1
|
Chen B, Li H, Huang R, Tang Y, Li F. Deep learning prediction of electrospray ionization tandem mass spectra of chemically derived molecules. Nat Commun 2024; 15:8396. [PMID: 39333165 PMCID: PMC11436754 DOI: 10.1038/s41467-024-52805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Chemical derivatization is a powerful strategy to enhance sensitivity and selectivity of liquid chromatography-mass spectrometry for non-targeted analysis of chemicals in complex mixtures. However, it remains impossible to obtain large sets of reference spectra for chemically derived molecules (CDMs), representing a major barrier in real-world applications. Herein, we describe a deep learning approach that enables accurate prediction of electrospray ionization tandem mass spectra for CDMs (DeepCDM). DeepCDM is established by transfer learning from a generic spectrum predicting model using a small set of experimentally acquired tandem mass spectra of CDMs, which converts a generic model with low predictability for CDMs into a specialized model with high predictability. We demonstrate DeepCDM by predicting electrospray ionization tandem mass spectra of dansylated molecules. The success in establishing Dns-MS further enables the development of DnsBank, a dansylation-specialized in silico spectral library. DnsBank achieves significant increases of accurate annotation rates of dansylated molecules, facilitating discovery of new hazardous pollutants from an environmental study of leather industrial wastewater. DeepCDM is also highly versatile for other classes of CDMs. Therefore, we envision that DeepCDM will pave a way for high-throughput identification of CDMs in non-targeted analysis to dig unknowns with potential health impacts from emerging anthropogenic chemicals.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hailiang Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yanan Tang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
2
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Qin T, Hu B, Zhao Q, Wang Y, Wang S, Luo D, Lyu J, Chen Y, Gan J, Huang Z. Structural Insight into Polymerase Mechanism via a Chiral Center Generated with a Single Selenium Atom. Int J Mol Sci 2023; 24:15758. [PMID: 37958741 PMCID: PMC10647396 DOI: 10.3390/ijms242115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
DNA synthesis catalyzed by DNA polymerase is essential for all life forms, and phosphodiester bond formation with phosphorus center inversion is a key step in this process. Herein, by using a single-selenium-atom-modified dNTP probe, we report a novel strategy to visualize the reaction stereochemistry and catalysis. We capture the before- and after-reaction states and provide explicit evidence of the center inversion and in-line attacking SN2 mechanism of DNA polymerization, while solving the diastereomer absolute configurations. Further, our kinetic and thermodynamic studies demonstrate that in the presence of Mg2+ ions (or Mn2+), the binding affinity (Km) and reaction selectivity (kcat/Km) of dGTPαSe-Rp were 51.1-fold (or 19.5-fold) stronger and 21.8-fold (or 11.3-fold) higher than those of dGTPαSe-Sp, respectively, indicating that the diastereomeric Se-Sp atom was quite disruptive of the binding and catalysis. Our findings reveal that the third metal ion is much more critical than the other two metal ions in both substrate recognition and bond formation, providing insights into how to better design the polymerase inhibitors and discover the therapeutics.
Collapse
Affiliation(s)
- Tong Qin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Bei Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Qianwei Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yali Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China;
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Danyan Luo
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acid Institute, Chengdu 618000, China;
| | - Jiazhen Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Yiqing Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acid Institute, Chengdu 618000, China;
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| |
Collapse
|
4
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Kong H, Sun B, Yu F, Wang Q, Xia K, Jiang D. Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302021. [PMID: 37327311 PMCID: PMC10460852 DOI: 10.1002/advs.202302021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Indexed: 06/18/2023]
Abstract
DNA has been used as a robust material for the building of a variety of nanoscale structures and devices owing to its unique properties. Structural DNA nanotechnology has reported a wide range of applications including computing, photonics, synthetic biology, biosensing, bioimaging, and therapeutic delivery, among others. Nevertheless, the foundational goal of structural DNA nanotechnology is exploiting DNA molecules to build three-dimensional crystals as periodic molecular scaffolds to precisely align, obtain, or collect desired guest molecules. Over the past 30 years, a series of 3D DNA crystals have been rationally designed and developed. This review aims to showcase various 3D DNA crystals, their design, optimization, applications, and the crystallization conditions utilized. Additionally, the history of nucleic acid crystallography and potential future directions for 3D DNA crystals in the era of nanotechnology are discussed.
Collapse
Affiliation(s)
- Huating Kong
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Bo Sun
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Feng Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Kai Xia
- Shanghai Frontier Innovation Research InstituteShanghai201108China
- Shanghai Stomatological HospitalFudan UniversityShanghai200031China
| | - Dawei Jiang
- Wuhan Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
- Key Laboratory of Biological Targeted Therapythe Ministry of EducationWuhan430022China
| |
Collapse
|
6
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
7
|
Schürmann CJ, Teuteberg TL, Stückl AC, Ruth PN, Hecker F, Herbst‐Irmer R, Mata RA, Stalke D. Trapping X‐ray Radiation Damage from Homolytic Se−C Bond Cleavage in BnSeSeBn Crystals (Bn=benzyl, CH
2
C
6
H
5
). Angew Chem Int Ed Engl 2022; 61:e202203665. [PMID: 35417063 PMCID: PMC9320817 DOI: 10.1002/anie.202203665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Irradiation of dibenzyl diselenide BnSeSeBn with X‐ray or UV‐light cleaves the Se−C and the Se−Se bonds, inducing stable and metastable radical states. They are inevitably important to all natural and life sciences. Structural changes due to X‐ray‐induced Se−C bond‐cleavage could be pin‐pointed in various high‐resolution X‐ray diffraction experiments for the first time. Extended DFT methods were applied to characterize the solid‐state structure and support the refinement of the observed residuals as contributions from the BnSeSe⋅ radical species. The X‐ray or UV‐irradiated crystalline samples of BnSeSeBn were characterized by solid‐state EPR. This paper provides insight that in the course of X‐ray structure analysis of selenium compounds not only organo‐selenide radicals like RSe⋅ may occur, but also organo diselenide BnSeSe⋅ radicals and organic radicals R⋅ are generated, particularly important to know in structural biology.
