1
|
Liu N, Zhang Y, Wang X, Niu K, Lu F, Chen J, Zhong D. Optical Quantum Control of the Electron Transfer Reactions in Protein Flavodoxin. J Phys Chem B 2024; 128:11069-11076. [PMID: 39485371 DOI: 10.1021/acs.jpcb.4c04254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The optical quantum control has been successfully applied in modulating biological processes such as energy transfer and bond isomerization. Among the reactions in realizing biological functions, the electron transfer (ET) process is fundamental; hence, the quantum control over such an ET reaction is of far-reaching significance. Here, we realized optical quantum control over ultrafast ET processes in a protein, flavodoxin, by applying various chirped excitation pulses. We observed the wavepacket dynamics within a dephasing time of less than 1 ps. Within this time window, we found that the ultrafast photoinduced ET reaction can be controlled by different chirped excitations with a rate change by a factor of about 2. Furthermore, the control effect is propagated into the subsequent ultrafast back ET reaction, showing a variation of the BET dynamics with different excitation chirps. The underlying mechanism is the initial wavepacket dynamics; the differently prepared wavepackets with chirped excitation evolve along various pathways, resulting in the changes of ET rates. The successful demonstration of optical quantum control of ultrafast biological ET is significant and opens a new avenue to explore the quantum control of real biological ET reactions.
Collapse
Affiliation(s)
- Na Liu
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xi Wang
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kangwei Niu
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faming Lu
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Liu N, Zhang Y, Niu K, Lu F, Zhong D. Optical Control of Crossing the Conical Intersection in β-Carotene. J Phys Chem Lett 2023; 14:9215-9221. [PMID: 37811837 DOI: 10.1021/acs.jpclett.3c01932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Optical control of dynamic processes has been challenging yet has only been demonstrated in several chemical and biological systems. The control of a reaction passing the widely present conical intersection has not been realized. Here, we modulated the phase of the excitation pulse to control the dynamics of β-carotene through accessing the conical intersection (CI). We observed different dynamics in 110-220 fs into the CI and the consecutive process in 400-600 fs through another CI by various chirped excitation pulses. We successfully controlled those ultrafast wavepacket dynamics passing the CIs on the femtosecond time scales. The method developed here can be used to control a various of ultrafast chemical and biological reactions through the CI(s).
Collapse
Affiliation(s)
| | | | | | | | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Program of Biophysics, Program of Chemical Physics, and Program of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
4
|
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J R Soc Interface 2018; 15:20180026. [PMID: 29643225 PMCID: PMC5938589 DOI: 10.1098/rsif.2018.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Lavigne C, Brumer P. Interfering resonance as an underlying mechanism in the adaptive feedback control of radiationless transitions: Retinal isomerization. J Chem Phys 2017; 147:114107. [PMID: 28938828 DOI: 10.1063/1.5003389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Control of molecular processes via adaptive feedback often yields highly structured laser pulses that have eluded physical explanation. By contrast, coherent control approaches propose physically transparent mechanisms but are not readily visible in experimental results. Here, an analysis of a condensed phase adaptive feedback control experiment on retinal isomerization shows that it manifests a quantum interference based coherent control mechanism: control via interfering resonances. The result promises deep insight into the physical basis for the adaptive feedback control of a broad class of bound state processes.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Quantum Control of Population Transfer and Vibrational States via Chirped Pulses in Four Level Density Matrix Equations. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6110351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Tiwari AK, Henriksen NE. Pulse-train control of photofragmentation at constant field energy. J Chem Phys 2014; 141:204301. [PMID: 25429936 DOI: 10.1063/1.4902061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider a phaselocked two-pulse sequence applied to photofragmentation in the weak-field limit. The two pulses are not overlapping in time, i.e., the energy of the pulse-train is constant for all time delays. It is shown that the relative yield of excited Br (*) in the nonadiabatic process: I + Br* ← IBr → I + Br, changes as a function of time delay when the two excited wave packets interfere. The underlying mechanisms are analyzed and the change in the branching ratio as a function of time delay is only a reflection of a changing frequency distribution of the pulse train; the branching ratio does not depend on the detailed pulse shape.
Collapse
Affiliation(s)
- Ashwani K Tiwari
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741 252, India
| | - Niels E Henriksen
- Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Consani C, Ruetzel S, Nuernberger P, Brixner T. Quantum Control Spectroscopy of Competing Reaction Pathways in a Molecular Switch. J Phys Chem A 2014; 118:11364-72. [DOI: 10.1021/jp509382m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Consani
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Ruetzel
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische
und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Knoch F, Morozov D, Boggio-Pasqua M, Groenhof G. Steering the excited state dynamics of a photoactive yellow protein chromophore analogue with external electric fields. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Grinev T, Brumer P. Theory of perturbative pulse train based coherent control. J Chem Phys 2014; 140:124307. [DOI: 10.1063/1.4869080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
El-Khoury PZ, Joseph S, Schapiro I, Gozem S, Olivucci M, Tarnovsky AN. Probing Vibrationally Mediated Ultrafast Excited-State Reaction Dynamics with Multireference (CASPT2) Trajectories. J Phys Chem A 2013; 117:11271-5. [DOI: 10.1021/jp408441w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick Z. El-Khoury
- Department
of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Saju Joseph
- Department
of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Department
of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Samer Gozem
- Department
of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Massimo Olivucci
- Department
of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento
di Chimica, Università di Siena, via De Gasperi 2, I-53100 Siena, Italy
| | - Alexander N. Tarnovsky
- Department
of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
12
|
Marek MS, Buckup T, Southall J, Cogdell RJ, Motzkus M. Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing. J Chem Phys 2013; 139:074202. [PMID: 23968082 DOI: 10.1063/1.4818164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marie S Marek
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Abstract
Controlling dynamical processes at the atomic and molecular scales with laser radiation has been a long-standing dream. The Faraday Discussion presented a cross section of the current experimental and theoretical advances as well as the challenges for the field. This paper summarizes the current status of controlling quantum dynamics phenomena and provides a perspective on the future.
Collapse
Affiliation(s)
- Herschel Rabitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|