biomolecule reactions from the viewpoint of thermodynamic properties and diffusion, and to elucidate reaction dynamics that cannot be detected by other spectroscopic methods.Here, the principles of the methodologies used, their characteristic advantages, and their applications to protein reactions are described. The TG measurements of octopus rhodopsin revealed a spectrally hidden intermediate and determined an energetic profile along the reaction coordinate. This emphasizes that the measurement in solution, not for trapped intermediates, is important to characterize the reaction intermediates. The application of these methods to a blue light sensor PixD revealed many spectrally silent dynamics as well as the importance of fluctuation for the reaction. As an example of the time-resolved heat capacity change and transient thermal expansion measurements, the reaction of PYP was briefly described. The reaction scheme of another blue light sensor protein, phototropins, and a spectrally silent DNA binding process of EL222 were fully elucidated by the time-resolved diffusion method.
Collapse
Affiliation(s)
- Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
9
|
Takaramoto S, Nakasone Y, Sadakane K, Maruta S, Terazima M. Time-resolved detection of SDS-induced conformational changes in α-synuclein by a micro-stopped-flow system. RSC Adv 2021; 11:1086-1097. [PMID: 35423687 PMCID: PMC8693425 DOI: 10.1039/d0ra09614h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
An intrinsically disordered protein, α-synuclein (αSyn), binds to negatively charged phospholipid membranes and adopts an α-helical structure. This conformational change is also induced by interaction with sodium dodecyl sulfate (SDS), which is an anionic surfactant used in previous studies to mimic membrane binding. However, while the structure of the αSyn and SDS complex has been studied widely by various static measurements, the process of structural change from the denatured state to the folded state remains unclear. In this study, the interaction dynamics between αSyn and SDS micelles was investigated using time-resolved measurements with a micro-stopped-flow system, which has been recently developed. In particular, the time-resolved diffusion based on the transient grating technique in combination with a micro-stopped-flow system revealed the gradual change in diffusion triggered by the presence of SDS micelles. This change is induced not only by binding to SDS micelles, but also by an intramolecular conformational change. It was interesting to find that the diffusion coefficient decreased in an intermediate state and then increased to the final state in the binding reaction. We also carried out stopped-flow-kinetic measurements of circular dichroism and intramolecular fluorescence resonance energy transfer, and the D change was assigned to the formation of a compact structure derived from the helix bending on the micelle. Dynamics of conformation changes of α-synuclein induced by the presence of SDS micelles are revealed using time-resolved diffusion, CD, and FRET measurements combined with a micro-stopped flow system.![]()
Collapse
Affiliation(s)
- Shunki Takaramoto
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Yusuke Nakasone
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Kei Sadakane
- Department of Bioinformatics
- Graduate School of Engineering
- Soka University
- Hachioji
- Japan
| | - Shinsaku Maruta
- Department of Bioinformatics
- Graduate School of Engineering
- Soka University
- Hachioji
- Japan
| | - Masahide Terazima
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
10
|
Kim S, Nakasone Y, Takakado A, Yamazaki Y, Kamikubo H, Terazima M. Wavelength-Dependent Photoreaction of PYP from Rhodobacter capsulatus. Biochemistry 2020; 59:4810-4821. [DOI: 10.1021/acs.biochem.0c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suhyang Kim
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Takakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Yamazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Spiropyran labeling for sensitive probing of protein diffusion by the transient grating method. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M. Photoreaction Dynamics of Full-Length Phototropin from Chlamydomonas reinhardtii. J Phys Chem B 2019; 123:10939-10950. [PMID: 31790257 DOI: 10.1021/acs.jpcb.9b09685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phototropin (phot) is a blue light sensor involved in the light responses of several species from green algae to higher plants. Phot consists of two photoreceptive domains (LOV1 and LOV2) and a Ser/Thr kinase domain. These domains are connected by a hinge and a linker domain. So far, studies on the photochemical reaction dynamics of phot have been limited to short fragments, and the reactions of intact phot have not been well elucidated. Here, the photoreactions of full-length phot and of several mutants from Chlamydomonas reinhardtii (Cr) were investigated by the transient grating and circular dichroism (CD) methods. Full-length Cr phot is in monomeric form in both dark and light states and shows conformational changes upon photoexcitation. When LOV1 is excited, the hinge helix unfolds with a time constant of 77 ms. Upon excitation of LOV2, the linker helix unfolds initially followed by a tertiary structural change of the kinase domain with a time constant of 91 ms. The quantum yield of conformational change after adduct formation of LOV2 is much smaller than that of LOV1, indicating that reactive and nonreactive forms exist. The conformational changes associated with the excitations of LOV1 and LOV2 occur independently and additively, even when they are excited simultaneously. Hence, the role of LOV1 is not to enhance the kinase activity in addition to LOV2 function; we suggest LOV1 has different functions such as regulation of intermolecular interactions.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto , Kyoto 606-8502 , Japan