Collapse
Affiliation(s)
- Christian J. Schürmann
- Georg-August Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Thorsten L. Teuteberg
- Georg-August Universität Göttingen Institut für Physikalische Chemie Tammannstraße 2 37077 Göttingen Germany
| | - A. Claudia Stückl
- Georg-August Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Paul Niklas Ruth
- Georg-August Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Fabian Hecker
- Max-Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Germany
| | - Regine Herbst‐Irmer
- Georg-August Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Ricardo A. Mata
- Georg-August Universität Göttingen Institut für Physikalische Chemie Tammannstraße 2 37077 Göttingen Germany
| | - Dietmar Stalke
- Georg-August Universität Göttingen Institut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| |
Collapse
|
8
|
Guo P, Han D. Targeting Pathogenic DNA and RNA Repeats: A Conceptual Therapeutic Way for Repeat Expansion Diseases. Chemistry 2022; 28:e202201749. [PMID: 35727679 DOI: 10.1002/chem.202201749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Expansions of short tandem repeats (STRs) in the human genome cause nearly 50 neurodegenerative diseases, which are mostly inheritable, nonpreventable and incurable, posing as a huge threat to human health. Non-B DNAs formed by STRs are thought to be structural intermediates that can cause repeat expansions. The subsequent transcripts harboring expanded RNA repeats can further induce cellular toxicity through forming specific structures. Direct targeting of these pathogenic DNA and RNA repeats has emerged as a new potential therapeutic strategy to cure repeat expansion diseases. In this conceptual review, we first introduce the roles of DNA and RNA structures in the genetic instabilities and pathomechanisms of repeat expansion diseases, then describe structural features of DNA and RNA repeats with a focus on the tertiary structures determined by X-ray crystallography and solution nuclear magnetic resonance spectroscopy, and finally discuss recent progress and perspectives of developing chemical tools that target pathogenic DNA and RNA repeats for curing repeat expansion diseases.
Collapse
Affiliation(s)
- Pei Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Da Han
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
9
|
Schürmann CJ, Teuteberg TT, Stückl AC, Ruth PN, Hecker F, Herbst-Irmer R, Mata RA, Stalke D. Trapping X‐ray Radiation Damage from Homolytic Se–C Bond Cleavage in BnSeSeBn Crystals (Bn=benzyl, CH2C6H5). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Thorsten T. Teuteberg
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institur für Physikalische Chemie GERMANY
| | - A. Claudia Stückl
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Anorganische Chemie GERMANY
| | - Paul N. Ruth
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Anorganische Chemie GERMANY
| | - Fabian Hecker
- Max-Planck-Institut für biophysikalische Chemie: Max-Planck-Institut fur biophysikalische Chemie Biophysikalische Chemie GERMANY
| | - Regine Herbst-Irmer
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Anorganische Chemie GERMANY
| | - Ricardo A. Mata
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Physikalische Chemie GERMANY
| | - Dietmar Stalke
- Universität Göttingen Institut für Anorganische und Analytische Chemie Tammannstraße 4 37077 Göttingen GERMANY
| |
Collapse
|
10
|
Cosgrove SC, Miller GJ. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin Drug Discov 2022; 17:355-364. [PMID: 35133222 DOI: 10.1080/17460441.2022.2039620] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleoside analogues represent a cornerstone of achievement in drug discovery, rising to prominence particularly in the fields of antiviral and anticancer discovery over the last 60 years. Traditionally accessed using chemical synthesis, a paradigm shift to include the use of biocatalytic synthesis is now apparent. AREAS COVERED Herein, the authors discuss the recent advances using this technology to access nucleoside analogues. Two key aspects are covered, the first surrounding methodology concepts, effectively using enzymes to access diverse nucleoside analogue space and also for producing key building blocks. The second focuses on the use of biocatalytic cascades for de novo syntheses of nucleoside analogue drugs. Finally, recent advances in technologies for effecting enzymatic nucleoside synthesis are considered, chiefly immobilization and flow. EXPERT OPINION Enzymatic synthesis of nucleoside analogues is maturing but has yet to usurp chemical synthesis as a first-hand synthesis technology, with scalability and substrate modification primary issues. Moving forward, tandem approaches that harness expertise across molecular microbiology and chemical synthesis will be vital to unlocking the potential of next generation nucleoside analogue drug discovery.
