1
|
Bardhan D, Maity N, Sen D, Sengupta M, Ghosh SK. Photothermal manipulation of the fringing field in gold nanorod dimers towards the apoptosis of cancerous cells. Sci Rep 2024; 14:21292. [PMID: 39266546 PMCID: PMC11393056 DOI: 10.1038/s41598-024-62898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/22/2024] [Indexed: 09/14/2024] Open
Abstract
The possibility of coherent manipulation of optical and thermal energies in noble metal nanostructures has given birth to an enduring research arena coined by thermoplasmonics. Upon interaction with electromagnetic radiation, the energy of the produced hot electrons in metallic nanostructures is converted into heat and is transferred to the medium as a consequence of numerous relaxation processes. Gold nanorods have, often, been adopted as the classical anisotropic nanostructures owing to excellent shape-selective plasmonic tunability in the vis-NIR region. When a pair of metallic nanostructures are sufficiently close to each other to imbue electromagnetic interaction, there occurs evolution of collective plasmon modes, substantial enhancement of near field and strong squeezing of electromagnetic energy at the interparticle spatial region of the dimeric nanostructures. Recent advances in the 'tips and tricks' guide to assembling, even, anisotropic nanostructures in colloidal dispersions have offered the opportunity to interplay with the phenomenological plasmonic and thermal characteristics. The photothermal attributes emerging due to electromagnetic coupling of fringing fields have been explored considering parallel and perpendicular configurations of gold nanorod dimers as the prototypical systems from theoretical and experimental perspectives and their biomedical consequences have been realised in a mice model towards the photothermal apoptosis of cancerous cells.
Collapse
Affiliation(s)
- Dorothy Bardhan
- Department of Chemistry, Assam University, Silchar, 788011, India
| | - Nabanita Maity
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Debarun Sen
- Department of Chemistry, Assam University, Silchar, 788011, India
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Sujit Kumar Ghosh
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Yang AQ, Zheng W, Chen X, Wang J, Zhou S, Gao H. Au nanorod assembly for sensitive SERS detection of airway inflammatory factors in sputum. Front Bioeng Biotechnol 2023; 11:1256340. [PMID: 38149176 PMCID: PMC10750157 DOI: 10.3389/fbioe.2023.1256340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
In this paper, we demonstrate a surface-enhanced Raman spectroscopy (SERS) biosensor based on the self-assembly of gold nanorods (AuNRs) for the specific detection of airway inflammatory factors in diluted sputum. The AuNR surface was modified with an antibody that was able to specifically recognize an airway inflammatory factor, interleukin-5 (IL-5), so that a end-to-end self-assembly system could be obtained, resulting in an order of magnitude amplification of the Raman signal and greatly improved sensitivity. Meanwhile, the outer layer of the biosensor was coated with silicon dioxide, which improved the stability of the system and facilitated its future applications. When the detected concentration was in the range of 0.1-50 pg/mL, the SERS signal generated by the sensor showed a good linear relationship with the IL-5 concentration. Moreover, it had satisfactory performance in diluted sputum and clinical subjects with asthma, which could achieve sensitive detection of the airway inflammatory factor IL-5. Overall, the developed biosensor based on the SERS effect exhibited the advantages of rapid and sensitive detecting performance, which is suitable for monitoring airway inflammatory factors in sputum.
Collapse
Affiliation(s)
- An-qi Yang
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou, China
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | | - Xiaoyang Chen
- Department of Pulmonary and Critical Intensive Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shuang Zhou
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Zámbó D, Kovács D, Südi G, Zolnai Z, Deák A. Composite ligand shells on gold nanoprisms - an ensemble and single particle study. RSC Adv 2023; 13:30696-30703. [PMID: 37869380 PMCID: PMC10585614 DOI: 10.1039/d3ra05548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The attachment of thiolated molecules onto gold surfaces is one of the most extensively used and robust ligand exchange approaches to exploit the nanooptical features of nanoscale and nanostructured plasmonic materials. In this work, the impact of thiol adsorption on the optical properties of wet-chemically synthesized gold nanoprisms is studied both at the ensemble and single particle level to investigate the build-up of more complex ligand layers. Two prototypical ligands with different lengths have been investigated ((16-mercaptohexadecyl)trimethylammonium bromide - MTAB and thiolated polyethylene glycol - mPEG-SH). From ensemble experiments it is found that composite ligand layers are obtained by the sequential addition of the two thiols, and an island-like surface accumulation of the molecules can be anticipated. The single particle experiment derived chemical interface damping and resonance energy changes further support this and show additionally that when the two thiols are used simultaneously, a higher density, intermixed layer is formed. Hence, when working with more than a single type of ligand during surface modification, sequential adsorption is preferred for the combination of accessible essential surface functionalities, whereas for high overall loading the simultaneous use of the different ligand types is favourable.