| | - Masumi Ohshima
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto , Kyoto 606-8502 , Japan
| | - Koji Okajima
- Graduate School of Science and Technology , Keio University , Yokohama , Kanagawa 223-8522 , Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science , Osaka Prefecture University , Sakai , Osaka 599-8531 , Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto , Kyoto 606-8502 , Japan
| |
Collapse
|
13
|
Nakasone Y, Takaramoto S, Terazima M. Time-Resolved Diffusion Detection with Microstopped Flow System. Anal Chem 2019; 91:11987-11993. [PMID: 31442029 DOI: 10.1021/acs.analchem.9b02897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient grating (TG) method is a powerful technique for monitoring the time dependence of the diffusion coefficient during photochemical reactions. However, the applications of this technique have been limited to photochemical reactions. Here, a microstopped flow (μ-SF) system is developed to expand the technique's applicability. The constructed μ-SF system can be used for a solution with a total volume as small as 3 μL, and mixing times for absorption and diffusion measurements were determined to be 400 μs and 100 ms, respectively. To demonstrate this system with the TG method, an acid-induced denaturation of a photosensor protein, phototropin LOV2 domain with a linker, was studied from the viewpoint of the reactivity. This system can be used not only for time-resolved diffusion measurement but also for conventional absorption or fluorescence detection methods. In particular, this system has a great advantage for a target solution in that only a very small amount is needed.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Shunki Takaramoto
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| |
Collapse
|
14
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Nakasone Y, Kikukawa K, Masuda S, Terazima M. Time-Resolved Study of Interprotein Signaling Process of a Blue Light Sensor PapB–PapA Complex. J Phys Chem B 2019; 123:3210-3218. [DOI: 10.1021/acs.jpcb.9b00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Koutaro Kikukawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-5801, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Takeda K, Terazima M. Photoinduced Orientation Change of the Dimer Structure of the Pr-I State of Cph1Δ2. Biochemistry 2018; 57:5058-5071. [DOI: 10.1021/acs.biochem.8b00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Takakado A, Nakasone Y, Terazima M. Sequential DNA Binding and Dimerization Processes of the Photosensory Protein EL222. Biochemistry 2018; 57:1603-1610. [DOI: 10.1021/acs.biochem.7b01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akira Takakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M. Photoreaction Dynamics of LOV1 and LOV2 of Phototropin from Chlamydomonas reinhardtii. J Phys Chem B 2018; 122:1801-1815. [DOI: 10.1021/acs.jpcb.7b10266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Nakasone
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masumi Ohshima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Okajima
- Graduate
School of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Satoru Tokutomi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Fujisawa T, Masuda S. Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys Rev 2017; 10:327-337. [PMID: 29235080 PMCID: PMC5899715 DOI: 10.1007/s12551-017-0355-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
Photoreceptor proteins have been used to study how protein conformational changes are induced by alterations in their environments and how their signals are transmitted to downstream factors to dictate physiological responses. These proteins are attractive models because their signal transduction aspects and structural changes can be precisely regulated in vivo and in vitro based on light intensity. Among the known photoreceptors, members of the blue light–using flavin (BLUF) protein family have been well characterized with regard to how they control various light-dependent physiological responses in several microorganisms. Herein, we summarize our current understanding of their photoactivation and signal-transduction mechanisms. For signal transduction, we review recent studies concerning how the BLUF protein, PixD, transmits a light-induced signal to its downstream factor, PixE, to modulate phototaxis of the cyanobacterium Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry, Graduate School of Science and Engineering, Saga University, Saga, 840-8502 Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
20
|
Kondoh M, Terazima M. Conformational and Intermolecular Interaction Dynamics of Photolyase/Cryptochrome Proteins Monitored by the Time-Resolved Diffusion Technique. Photochem Photobiol 2017; 93:15-25. [DOI: 10.1111/php.12681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Masato Kondoh
- Department of Chemistry; Graduate School of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki Japan
| | - Masahide Terazima
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku, Kyoto Japan
| |
Collapse
|
21
|
Takakado A, Nakasone Y, Terazima M. Photoinduced dimerization of a photosensory DNA-binding protein EL222 and its LOV domain. Phys Chem Chem Phys 2017; 19:24855-24865. [DOI: 10.1039/c7cp03686h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blue light sensor protein EL222, which regulates DNA-binding affinity, exhibits photoinduced dimerization in the absence of target DNA.