Collapse
Affiliation(s)
- Sebastian C Cosgrove
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK.,Centre for Glycoscience Research, Keele University, Keele, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK.,Centre for Glycoscience Research, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
11
|
Jin P, Wang X, Pan H, Chen J. One order of magnitude increase of triplet state lifetime observed in deprotonated form selenium substituted uracil. Phys Chem Chem Phys 2022; 24:875-882. [PMID: 34908064 DOI: 10.1039/d1cp04811b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Selenium nucleic acids possess unique properties and have been demonstrated to have a wide range of applications such as in DNA X-ray crystallography and novel medical therapies. However, as a heavy atom, selenium substitution may easily alter the photophysical properties of a nucleic acid by red-shifting the absorption spectra and introducing effective intersystem crossing to triplet excited states. In present work, the excited state dynamics of a naturally occurring selenium substituted uracil (2-selenuracil, 2SeU) is studied by using femtosecond transient absorption spectroscopy as well as quantum chemistry calculations. Ultrafast intersystem crossing to the lowest triplet state (T1) and effective non-radiative decay of this state to the ground state (S0) are demonstrated in the neutral form 2SeU. However, the triplet lifetime of the deprotonated form 2SeU is found to be almost one order of magnitude longer than that in the neutral one. Quantum chemistry calculations indicate that the short triplet lifetime in 2SeU is due to excited state population decay through a crossing point between T1 and S0. In the deprotonated form, shortening the N1-C2 bond length makes the structural distortion more difficult and brings a larger energy barrier on the pathway to the T1/S0 crossing point, resulting in one order of magnitude increase of the triplet state lifetime. Our study reveals one key factor to regulate the triplet lifetime of 2SeU and sets the stage to further investigate the photophysical and photochemical properties of 2SeU-containing DNA/RNA duplexes.
Collapse
Affiliation(s)
- Peipei Jin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
12
|
Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins. MEMBRANES 2021; 11:membranes11110823. [PMID: 34832053 PMCID: PMC8625833 DOI: 10.3390/membranes11110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
Membrane proteins reside in the lipid bilayer of biomembranes and the structure and function of these proteins are closely related to their interactions with lipid molecules. Structural analyses of interactions between membrane proteins and lipids or detergents that constitute biological or artificial model membranes are important for understanding the functions and physicochemical properties of membrane proteins and biomembranes. Determination of membrane protein structures is much more difficult when compared with that of soluble proteins, but the development of various new technologies has accelerated the elucidation of the structure-function relationship of membrane proteins. This review summarizes the development of heavy atom derivative detergents and lipids that can be used for structural analysis of membrane proteins and their interactions with detergents/lipids, including their application with X-ray free-electron laser crystallography.
Collapse
|
13
|
Fernández Riveras JA, Frontera A, Bauzá A. Selenium chalcogen bonds are involved in protein-carbohydrate recognition: a combined PDB and theoretical study. Phys Chem Chem Phys 2021; 23:17656-17662. [PMID: 34373871 DOI: 10.1039/d1cp01929e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript the ability of selenium carbohydrates to undergo chalcogen bonding (ChB) interactions with protein residues has been studied at the RI-MP2/def2-TZVP level of theory. An inspection of the Protein Data Bank (PDB) revealed SeA (A = O, C and S) intermolecular contacts involving Se-pyranose ligands and ASP, TYR, SER and MET residues. Theoretical models were built to analyse the strength and directionality of the interaction together with "Atoms in Molecules" (AIM), Natural Bonding Orbital (NBO) and Non Covalent Interactions plot (NCIplot) analyses, which further assisted in the characterization of the ChBs described herein. We expect that the results from this study will be useful to expand the current knowledge regarding biological ChBs as well as to increase the visibility of the interaction among the carbohydrate chemistry community.
Collapse
Affiliation(s)
- Jose A Fernández Riveras
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, Palma (Baleares) 07122, Spain.
| | | | | |
Collapse
|
14
|
Hellendahl KF, Kaspar F, Zhou X, Yang Z, Huang Z, Neubauer P, Kurreck A. Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation*. Chembiochem 2021; 22:2002-2009. [PMID: 33594780 PMCID: PMC8251958 DOI: 10.1002/cbic.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/16/2021] [Indexed: 01/09/2023]
Abstract
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40-48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6-40 % isolated yield, which compares favorably to established chemical routes.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
| | - Felix Kaspar
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| | - Xinrui Zhou
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Zhaoyi Yang
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Zhen Huang
- Sichuan University, College of Life Sciences Key Laboratory of Bio-Resource and Eco-Environment Ministry of EducationNo. 17 People's South Road Section 3610041ChengduP. R. China
| | - Peter Neubauer
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
| | - Anke Kurreck
- Technische Universität Berlin Faculty III Process Sciences, Institute of Biotechnology Chair of Bioprocess EngineeringAckerstraße 7613355BerlinGermany
- BioNukleo GmbHAckerstraße 7613355BerlinGermany
| |
Collapse
|
15
|
Saran R, Huang Z, Liu J. Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Self‐Assembly of DNA and RNA Building Blocks Explored by Nitrogen‐14 NMR Crystallography: Structure and Dynamics. Chemphyschem 2020; 21:1044-1051. [DOI: 10.1002/cphc.201901214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Indexed: 12/20/2022]
|
17
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Nucleic acid enzymes based on functionalized nucleosides. Curr Opin Chem Biol 2019; 52:93-101. [PMID: 31307007 DOI: 10.1016/j.cbpa.2019.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Nucleic acid-based enzymes have recently joined their proteinaceous counterparts as important biocatalysts. While RNA enzymes (ribozymes) are found in nature, deoxyribozymes or DNAzymes are man-made entities. Numerous ribozymes and DNAzymes have been identified by Darwinian selection methods to catalyze a broad array of chemical transformations. Despite these important advances, practical applications involving nucleic acid enzymes are often plagued by relatively poor pharmacokinetic properties and cellular uptake, rapid degradation by nucleases and/or by the limited chemical arsenal carried by natural DNA and RNA. In this review, the two main chemical approaches for the modification of nucleic acid-based catalysts, particularly DNAzymes, are described. These methods aim at improving the functional properties of nucleic acid enzymes by mitigating some of these shortcomings. In this context, recent developments in the post-SELEX processing of existing nucleic acid catalysts as well as efforts for the selection of DNAzymes and ribozymes with modified nucleoside triphosphates are summarized.