Collapse
Affiliation(s)
- Dániel Zámbó
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
| | - Dávid Kovács
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
- Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science Budafoki Str. 6-8 Budapest 1117 Hungary
| | - Gergely Südi
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
- Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science Budafoki Str. 6-8 Budapest 1117 Hungary
| | - Zsolt Zolnai
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
| | - András Deák
- Centre for Energy Research Konkoly-ThegeM. Str. 29-33 Budapest 1121 Hungary
| |
Collapse
|
4
|
Bi L, Zhang H, Hu W, Chen J, Wu Y, Chen H, Li B, Zhang Z, Choo J, Chen L. Self-assembly of Au@AgNR along M13 framework: A SERS nanocarrier for bacterial detection and killing. Biosens Bioelectron 2023; 237:115519. [PMID: 37437455 DOI: 10.1016/j.bios.2023.115519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Self-assembled functional nanomaterials with electromagnetic hot spots are crucial and highly desirable in surface-enhanced Raman scattering (SERS). Due to its versatile biological scaffold, the M13 phage has been employed to produce novel nano-building blocks and devices. In this study, we propose a novel M13 phage-based SERS nanocarrier, that utilizes the pVIII capsid in M13 to conjugate Au@Ag core-shell nanorod (Au@AgNR) with linker carboxy-PEG-thiol (M13-Au@AgNR) and the pIII capsid to specifically target Escherichia coli (E. coli). The M13-Au@AgNR@DTTC (3,3'- diethylthiocarbocyanine iodide) SERS probe was used to detect E. coli in a concentration range of 6 to 6 × 105 cfu/mL, achieving a limit of detection (LOD) of 0.5 cfu/mL. The proposed SERS platform was also tested in real samples, showing good recoveries (92%-114.3%) and a relative standard deviation (RSD) of 1.2%-4.7%. Furthermore, the system demonstrated high antibacterial efficiency against E. coli, approximately 90%, as measured by the standard plate-count method. The investigation provides an effective strategy for in vitro bacteria detection and inactivation.
Collapse
Affiliation(s)
- Liyan Bi
- School of Special Education, Binzhou Medical University, Yantai, 264003, China.
| | - Huangruici Zhang
- School of Special Education, Binzhou Medical University, Yantai, 264003, China
| | - Wenchao Hu
- School of Special Education, Binzhou Medical University, Yantai, 264003, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Yixuan Wu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai, 264003, China
| | - Bingqian Li
- School of Special Education, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai, 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Lingxin Chen
- School of Special Education, Binzhou Medical University, Yantai, 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Pal SK, Bardhan D, Sen D, Chatterjee H, Ghosh SK. Angle-resolved plasmonic photocapacitance of gold nanorod dimers. NANOSCALE ADVANCES 2023; 5:1943-1955. [PMID: 36998648 PMCID: PMC10044666 DOI: 10.1039/d3na00061c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
The assembly of nanostructures with plausible statistical orientations has provided the opportunity to correlate physical observables to develop a diverse range of niche applications. The dimeric configurations of gold nanorods have been chosen as atypical model systems to correlate optoelectronic with mechanical properties at a number of combinations of angular orientations. Metals are considered as conductors in electronics and reflectors in optics - therefore, metallic particles at the nanoscale exhibit unique optoelectronic characteristics that enable the design of materials to meet the demand of the modern world. Gold nanorods have often been adopted as prototypical anisotropic nanostructures owing to their excellent shape-selective plasmonic tunability in the vis-NIR region. When a pair of metallic nanostructures is sufficiently close to exhibit electromagnetic interaction, the evolution of collective plasmon modes, substantial enhancement of the near-field and strong squeezing of the electromagnetic energy at the interparticle spatial region of the dimeric nanostructures occur. The localised surface plasmon resonance energies of the nanostructured dimers strongly depend on the geometry as well as the relative configurations of the neighbouring particle pairs. Recent advances in the 'tips and tricks' guide have even made it possible to assemble anisotropic nanostructures in a colloidal dispersion. The optoelectronic characteristics of gold nanorod homodimers at different mutual orientations with statistical variation of the angle between 0 and 90° at particular interparticle distances have been elucidated from both theoretical and experimental perspectives. It has been observed that the optoelectronic properties are governed by mechanical aspects of the nanorods at different angular orientations of the dimers. Therefore, we have approached the design of an optoelectronic landscape through the correlation of the plasmonics and photocapacitance through the optical torque of gold nanorod dimers.