Collapse
Affiliation(s)
- Akira Takakado
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Yusuke Nakasone
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Masahide Terazima
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
22
|
Inoue K. The Study and Application of Photoreceptive Membrane Protein, Rhodopsin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Akiyama Y, Nakasone Y, Nakatani Y, Hisatomi O, Terazima M. Time-Resolved Detection of Light-Induced Dimerization of Monomeric Aureochrome-1 and Change in Affinity for DNA. J Phys Chem B 2016; 120:7360-70. [PMID: 27404115 DOI: 10.1021/acs.jpcb.6b05760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aureochrome (Aureo) is a recently discovered blue light sensor protein initially from Vaucheria frigida, in which it controls blue light-dependent branch formation and/or development of a sex organ by a light-dependent change in the affinity for DNA. Although photochemical reactions of Aureo-LOV (LOV is a C-terminal light-oxygen-voltage domain) and the N-terminal truncated construct containing a bZIP (N-terminal basic leucine zipper domain) and a LOV domain have previously been reported, the reaction kinetics of the change in affinity for DNA have never been elucidated. The reactions of Aureo where the cysteines are replaced by serines (AureoCS) as well as the kinetics of the change in affinity for a target DNA are investigated in the time-domain. The dimerization rate constant is obtained as 2.8 × 10(4) M(-1) s(-1), which suggests that the photoinduced dimerization occurs in the LOV domain and the bZIP domain dimerizes using the interaction with DNA. Surprisingly, binding with the target DNA is completed very quickly, 7.7 × 10(4) M(-1) s(-1), which is faster than the protein dimerization rate. It is proposed that the nonspecific electrostatic interaction, which is observed as a weak binding with DNA, may play a role in the efficient searching for the target sequence within the DNA.
Collapse
Affiliation(s)
- Yuki Akiyama
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Yoichi Nakatani
- Department of Earth and Space Science, Graduate School of Science, Osaka University , Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University , Osaka 560-0043, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Miyamori T, Nakasone Y, Hitomi K, Christie JM, Getzoff ED, Terazima M. Reaction dynamics of the UV-B photosensor UVR8. Photochem Photobiol Sci 2016; 14:995-1004. [PMID: 25811405 DOI: 10.1039/c5pp00012b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UVR8 is a recently discovered ultraviolet-B (UV-B) photoreceptor protein identified in plants and algae. In the dark state, UVR8 exists as a homodimer, whereas UV-B irradiation induces UVR8 monomerization and initiation of signaling. Although the biological functions of UVR8 have been studied, the fundamental reaction mechanism and associated kinetics have not yet been fully elucidated. Here, we used the transient grating method to determine the reaction dynamics of UVR8 monomerization based on its diffusion coefficient. We found that the UVR8 photodissociation reaction proceeds in three stages: (i) photoexcitation of cross-dimer tryptophan (Trp) pyramids; (ii) an initial conformational change with a time constant of 50 ms; and (iii) dimer dissociation with a time constant of 200 ms. We identified W285 as the key Trp residue responsible for initiating this photoreaction. Although the C-terminus of UVR8 is essential for biological interactions and signaling via downstream components such as COP1, no obvious differences were detected between the photoreactions of wild-type UVR8 (amino acids 1-440) and a mutant lacking the C-terminus (amino acids 1-383). This similarity indicates that the conformational change associated with stage ii cannot primarily be attributed to this region. A UV-B-driven conformational change with a time constant of 50 ms was also detected in the monomeric mutants of UVR8. Dimer recovery following monomerization, as measured by circular dichroism spectroscopy, was decreased under oxygen-purged conditions, suggesting that redox reactivity is a key factor contributing to the UVR8 oligomeric state.