Collapse
|
19
|
Hu B, Wang Y, Sun S, Yan W, Zhang C, Luo D, Deng H, Hu LR, Huang Z. Synthesis of Selenium‐Triphosphates (dNTPαSe) for More Specific DNA Polymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
| | - Yitao Wang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
| | - Shichao Sun
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
| | - Weizhu Yan
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
| | - Chong Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
| | - Danyan Luo
- The Jack W. Szostak-CDHT Institute for Large Nucleic Acids Chengdu Sichuan 610041 P. R. China
| | - Huiling Deng
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
- SeNA Research Inc. Atlanta GA 30303 USA
| | | | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of EducationCollege of Life SciencesSichuan University Chengdu Sichuan 610064 P. R. China
- The Jack W. Szostak-CDHT Institute for Large Nucleic Acids Chengdu Sichuan 610041 P. R. China
- SeNA Research InstituteDepartment of ChemistryGeorgia State University Atlanta GA 30303 USA
| |
Collapse
|
20
|
Hu B, Wang Y, Sun S, Yan W, Zhang C, Luo D, Deng H, Hu LR, Huang Z. Synthesis of Selenium-Triphosphates (dNTPαSe) for More Specific DNA Polymerization. Angew Chem Int Ed Engl 2019; 58:7835-7839. [PMID: 31037810 DOI: 10.1002/anie.201901113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/11/2019] [Indexed: 11/09/2022]
Abstract
2'-Deoxynucleoside 5'-(alpha-P-seleno)-triphosphates (dNTPαSe) have been conveniently synthesized using a protection-free, one-pot strategy. One of two diastereomers of each dNTPαSe can be efficiently recognized by DNA polymerases, while the other is neither a substrate nor an inhibitor. Furthermore, this Se-atom modification can significantly inhibit non-specific DNA polymerization caused by mis-priming. Se-DNAs amplified with dNTPαSe via polymerase chain reaction have sequences identical to the corresponding native DNA. In conclusion, a simple strategy for more specific DNA polymerization has been established by replacing native dNTPs with dNTPαSe.
Collapse
Affiliation(s)
- Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Yitao Wang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Shichao Sun
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Weizhu Yan
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Chong Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Danyan Luo
- The Jack W. Szostak-CDHT Institute for Large Nucleic Acids, Chengdu, Sichuan, 610041, P. R. China
| | - Huiling Deng
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.,SeNA Research Inc., Atlanta, GA, 30303, USA
| | | | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.,The Jack W. Szostak-CDHT Institute for Large Nucleic Acids, Chengdu, Sichuan, 610041, P. R. China.,SeNA Research Institute, Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
21
|
Zhou X, Yan W, Zhang C, Yang Z, Neubauer P, Mikhailopulo IA, Huang Z. Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Abstract
The application of X-ray crystallographic methods toward a structural understanding of G-quadruplex (G4) motifs at atomic level resolution can provide researchers with exciting opportunities to explore new structural arrangements of putative G4 forming sequences and investigate their recognition by small molecule compounds. The crowded and ordered crystalline environment requires the self-assembly of stable G4 motifs, allowing for an understanding of their inter- and intramolecular interactions in a packed environment, revealing thermodynamically stable topologies. Additionally, crystallographic data derived from these experiments in the form of electron density provides valuable opportunities to visualize various solvent molecules associated with G4s along with the geometries of the metal ions associated within the central channel-elements critical to the understanding G4 stability and topology. Now, with the advent of affordable, commercially sourced and purified synthetic DNA and RNA molecules suitable for immediate crystallization trials, and combined with the availability of specialized and validated crystallization screens, researchers can now undertake in-house crystallization trials without the need for local expertise. When this is combined with access to modern synchrotron platforms that offer complete automation of the data collection process-from the receipt of crystals to delivery of merged and scaled data for the visualization of electron density-the application of X-ray crystallographic techniques is made open to nonspecialist researchers. In this chapter we aim to provide a simple how-to guide to enable the reader to undertake crystallographic experiments involving G4s, encompassing the design of oligonucleotide sequences, fundamentals of the crystallization process and modern strategies used in setting up successful crystallization trials. We will also describe data collection strategies, phasing, electron density visualization, and model building. We will draw on our own experiences in the laboratory and hopefully build an appreciation of the utility of the X-ray crystallographic approaches to investigating G4s.
Collapse
Affiliation(s)
| | - Gavin W Collie
- UCL School of Pharmacy, University College London, London, UK.,Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
23
|
Vandavasi VG, Blakeley MP, Keen DA, Hu LR, Huang Z, Kovalevsky A. Temperature-Induced Replacement of Phosphate Proton with Metal Ion Captured in Neutron Structures of A-DNA. Structure 2018; 26:1645-1650.e3. [PMID: 30244969 PMCID: PMC6281803 DOI: 10.1016/j.str.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/02/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022]
Abstract
Nucleic acids can fold into well-defined 3D structures that help determine their function. Knowing precise nucleic acid structures can also be used for the design of nucleic acid-based therapeutics. However, locations of hydrogen atoms, which are key players of nucleic acid function, are normally not determined with X-ray crystallography. Accurate determination of hydrogen atom positions can provide indispensable information on protonation states, hydrogen bonding, and water architecture in nucleic acids. Here, we used neutron crystallography in combination with X-ray diffraction to obtain joint X-ray/neutron structures at both room and cryo temperatures of a self-complementary A-DNA oligonucleotide d[GTGG(CSe)CAC]2 containing 2'-SeCH3 modification on Cyt5 (CSe) at pH 5.6. We directly observed protonation of a backbone phosphate oxygen of Ade7 at room temperature. The proton is replaced with hydrated Mg2+ upon cooling the crystal to 100 K, indicating that metal binding is favored at low temperature, whereas proton binding is dominant at room temperature.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37922, USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, Grenoble 38000, France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37922, USA.