Collapse
Affiliation(s)
- Sudip Kumar Pal
- Department of Chemistry, Assam University Silchar-788011 India
| | - Dorothy Bardhan
- Department of Chemistry, Assam University Silchar-788011 India
| | - Debarun Sen
- Department of Chemistry, Assam University Silchar-788011 India
| | | | - Sujit Kumar Ghosh
- Physical Chemistry Section, Department of Chemistry, Jadavpur University Kolkata-700032 India +91-33-24572770
| |
Collapse
|
6
|
Robert J, S Chauhan D, Cherraj A, Buiel J, De Crescenzo G, Banquy X. Coiled-coil peptide-based assembly of a plasmonic core-satellite polymer-metal nanocomposite as an efficient photothermal agent for drug delivery applications. J Colloid Interface Sci 2023; 641:929-941. [PMID: 36989819 DOI: 10.1016/j.jcis.2023.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Polymer-metal nanocomposites have widespread applications in biomedical fields such as imaging, catalysis, and drug delivery. These particles are characterized by combined organic and inorganic properties. Specifically, photothermal nanocomposites incorporating polymeric and plasmonic nanoparticles (NPs) have been designed for both triggered drug release and as imaging agents. However, the usual design of nanocomposites confers characteristic issues, among which are the decrease of optical properties and resulting low photothermal efficiency, as well as interactions with loaded drugs. Herein, we report the design of a core-satellite polymer-metal nanocomposite assembled by coiled-coil peptides and its superior photothermal efficiency compared to electrostatic-driven nanocomposites which is the standard design. We also found that the orientation of gold nanorods on the surface of polymeric NPs is of importance in the final photothermal efficiency and could be exploited for various applications. Our findings provide an alternative to current wrapping and electrostatic assembly of nanocomposites with the help of coiled-coil peptides and an improvement of the control over core-satellite assemblies with plasmonic NPs. It paves the way to highly versatile assemblies due to the nature of coiled-coil peptides to be easily modified and sensitive to pH or temperature.
Collapse
Affiliation(s)
- Jordan Robert
- Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Deepak S Chauhan
- Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Amel Cherraj
- Faculty of Medicine, Université de Lorraine, Metz 57000, France
| | - Jonathan Buiel
- Department of Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada; Department of Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montréal H3T 1J4, Québec, Canada; Department of Chemistry, Faculty of Arts and Science, Université de Montréal, Montréal H3T 1J4, Québec, Canada.
| |
Collapse
|
7
|
Hwang EY, Lee JH, Lim DW. Janus bimetallic nanorod clusters-poly(aniline) nanocomposites with temperature-responsiveness for Raman scattering-based biosensing. J Mater Chem B 2021; 9:5293-5308. [PMID: 34137769 DOI: 10.1039/d1tb00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, Janus bimetallic nanorod clusters-poly(aniline) nanocomposites (JRCPCs) with gold nanorod clusters (GNRCs) in side-by-side (SBS) or end-to-end (ETE) configuration are synthesized, and applied to surface-enhanced Raman scattering (SERS)-based biosensing of carcinoembryonic antigen (CEA). Taking advantage of their geometrical and chemical anisotropy, GNRCs in both SBS and ETE configurations are prepared by addition of negatively charged citrate anions and poly(acrylic acid)-block-poly(N-isopropylacrylamide) (PAAc-b-PNIPAM), respectively, to electrostatically interact with cationic cetyltrimethylammonium bromide surfactant on the side of the gold nanorods (GNRs). Subsequently, the JRCPCs are prepared by unidirectional growth of polyaniline and additional growth of Ag onto these GNRCs. JRCPCs with GNRCs in either the SBS or the ETE configuration show strong enhancement of electromagnetic field at both GNR aggregates and GNRC core-Ag shell gaps of bimetallic nanorod cluster components. In particular, because temperature-responsive PAAc-b-PNIPAM of JRCPCs is embedded at GNR junctions, interparticle gaps generated in GNRCs in ETE configuration are controlled via temperature-triggered hydration-dehydration of the PAAc-b-PNIPAM chains such that optical properties are largely changed. With distinct surface functionalities from JRCPCs, SERS-based quantitative analysis of CEA is achieved using JRCPCs as SERS nanoprobes. This work presents the great potential of advanced Janus nanocomposites for SERS-based biosensing applications.