Collapse
Affiliation(s)
- Takaaki Miyamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Kuroi K, Okajima K, Ikeuchi M, Tokutomi S, Kamiyama T, Terazima M. Pressure-Sensitive Reaction Yield of the TePixD Blue-Light Sensor Protein. J Phys Chem B 2015; 119:2897-907. [DOI: 10.1021/jp511946u] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kunisato Kuroi
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Okajima
- Department of Life Sciences (Biology),
Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology),
Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan
| | - Tadashi Kamiyama
- Department of Chemistry, School of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Nakasone Y, Kawaguchi Y, Kong SG, Wada M, Terazima M. Photoinduced Oligomerization of Arabidopsis thaliana Phototropin 2 LOV1. J Phys Chem B 2014; 118:14314-25. [DOI: 10.1021/jp509448b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yusuke Nakasone
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Kawaguchi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sam-Geun Kong
- Department
of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Masamitsu Wada
- Department
of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Masahide Terazima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Photochemistry of Arabidopsis phototropin 1 LOV1: transient tetramerization. Photochem Photobiol Sci 2014; 12:1171-9. [PMID: 23743549 DOI: 10.1039/c3pp50047k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of the LOV1 (light-oxygen-voltage 1) domain of phototropin 1 from Arabidopsis thaliana was investigated by the time-resolved transient grating method. As with other LOV domains, an absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 1.1 μs. After this reaction, a significant diffusion coefficient (D) change (D of the reactant = 8.2 × 10(-11) m(2) s(-1), and D of the photoproduct = 6.4 × 10(-11) m(2) s(-1)) was observed with a time constant of 14 ms at a protein concentration of 270 μM. From the D value of the ground state and the peak position in size exclusion chromatography, we have confirmed that the phot1LOV1 domain exists as a dimer in the dark. The D-value and the concentration dependence of the rate indicated that the phot1LOV1 domain associates to form a tetramer (dimerization of the dimer) upon photoexcitation. We also found that the chromophore is released from the binding pocket of the LOV domain when it absorbs two photons within a pulse duration, which occurs in addition to the normal photocycle reaction. On the basis of these results, we discuss the molecular mechanism of the light dependent role of the phot1LOV1 domain.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
28
|
Takeda K, Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Dynamics of the amino-terminal and carboxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. J Phys Chem B 2013; 117:15606-13. [PMID: 23931584 DOI: 10.1021/jp406109j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, conformational changes of the amino-terminal helix (A'α helix), in addition to the reported conformational changes of the carboxyl-terminal helix (Jα helix), have been proposed to be important for the regulatory function of the light-oxygen-voltage 2 domain (LOV2) of phototropin 1 from Arabidopsis. However, the reaction dynamics of the A'α helix have not been examined. Here, the unfolding reactions of the A'α and Jα helices of the LOV2 domain of phototropin 1 from Arabidopsis thaliana were investigated by the time-resolved transient grating (TG) method. A mutant (T469I mutant) that renders the A'α helix unfolded in the dark state showed unfolding of the Jα helix with a time constant of 1 ms, which is very similar to the time constant reported for the wild-type LOV2-linker sample. Furthermore, a mutant (I608E mutant) that renders the Jα helix unfolded in the dark state exhibited an unfolding process of the A'α helix with a time constant of 12 ms. On the basis of these experimental results, it is suggested that the unfolding reactions of these helices occurs independently.
Collapse
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|