| |
Collapse
|
24
|
Sieradzan AK, Golon Ł, Liwo A. Prediction of DNA and RNA structure with the NARES-2P force field and conformational space annealing. Phys Chem Chem Phys 2018; 20:19656-19663. [PMID: 30014063 DOI: 10.1039/c8cp03018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A physics-based method for the prediction of the structures of nucleic acids, which is based on the physics-based 2-bead NARES-2P model of polynucleotides and global-optimization Conformational Space Annealing (CSA) algorithm has been proposed. The target structure is sought as the global-energy-minimum structure, which ignores the entropy component of the free energy but spares expensive multicanonical simulations necessary to find the conformational ensemble with the lowest free energy. The CSA algorithm has been modified to optimize its performance when treating both single and multi-chain nucleic acids. It was shown that the method finds the native fold for simple RNA molecules and DNA duplexes and with limited distance restraints, which can easily be obtained from the secondary-structure-prediction servers, complex RNA folds can be treated with using moderate computer resources.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland.
| | | | | |
Collapse
|
25
|
Liu Y, Holmstrom E, Yu P, Tan K, Zuo X, Nesbitt DJ, Sousa R, Stagno JR, Wang YX. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat Protoc 2018; 13:987-1005. [PMID: 29651055 DOI: 10.1038/nprot.2018.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Site-specific incorporation of labeled nucleotides is an extremely useful synthetic tool for many structural studies (e.g., NMR, electron paramagnetic resonance (EPR), fluorescence resonance energy transfer (FRET), and X-ray crystallography) of RNA. However, specific-position-labeled RNAs >60 nt are not commercially available on a milligram scale. Position-selective labeling of RNA (PLOR) has been applied to prepare large RNAs labeled at desired positions, and all the required reagents are commercially available. Here, we present a step-by-step protocol for the solid-liquid hybrid phase method PLOR to synthesize 71-nt RNA samples with three different modification applications, containing (i) a 13C15N-labeled segment; (ii) discrete residues modified with Cy3, Cy5, or biotin; or (iii) two iodo-U residues. The flexible procedure enables a wide range of downstream biophysical analyses using precisely localized functionalized nucleotides. All three RNAs were obtained in <2 d, excluding time for preparing reagents and optimizing experimental conditions. With optimization, the protocol can be applied to other RNAs with various labeling schemes, such as ligation of segmentally labeled fragments.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Erik Holmstrom
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Kemin Tan
- Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois, USA
| | - Xiaobing Zuo
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
26
|
Chawla M, Poater A, Besalú-Sala P, Kalra K, Oliva R, Cavallo L. Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties. Phys Chem Chem Phys 2018; 20:7676-7685. [PMID: 29497733 DOI: 10.1039/c7cp07656h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We employ density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the structural, energetic and optical properties of a new computationally designed RNA alphabet, where the nucleobases, tsA, tsG, tsC, and tsU (ts-bases), have been derived by replacing sulfur with selenium in the previously reported tz-bases, based on the isothiazolo[4,3-d]pyrimidine heterocycle core. We find out that the modeled non-natural bases have minimal impact on the geometry and energetics of the classical Watson-Crick base pairs, thus potentially mimicking the natural bases in a RNA duplex in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge of purines are destabilized as compared to their natural counterparts. We also focus on the photophysical properties of the non-natural bases and correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital. It is indeed stabilized by roughly 1.1-1.6 eV as compared to the natural analogues, resulting in a reduction of the gap between the highest occupied and the lowest unoccupied molecular orbital from 5.3-5.5 eV in the natural bases to 3.9-4.2 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. Overall, our analysis clearly indicates that the newly modelled ts-bases are expected to exhibit better fluorescent properties as compared to the previously reported tz-bases, while retaining similar H-bonding properties. In addition, we show that a new RNA alphabet based on size-extended benzo-homologated ts-bases can also form stable Watson-Crick base pairs with the natural complementary nucleobases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
27
|
Jing X, Chen C, Deng X, Zhang X, Wei D, Yu L. Design and Preparation of Poly-Selenides: Easily Fabricated and Efficient Organoselenium Materials for Heavy Metal Removing and Recycling. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaobi Jing
- Guangling College; Yangzhou University; Yangzhou Jiangsu 225009 China
- Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| | - Changzhou Chen
- Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| | - Xin Deng
- Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| | - Xu Zhang
- Guangling College; Yangzhou University; Yangzhou Jiangsu 225009 China
- Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| | - Duo Wei
- Testing Centre; Yangzhou University; Yangzhou Jiangsu 225009 China
| | - Lei Yu
- Guangling College; Yangzhou University; Yangzhou Jiangsu 225009 China
- Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| |
Collapse
|
28
|
Saito‐Tarashima N, Ota M, Minakawa N. Synthesis of 4′‐Selenoribonucleosides, the Building Blocks of 4′‐SelenoRNA, Using a Hypervalent Iodine. ACTA ACUST UNITED AC 2018; 70:1.40.1-1.40.21. [DOI: 10.1002/cpnc.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Noriko Saito‐Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi Tokushima Japan
| | - Masashi Ota
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi Tokushima Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University Shomachi Tokushima Japan
| |
Collapse
|
29
|
Liczner C, Grenier V, Wilds CJ. Reversible diselenide cross-links are formed between oligonucleotides containing 2′-deoxy-6-selenoinosine. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Luo Z. Selenourea: a convenient phasing vehicle for macromolecular X-ray crystal structures. Sci Rep 2016; 6:37123. [PMID: 27841370 PMCID: PMC5107899 DOI: 10.1038/srep37123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
Majority of novel X-ray crystal structures of proteins are currently solved using the anomalous diffraction signal provided by selenium after incorporation of selenomethionine instead of natural methionine by genetic engineering methods. However, selenium can be inserted into protein crystals in the form of selenourea (SeC(NH2)2), by adding the crystalline powder of selenourea into mother liquor or cryo-solution with native crystals, in analogy to the classic procedure of heavy-atom derivatization. Selenourea is able to bind to reactive groups at the surface of macromolecules primarily through hydrogen bonds, where the selenium atom may serve as acceptor and amide groups as donors. Selenourea has different chemical properties than heavy-atom reagents and halide ions and provides a convenient way of phasing crystal structures of macromolecules.