Collapse
Affiliation(s)
- Eun Young Hwang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
8
|
Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla RA. Fabrication and SERS properties of complex and organized nanoparticle plasmonic clusters stable in solution. NANOSCALE 2020; 12:14948-14956. [PMID: 32643745 DOI: 10.1039/d0nr04167j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
SERS activity can be increased by the formation of hot spots at the interparticle junctions of plasmonic nanoparticles in very close proximity, dramatically improving the enhancement factors in comparison with isolated nanoparticles. Controlling the number and geometrical architecture of hot spots, while endowing the clusters with colloidal stability, results in feasible optical sensors, able to provide quantitative SERS responses. Here, we review the approaches proposed to date to produce colloidal stable clusters, focusing on the control of the coordination number of nanoparticle assemblies and interparticle gaps. Clusters of spherical nanoparticles of the same size and rods of the same size are described to subsequently outline core-satellite constructs of nanoparticles of different sizes. Besides, purification processes for nanoparticle clusters are revised to provide efficient production in high yields.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Nicolas Pazos-Perez
- Department of Physical Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Ramon A Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain. and ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Zhang C, Zheng Y, Li M, Zhang Z, Chang L, Ai M, Wang J, Zhao S, Li C, Zhou Z. Carboxymethyl Cellulose-Coated Tacrolimus Nonspherical Microcrystals for Improved Therapeutic Efficacy of Dry Eye. Macromol Biosci 2020; 20:e2000079. [PMID: 32537876 DOI: 10.1002/mabi.202000079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/28/2020] [Indexed: 01/08/2023]
Abstract
Dry eye (DE) is a highly prevalent ocular surface disease which affects the quality of life and results in low working efficiency. Frequent instillation is required due to low bioavailability of conventional eye drops. The aim of this study is to develop a novel formulation of tacrolimus (TAC), routinely prescribed for DE, by combination of the microcrystal technology and layer-by-layer assembly. First, nonspherical tacrolimus microcrystals (TAC MCs) are synthesized by antisolvent-induced precipitation. These TAC MCs are modified by alternate deposition of poly(allylamine hydrochloride) (PAH) and carboxymethyl cellulose (CMC) subsequently to obtain CMC-coated TAC MCs (TAC-(PAH/CMC)3 ). The resultant formulations are evaluated in vivo in a mouse DE model induced by an intelligently controlled environmental system. Compared with commercially available TAC eye drops and the TAC MCs counterpart, TAC-(PAH/CMC)3 exhibits superior therapeutic performance with reduced drug instillation frequency, which is attributed to the nonspherical geometry of MCs, the lubricant, mucoadhesive effect of CMC, and the anti-inflammatory function of TAC. Therefore, TAC-(PAH/CMC)3 represents a better option for the management of DE.
Collapse
Affiliation(s)
- Caijie Zhang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | | | - Min Li
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin, 300192, China
| | - Zhongfang Zhang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lianqing Chang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Mingyue Ai
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin, 300192, China
| | - Jingjie Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shaozhen Zhao
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chen Li
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin, 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin, 300192, China
| |
Collapse
|
10
|
MacKenzie M, Chi H, Varma M, Pal P, Kar A, Paterson L. Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy. Sci Rep 2019; 9:17058. [PMID: 31745117 PMCID: PMC6864074 DOI: 10.1038/s41598-019-53328-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 11/09/2022] Open
Abstract
We report on an optimized fabrication protocol for obtaining silver nanoparticles on fused silica substrates via laser photoreduction of a silver salt solution. We find that multiple scans of the laser over the surface leads to a more uniform coverage of densely packed silver nanoparticles of approximately 50 nm diameter on the fused silica surface. Our substrates yield Raman enhancement factors of the order of 1011 of the signal detected from crystal violet. We use a theoretical model based on scanning electron microscope (SEM) images of our substrates to explain our experimental results. We also demonstrate how our technique can be extended to embedding silver nanoparticles in buried microfluidic channels in glass. The in situ laser inscription of silver nanoparticles on a laser machined, sub-surface, microfluidic channel wall within bulk glass paves the way for developing 3D, monolithic, fused silica surface enhance Raman spectroscopy (SERS) microfluidic sensing devices.
Collapse
Affiliation(s)
- Mark MacKenzie
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Haonan Chi
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Manoj Varma
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, Karnataka, India
| | - Parama Pal
- TCS Research and Innovation, Tata Consultancy Services, Bangalore, India
| | - Ajoy Kar
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Lynn Paterson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
11
|
Wu P, Zhong LB, Liu Q, Zhou X, Zheng YM. Polymer induced one-step interfacial self-assembly method for the fabrication of flexible, robust and free-standing SERS substrates for rapid on-site detection of pesticide residues. NANOSCALE 2019; 11:12829-12836. [PMID: 31184679 DOI: 10.1039/c9nr02851j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have demonstrated a one-step approach for the fabrication of flexible, robust, reproducible and free-standing SERS substrates (AuNPs/polyvinyl chloride (PVC) film) through a polymer induced interfacial self-assembly method. In this method, the polymer (PVC) plays dual roles, that is, inducing the interfacial self-assembly of nanoparticles and fixing the assembled nanostructure in the PVC matrix. As the assembled nanoparticles are orderly half-embedded in the PVC film, the AuNPs/PVC film exhibits outstanding reproducibility and stability. In addition, the film could be easily regenerated by rinsing with NaBH4 solution. As a proof of concept, the film was directly wrapped on an apple surface for in situ detection of pesticide residues, and a detection limit of 10 ng cm-2 thiram was achieved. Furthermore, rapid on-site and in situ detection of multi-pesticide residues has been proved to be feasible with the aid of a portable Raman spectrometer. Due to its simple preparation, good reliability, outstanding stability and reusability, the AuNPs/PVC film has great potential in practical applications.
Collapse
Affiliation(s)
- Peng Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Lu-Bin Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. and CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China and University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qing Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. and CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China and University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Liu S, Chen Y, Wang Y, Zhao G. Group-Targeting Detection of Total Steroid Estrogen Using Surface-Enhanced Raman Spectroscopy. Anal Chem 2019; 91:7639-7647. [DOI: 10.1021/acs.analchem.9b00534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Ying Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Guohua Zhao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
13
|
Kailasa SK, Koduru JR, Desai ML, Park TJ, Singhal RK, Basu H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Chen Y, Xu Q, Jin Y, Qian X, Liu L, Liu J, Ganesan V. Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00292] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangfu Jin
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Venkat Ganesan
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Tan SF, Anand U, Mirsaidov U. Interactions and Attachment Pathways between Functionalized Gold Nanorods. ACS NANO 2017; 11:1633-1640. [PMID: 28117977 DOI: 10.1021/acsnano.6b07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticle (NP) self-assembly has been recognized as an important technological process for forming ordered nanostructures. However, the detailed dynamics of the assembly processes remain poorly understood. Using in situ liquid cell transmission electron microscopy, we describe the assembly modes of gold (Au) nanorods (NRs) in solution mediated by hydrogen bonding between NR-bound cysteamine linker molecules. Our observations reveal that by tuning the linker concentration, two different NR assembly modes can be achieved. These assembly modes proceed via the (1) end-to-end and (2) side-to-side attachment of NRs at low and high linker concentrations in solution, respectively. In addition, our time-resolved observations reveal that the side-to-side NR assemblies can occur through two different pathways: (i) prealigned attachment, where two Au NRs prealign to be parallel prior to assembly, and (ii) postattachment alignment, where two Au NRs first undergo end-to-end attachment and pivot around the attachment point to form the side-to-side assembly. We attributed the observed assembly modes to the distribution of linkers on the NR surfaces and the electrostatic interactions between the NRs. The intermediate steps in the assembly reported here reveal how the shape and surface functionalities of NPs drive their self-assembly, which is important for the rational design of hierarchical nanostructures.
Collapse
Affiliation(s)
- Shu Fen Tan
- Department of Physics, National University of Singapore , 117551 Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore , 117557 Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 117546 Singapore
| | - Utkarsh Anand
- Department of Physics, National University of Singapore , 117551 Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore , 117557 Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 117546 Singapore
- NUSNNI-NanoCore, National University of Singapore , 117411 Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore , 117551 Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore , 117557 Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 117546 Singapore
- NUSNNI-NanoCore, National University of Singapore , 117411 Singapore
| |
Collapse
|
16
|
Abtahi SMH, Burrows ND, Idesis FA, Murphy CJ, Saleh NB, Vikesland PJ. Sulfate-Mediated End-to-End Assembly of Gold Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1486-1495. [PMID: 28098460 DOI: 10.1021/acs.langmuir.6b04114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is interest in the controlled aggregation of gold nanorods (GNRs) for the production of extended nanoassemblies. Prior studies have relied upon chemical modification of the GNR surface to achieve a desired final aggregate structure. Herein we illustrate that control of electrolyte composition can facilitate end-to-end assembly of cetyltrimethylammonium-bromide-coated (CTAB) GNRs. By adjusting either the sulfate anion concentration or the exposure time it is possible to connect GNRs in chain-like assemblies. In contrast, end-to-end assembly was not observed in control experiments using monovalent chloride salts. We attribute the end-to-end assembly to the localized association of sulfate with exposed quaternary ammonium head groups of CTAB at the nanorod tip. To quantify the assembly kinetics, visible-near-infrared extinction spectra were collected over a predetermined time period, and the colloidal behavior of the GNR suspensions was interpreted using plasmon band analysis. Transmission electron microscopy and atomic force microscopy results support the conclusions reached via plasmon band analysis, and the colloidal behavior is consistent with Derjaguin-Landau-Verwey-Overbeek theory.