Collapse
Affiliation(s)
- Zhipu Luo
- Synchrotron Radiation Research Section, National Cancer Institute, Argonne National Laboratory, Argonne, 60439, USA
| |
Collapse
|
31
|
Liu Y, Yu P, Dyba M, Sousa R, Stagno JR, Wang YX. Applications of PLOR in labeling large RNAs at specific sites. Methods 2016; 103:4-10. [PMID: 27033177 PMCID: PMC10802919 DOI: 10.1016/j.ymeth.2016.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
Incorporation of modified or labeled nucleotides at specific sites in RNAs is critical for gaining insights into the structure and function of RNAs. Preparation of site-specifically labeled large RNAs in amounts suitable for structural or functional studies is extremely difficult using current methodologies. The position-selective labeling of RNA, PLOR, is a recently developed method that makes such syntheses possible. PLOR allows incorporation of various probes, including (2)D/(13)C/(15)N-isotopic labels, Cy3/Cy5/Alexa488/Alexa555 fluorescent dyes, biotin and other chemical groups, into specific positions in long RNAs. Here, we describe in detail the use of PLOR to label RNAs at specific segment(s) or discrete sites.
Collapse
Affiliation(s)
- Yu Liu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Ping Yu
- Structural Biophysics Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marzena Dyba
- Structural Biophysics Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Sun H, Jiang S, Huang Z. Nucleic Acid Crystallography via Direct Selenium Derivatization: RNAs Modified with Se-Nucleobases. Methods Mol Biol 2016; 1320:193-204. [PMID: 26227044 DOI: 10.1007/978-1-4939-2763-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Selenium-derivatized RNAs are powerful tools for structure and function studies of RNAs and their protein complexes. By taking the advantage of selenium modifications, researchers can determine novel RNA structures via convenient SAD and MAD phasing. As one of the naturally occurring tRNA modifications, 2-seleno-uridine, which presents almost exclusively at the wobble position of anticodon loop in various bacterial tRNAs (Ching et al., Proc Natl Acad Sci U S A 82:347, 1985; Dunin-Horkawicz et al., Nucleic Acids Res 34:D145-D149, 2006), becomes one of the most promising modifications for crystallographic studies. Our previous studies have demonstrated many unique properties of 2-seleno-uridine, including stability (Sun et al., RNA 19:1309-1314, 2013), minimal structural perturbation (Sun et al., Nucleic Acids Res 40:5171-5179, 2012), and enhanced base-pairing fidelity (Sun et al., Nucleic Acids Res 40:5171-5179, 2012). In this protocol, we present the efficient chemical synthesis of 2-seleno-uridine triphosphate ((Se)UTP) and the facile transcription and purification of (Se)U-containing RNAs ((Se)U-RNA).
Collapse
Affiliation(s)
- Huiyan Sun
- Department of Chemistry, Georgia State University, P.O. Box 3965, Altanta, GA, 30303, USA
| | | | | |
Collapse
|
33
|
Zhang W, Szostak JW, Huang Z. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1565-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
McDonagh AW, Mahon MF, Murphy PV. Lewis Acid Induced Anomerization of Se-Glycosides. Application to Synthesis of α-Se-GalCer. Org Lett 2016; 18:552-5. [DOI: 10.1021/acs.orglett.5b03591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anthony W. McDonagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Paul V. Murphy
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
35
|
Mooers BHM. Fusion RNAs in crystallographic studies of double-stranded RNA from trypanosome RNA editing. Methods Mol Biol 2015; 1240:191-216. [PMID: 25352146 DOI: 10.1007/978-1-4939-1896-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Head-to-head fusions of two identical double-stranded fragments of RNA can be designed to self-assemble from a single RNA species and form a double-stranded helix with a twofold rotation axis relating the two strands. These symmetrical RNA molecules are more likely to crystallize without end-on-end statistical packing disorder because the two halves of the molecule are identical. This approach can be used to study many fragments of double-stranded RNA or many isolated helical domains from large single-stranded RNAs that may not yet be amenable to high-resolution studies by crystallography or NMR. We used fusion RNAs to study one (the U-helix) of three functional domains formed when guide RNA binds to its cognate pre-edited mRNA from the trypanosome RNA editing system. The U-helix forms when the 3' oligo(U) tail of the guide RNA (gRNA) binds to the purine-rich, pre-edited mRNA upstream from the current RNA editing site. Fusion RNAs 16-and 32-base pairs in length formed crystals that gave diffraction to 1.37 and 1.05 Å respectively. We provide the composition of a fusion RNA crystallization screen and describe the X-ray data collection, structure determination, and refinement of the crystal structures of fusion RNAs.