Collapse
Affiliation(s)
- S M H Abtahi
- Virginia Tech , Department of Civil and Environmental Engineering, Blacksburg, Virginia 24061, United States
- Virginia Tech, Institute for Critical Technology and Applied Science (ICTAS) Center for Sustainable Nanotechnology (VTSuN) , Blacksburg, Virginia 24061, United States
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University , Durham, North Carolina 27708, United States
| | - Nathan D Burrows
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Fred A Idesis
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Navid B Saleh
- The University of Texas at Austin , Department of Civil, Architectural and Environmental Engineering, Austin, Texas 78712, United States
| | - Peter J Vikesland
- Virginia Tech , Department of Civil and Environmental Engineering, Blacksburg, Virginia 24061, United States
- Virginia Tech, Institute for Critical Technology and Applied Science (ICTAS) Center for Sustainable Nanotechnology (VTSuN) , Blacksburg, Virginia 24061, United States
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Paramasivam G, Kayambu N, Rabel AM, Sundramoorthy AK, Sundaramurthy A. Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater 2017; 49:45-65. [PMID: 27915023 DOI: 10.1016/j.actbio.2016.11.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. STATEMENT OF SIGNIFICANCE Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various obstacles that limit their applications in biomedical field.
Collapse
|
18
|
Prakash J, Harris R, Swart H. Embedded plasmonic nanostructures: synthesis, fundamental aspects and their surface enhanced Raman scattering applications. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1187006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Pothorszky S, Zámbó D, Deák T, Deák A. Assembling patchy nanorods with spheres: limitations imposed by colloidal interactions. NANOSCALE 2016; 8:3523-3529. [PMID: 26795220 DOI: 10.1039/c5nr08014b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For gold nanorods the intrinsic shape-anisotropy offers the prospect of anisotropic assembly, provided that their region-selective surface modification can be realized. Here we developed nanorods with a patchy surface chemistry, featuring positively charged molecules in the tip region and polymer molecules at the sides by careful control of molecule concentrations during ligand exchange. When these patchy nanorods are assembled with small negatively charged spherical particles, electric double layer interaction can direct the assembly of two nanospheres at the opposite ends of the nanorods. The PEG chains promote the selectivity of the procedure. As the size of the nanospheres increases, they start to shift towards the side of the nanorod due to increased van der Waals interaction. When the relative size of the nanospheres is even larger, only a single nanosphere is assembled, but instead of the tip region, they are attached to the side of the nanorods. The apparent cross-over of the region-selectivity can be interpreted in terms of colloidal interactions, i.e. the second spherical particle is excluded due to nanosphere-nanosphere electric double layer repulsion, while the large vdW attraction results in a side positioning of the single adsorbed spherical particle. The results underline the importance of absolute values of the different interaction strengths and length scales in the programmed assembly of patchy nanoscale building blocks.
Collapse
Affiliation(s)
- Sz Pothorszky
- Institute for Technical Physics and Materials Science, HAS Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary.
| | | | | | | |
Collapse
|
20
|
Stetciura IY, Yashchenok A, Masic A, Lyubin EV, Inozemtseva OA, Drozdova MG, Markvichova EA, Khlebtsov BN, Fedyanin AA, Sukhorukov GB, Gorin DA, Volodkin D. Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst 2016; 140:4981-6. [PMID: 26040199 DOI: 10.1039/c5an00392j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, we have designed composite SERS-active micro-satellites, which exhibit a dual role: (i) effective probes for determining cellular composition and (ii) optically movable and easily detectable markers. The satellites were synthesized by the layer-by-layer assisted decoration of silica microparticles with metal (gold or silver) nanoparticles and astralen in order to ensure satellite SERS-based microenvironment probing and satellite recognition, respectively. A combination of optical tweezers and Raman spectroscopy can be used to navigate the satellites to a certain cellular compartment and probe the intracellular composition following cellular uptake. In the future, this developed approach may serve as a tool for single cell analysis with nanometer precision due to the multilayer surface design, focusing on both extracellular and intracellular studies.
Collapse
|
21
|
Zeng Z, Liu Y, Wei J. Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Yang AQ, Wang D, Wang X, Han Y, Ke XB, Wang HJ, Zhou X, Ren L. Rational design of Au nanorods assemblies for highly sensitive and selective SERS detection of prostate specific antigen. RSC Adv 2015. [DOI: 10.1039/c5ra01322d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple SERS immunosensor based on AuNRs assembly was developed for rapid detection of specific antigen in early diagnostics.