Collapse
Affiliation(s)
- Blaine H M Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L. Young Biomedical Research Center Rm. 466, Oklahoma City, OK, 73104-5419, USA,
| |
Collapse
|
36
|
Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim MJ, Kim HJ, Zhu G, Jiménez E, Cansiz S, Teng IT, Champanhac C, McLendon C, Liu C, Zhang W, Gerloff DL, Huang Z, Tan W, Benner SA. Evolution of functional six-nucleotide DNA. J Am Chem Soc 2015; 137:6734-7. [PMID: 25966323 DOI: 10.1021/jacs.5b02251] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.
Collapse
Affiliation(s)
- Liqin Zhang
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Zunyi Yang
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Kwame Sefah
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin M Bradley
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Shuichi Hoshika
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Myong-Jung Kim
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Hyo-Joong Kim
- §Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| | - Guizhi Zhu
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States.,∥Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Elizabeth Jiménez
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Sena Cansiz
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - I-Ting Teng
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Carole Champanhac
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher McLendon
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Chen Liu
- ⊥Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | - Wen Zhang
- #Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,∇SeNA Research, Inc., Atlanta, Georgia 30303, United States
| | - Dietlind L Gerloff
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Zhen Huang
- #Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,∇SeNA Research, Inc., Atlanta, Georgia 30303, United States
| | - Weihong Tan
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States.,∥Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Steven A Benner
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States.,§Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| |
Collapse
|
37
|
Tarashima N, Sumitomo T, Ando H, Furukawa K, Ishida T, Minakawa N. Synthesis of DNA fragments containing 2′-deoxy-4′-selenonucleoside units using DNA polymerases: comparison of dNTPs with O, S and Se at the 4′-position in replication. Org Biomol Chem 2015; 13:6949-52. [DOI: 10.1039/c5ob00941c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The first synthesis of 4′-selenoDNA was achieved using 4′-selenothymidine triphosphate by taking advantage of its bioequivalence against DNA polymerases.
Collapse
Affiliation(s)
- N. Tarashima
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - T. Sumitomo
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - H. Ando
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - K. Furukawa
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - T. Ishida
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - N. Minakawa
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| |
Collapse
|
38
|
Yu L, Ye J, Zhang X, Ding Y, Xu Q. Recyclable (PhSe)2-catalyzed selective oxidation of isatin by H2O2: a practical and waste-free access to isatoic anhydride under mild and neutral conditions. Catal Sci Technol 2015. [DOI: 10.1039/c5cy01030f] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and waste-free synthesis of isatoic anhydride was reported. The feature of this methodology is the simple isolation procedure by filtration, which facilitates the direct recovery and reuse of both organoselenium catalysts and solvents.
Collapse
Affiliation(s)
- Lei Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Jianqing Ye
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Xu Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Yuanhua Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Qing Xu
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| |
Collapse
|
39
|
Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
40
|
Tarashima N, Hayashi K, Terasaki M, Taniike H, Inagaki Y, Hirose K, Furukawa K, Matsuda A, Minakawa N. First synthesis of fully modified 4'-selenoRNA and 2'-OMe-4'-selenoRNA based on the mechanistic considerations of an unexpected strand break. Org Lett 2014; 16:4710-3. [PMID: 25181546 DOI: 10.1021/ol502077h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated oligonucleotide (ON) synthesis containing 4'-selenoribonucleoside(s) under standard phosphoramidite conditions. Careful operation using a manual ON synthetic system revealed that an unexpected strand break occurred to afford a C2-symmetric homodimer as a byproduct. In addition, this side reaction occurred during I2 oxidation. On the basis of these findings, the first synthesis of fully modified 4'-selenoRNA and 2'-OMe-4'-selenoRNA was achieved using tert-butyl hydroperoxide (TBHP) as the alternative oxidant.
Collapse
Affiliation(s)
- Noriko Tarashima
- Graduate School of Pharmaceutical Sciences, The University of Tokushima , Shomachi 1-78-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:354-61. [PMID: 24531469 PMCID: PMC3940196 DOI: 10.1107/s1399004713027922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Collapse
Affiliation(s)
- Rob Abdur
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana O. Gerlits
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jianhua Gan
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jiansheng Jiang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jozef Salon
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander A. Chumanevich
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhen Huang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
42
|
Abstract
We have developed a simple method to synthesize 6-seleno-2'-deoxyguanosine (SedG) by selectively replacing the 6-oxygen atom with selenium. This selenium-atom-specific modification (SAM) alters the optical properties of the naturally occurring 2'-deoxyguanosine (dG). Unlike the native dG, the UVabsorption of SedG is significantly influenced by the pH of the aqueous solution. Moreover, SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions. Furthermore, SedG has noticeable fluorescence in non-aqueous solutions, indicating its sensitivity to environmental changes. This is the first time a fluorescent nucleoside by single-atom alteration has been observed. Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins, such as membrane-transporter proteins.