Collapse
Affiliation(s)
- An-qi Yang
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Dong Wang
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Xiang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
| | - Yu Han
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Xue-bin Ke
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Hong-jun Wang
- Department of Chemistry
- Chemical Biology and Biomedical Engineering
- Stevens Institute of Technology
- Hoboken
- USA
| | - Xi Zhou
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Lei Ren
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| |
Collapse
|
23
|
Diaz Fernandez YA, Gschneidtner TA, Wadell C, Fornander LH, Lara Avila S, Langhammer C, Westerlund F, Moth-Poulsen K. The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices. NANOSCALE 2014; 6:14605-16. [PMID: 25208687 DOI: 10.1039/c4nr03717k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of top-down nanofabrication techniques has opened many possibilities for the design and realization of complex devices based on single molecule phenomena such as e.g. single molecule electronic devices. These impressive achievements have been complemented by the fundamental understanding of self-assembly phenomena, leading to bottom-up strategies to obtain hybrid nanomaterials that can be used as building blocks for more complex structures. In this feature article we highlight some relevant published work as well as present new experimental results, illustrating the versatility of self-assembly methods combined with top-down fabrication techniques for solving relevant challenges in modern nanotechnology. We present recent developments on the use of hierarchical self-assembly methods to bridge the gap between sub-nanometer and micrometer length scales. By the use of non-covalent self-assembly methods, we show that we are able to control the positioning of nanoparticles on surfaces, and to address the deterministic assembly of nano-devices with potential applications in plasmonic sensing and single-molecule electronics experiments.
Collapse
Affiliation(s)
- Yuri A Diaz Fernandez
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Recent approaches toward creation of hot spots for SERS detection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2014. [DOI: 10.1016/j.jphotochemrev.2014.09.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Huang H, Wang JH, Jin W, Li P, Chen M, Xie HH, Yu XF, Wang H, Dai Z, Xiao X, Chu PK. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4012-4019. [PMID: 24947686 DOI: 10.1002/smll.201400860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Common methods to prepare SERS (surface-enhanced Raman scattering) probes rely on random conjugation of Raman dyes onto metal nanostructures, but most of the Raman dyes are not located at Raman-intense electromagnetic hotspots thus not contributing to SERS enhancement substantially. Herein, a competitive reaction between transverse gold overgrowth and dye conjugation is described to achieve site selective conjugation of Raman dyes to the hotspots (ends) on gold nanorods (GNRs). The preferential overgrowth on the nanorod side surface creates a barrier to prevent the Raman dyes from binding to the side surface except the ends of the GNRs, where the highest SERS enhancement factors are expected. The SERS enhancement observed from this special structure is dozens of times larger than that from conjugates synthesized by conventional methods. This simple and powerful strategy to prepare SERS probes can be extended to different anisotropic metal nanostructures with electromagnetic hotspots and has immense potential in in-depth SERS-based biological imaging and single-molecule detection.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China; Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, HongKong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH. Self-Assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates. Anal Chem 2014; 86:6262-7. [DOI: 10.1021/ac404224f] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lu-Bin Zhong
- Institute
of Urban Environment, Chinese Academy of Sciences, 1799 Jimei
Road, Xiamen 361021, P. R. China
| | - Jun Yin
- Institute
of Urban Environment, Chinese Academy of Sciences, 1799 Jimei
Road, Xiamen 361021, P. R. China
| | - Yu-Ming Zheng
- Institute
of Urban Environment, Chinese Academy of Sciences, 1799 Jimei
Road, Xiamen 361021, P. R. China
| | - Qing Liu
- Institute
of Urban Environment, Chinese Academy of Sciences, 1799 Jimei
Road, Xiamen 361021, P. R. China
| | - Xiao-Xia Cheng
- Institute
of Urban Environment, Chinese Academy of Sciences, 1799 Jimei
Road, Xiamen 361021, P. R. China
| | - Fang-Hong Luo
- Cancer
Research Center, Medical College, Xiamen University, 422 South
Siming Road, Xiamen 361005, P. R. China
| |
Collapse
|
27
|
Duan R, Zhou Z, Su G, Liu L, Guan M, Du B, Zhang Q. Chitosan-coated Gold Nanorods for Cancer Therapy Combining Chemical and Photothermal Effects. Macromol Biosci 2014; 14:1160-9. [DOI: 10.1002/mabi.201300563] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/31/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ruiping Duan
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
| | - Zhimin Zhou
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
| | - Guanghao Su
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
| | - Lingrong Liu
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
| | - Man Guan
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
| | - Bo Du