Collapse
Affiliation(s)
- Kaur Manindar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Huang Zhen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
43
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
44
|
Sheng J, Gan J, Soares AS, Salon J, Huang Z. Structural insights of non-canonical U*U pair and Hoogsteen interaction probed with Se atom. Nucleic Acids Res 2013; 41:10476-87. [PMID: 24013566 PMCID: PMC3905866 DOI: 10.1093/nar/gkt799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Unlike DNA, in addition to the 2′-OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non-coding RNAs. Non-canonical U•U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uracil plays the diversifing roles. To investigate and compare the uracil in U-A and U•U base pairs, we have decided to probe them with a selenium atom by synthesizing the novel 4-Se-uridine (SeU) phosphoramidite and Se-nucleobase-modified RNAs (SeU-RNAs), where the exo-4-oxygen of uracil is replaced by selenium. Our crystal structure studies of U-A and U•U pairs reveal that the native and Se-derivatized structures are virtually identical, and both U-A and U•U pairs can accommodate large Se atoms. Our thermostability and crystal structure studies indicate that the weakened H-bonding in U-A pair may be compensated by the base stacking, and that the stacking of the trans-Hoogsteen U•U pairs may stabilize RNA duplex and its junction. Our result confirms that the hydrogen bond (O4…H-C5) of the Hoogsteen pair is weak. Using the Se atom probe, our Se-functionalization studies reveal more insights into the U•U interaction and U-participation in structure and function diversification of nucleic acids.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA and Department of Biology, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | | | | | | |
Collapse
|
45
|
Sun H, Jiang S, Caton-Williams J, Liu H, Huang Z. 2-Selenouridine triphosphate synthesis and Se-RNA transcription. RNA (NEW YORK, N.Y.) 2013; 19:1309-1314. [PMID: 23887148 PMCID: PMC3753936 DOI: 10.1261/rna.038075.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
2-Selenouridine ((Se)U) is one of the naturally occurring modifications of Se-tRNAs ((Se)U-RNA) at the wobble position of the anticodon loop. Its role in the RNA-RNA interaction, especially during the mRNA decoding, is elusive. To assist the research exploration, herein we report the enzymatic synthesis of the (Se)U-RNA via 2-selenouridine triphosphate ((Se)UTP) synthesis and RNA transcription. Moreover, we have demonstrated that the synthesized (Se)UTP is stable and recognizable by T7 RNA polymerase. Under the optimized conditions, the transcription yield of (Se)U-RNA can reach up to 85% of the corresponding native RNA. Furthermore, the transcribed (Se)U-hammerhead ribozyme has the similar activity as the corresponding native, which suggests usefulness of (Se)U-RNAs in function and structure studies of noncoding RNAs, including the Se-tRNAs.
Collapse
|
46
|
Salon J, Gan J, Abdur R, Liu H, Huang Z. Synthesis of 6-Se-guanosine RNAs for structural study. Org Lett 2013; 15:3934-7. [PMID: 23859218 DOI: 10.1021/ol401698n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6-Se-guanosine phosphoramidite and RNAs have been synthesized by selenium substitution of the 6-oxygen atom, and it is revealed that the Se-derivatization is relatively stable and that bulge and wobble structures can better accommodate a large Se atom than a duplex. This Se-modification is useful in the structural study of RNAs and their protein complexes.
Collapse
Affiliation(s)
- Jozef Salon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
47
|
Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 2013; 33:1119-73. [PMID: 23633219 DOI: 10.1002/med.21278] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
48
|
Wheeler M, Chardon A, Goubet A, Morihiro K, Tsan SY, Edwards SL, Kodama T, Obika S, Veedu RN. Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases. Chem Commun (Camb) 2013; 48:11020-2. [PMID: 23042489 DOI: 10.1039/c2cc36464f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzymatic recognition of SeLNA nucleotides was investigated. KOD XL DNA polymerase was found to be an efficient enzyme in primer extension reactions. Polymerase chain reaction (PCR) amplification of SeLNA-modified DNA templates was also efficiently achieved by Phusion and KOD XL DNA polymerases.
Collapse
Affiliation(s)
- Megan Wheeler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Caton-Williams J, Hoxhaj R, Fiaz B, Huang Z. Use of a novel 5'-regioselective phosphitylating reagent for one-pot synthesis of nucleoside 5'-triphosphates from unprotected nucleosides. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 1:1.30.1-1.30.21. [PMID: 23512692 PMCID: PMC3655200 DOI: 10.1002/0471142700.nc0130s52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
5'-Triphosphates are building blocks for enzymatic synthesis of DNA and RNA. This unit presents a protocol for convenient synthesis of 2'-deoxyribo- and ribonucleoside 5'-triphosphates (dNTPs and NTPs) from any natural or modified base. This one-pot synthesis can also be employed to prepare triphosphate analogs with a sulfur or selenium atom in place of a non-bridging oxygen atom of the α-phosphate. These S- or Se-modified dNTPs and NTPs can be used to prepare diastereomerically pure phosphorothioate or phosphoroselenoate nucleic acids. Even without extensive purification, the dNTPs or NTPs synthesized by this method are of high quality and can be used directly in DNA polymerization or RNA transcription. Synthesis and purification of the 5'-triphosphates, as well as analysis and confirmation of natural and sulfur- or selenium-modified nucleic acids, are described in this protocol unit.
Collapse
|
50
|
Wen Z, Abdalla HE, Zhen H. Synthesis of novel di-Se-containing thymidine and Se-DNAs for structure and function studies. Sci China Chem 2012; 56:273-278. [PMID: 24639685 DOI: 10.1007/s11426-012-4800-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The selenium derivatization of nucleic acids and nucleic acid-protein complexes has provided a powerful tool to solve phase problem in X-ray crystallography. Selenium atoms in the nucleotides can serve as fine scattering centers in crystal diffraction. Towards the synthesis of multiple selenium atom-containing nucleotides, which offers strong phasing power to facilitate crystal structure determination, we report here the synthesis of the thymidine analogue containing two Se atoms in one nucleobase. The novel Se-containing nucleoside and oligonucleotide DNAs were synthesized and found with the red-shifted UV spectrum and yellow color. Their unique properties are useful in phase determination, nucleic acid-based detection as well as spectroscopic studies of nucleic acids and nucleic acid-protein complexes.
Collapse
Affiliation(s)
- Zhang Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hassan E Abdalla
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Huang Zhen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|