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering; Chinese Academy of Medical Sciences & Peking Union Medical College; The Key Laboratory of Biomedical Material of Tianjin; Tianjin 300192 P. R. China
- Insitute of Biomedical and Pharmaceutical Technology; Fuzhou University; Fuzhou 350002 P. R. China
| |
Collapse
|
28
|
Jain T, Tang Q, Bjørnholm T, Nørgaard K. Wet chemical synthesis of soluble gold nanogaps. Acc Chem Res 2014; 47:2-11. [PMID: 23944385 DOI: 10.1021/ar3002848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A central challenge in molecular electronics is to create electrode pairs separated by only a few nanometers that can accommodate a single molecule of interest to be optically or electrically characterized while residing in the gap. Current techniques for nanogap fabrication are largely based on top-down approaches and often rely on subsequent deposition of molecules into the nanogap. In such an approach, the molecule may bridge the gap differently with each experiment due to variations at the metal-molecule interface. Conversely, chemists can readily synthesize gold nanorods (AuNRs) in aqueous solution. Through controlled end-to-end assembly of the AuNRs into dimers or chains, facilitated via target molecules, they can be used as electrical contacts. In this way, the preparation of AuNR-molecule-AuNR junctions by wet chemical methods may afford a large number of identical devices with little variation in the interface between molecule and electrode (AuNR). In this Account, we highlight recent progress in using chemically synthesized AuNRs as building blocks for molecular electronic applications. We outline the general synthesis and properties of AuNRs and describe the aqueous growth of dimeric AuNR structures from an insulating molecule linked to AuNR precursors (gold seeds). Conjugated, electronically active molecules are typically not soluble under the conditions required for the bottom-up growth of AuNRs. Therefore, we present a strategy that utilizes host-guest chemistry in order to make such π-systems compatible with the AuNR growth procedure. In order to electrically characterize the AuNR-molecule-AuNR constructs, we must transfer them onto a substrate and contact external electrodes. We discuss the implications of using electron-beam lithography for making this contact. In addition, we introduce a novel fabrication approach in which we can grow AuNR nanogap electrodes in situ on prepatterned substrates, thus circumventing post-processing steps that potentially damage the nanogap environment. Due to the inherent optical properties of AuNRs, electromagnetic field enhancement in the nanogaps lets us spectroscopically characterize the molecules via surface-enhanced Raman scattering. We discuss the incorporation of oligopeptides functionalized with acetylene units having uniquely identifiable vibrational modes. This acetylene moiety allows chemical reactions to be performed in the gaps via click chemistry, and the oligopeptide linking platform opens for integration of larger biological components.
Collapse
Affiliation(s)
- Titoo Jain
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Qingxin Tang
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, People’s Republic of China
| | - Thomas Bjørnholm
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kasper Nørgaard
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
29
|
Cong B, Kan C, Wang H, Liu J, Xu H, Ke S. Gold Nanorods: Near-Infrared Plasmonic Photothermal Conversion and Surface Coating. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/msce.2014.21004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Du B, Wang J, Zhou Z, Tang H, Li X, Liu Y, Zhang Q. Synthesis of silk-based microcapsules by desolvation and hybridization. Chem Commun (Camb) 2014; 50:4423-6. [DOI: 10.1039/c3cc49489f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Meena SK, Sulpizi M. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14954-61. [PMID: 24224887 DOI: 10.1021/la403843n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We use molecular dynamics simulations in order to understand the microscopic origin of the asymmetric growth mechanism in gold nanorods. We provide the first atomistic model of different surfaces on gold nanoparticles in a growing electrolyte solution, and we describe the interaction of the metal with the surfactants, namely, cetyltrimethylammonium bromide (CTAB) and the ions. An innovative aspect is the inclusion of the role of the surfactants, which are explicitly modeled. We find that on all the investigated surfaces, namely, (111), (110), and (100), CTAB forms a layer of distorted cylindrical micelles where channels among micelles provide direct ion access to the surface. In particular, we show how AuCl2(-) ions, which are found in the growth solution, can freely diffuse from the bulk solution to the gold surface. We also find that the (111) surface exhibits a higher CTAB packing density and a higher electrostatic potential. Both elements would favor the growth of gold nanoparticles along the (111) direction. These findings are in agreement with the growth mechanisms proposed by the experimental groups of Murphy and Mulvaney.
Collapse
Affiliation(s)
- Santosh Kumar Meena
- Institute of Physics, Johannes Gutenberg University Mainz , Staudingerweg 7, 55099, Mainz, Germany
| | | |
Collapse
|
32
|
Thorkelsson K, Nelson JH, Alivisatos AP, Xu T. End-to-end alignment of nanorods in thin films. NANO LETTERS 2013; 13:4908-4913. [PMID: 24001327 DOI: 10.1021/nl402862b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A simple approach to obtain end-to-end assemblies of nanorods over macroscopic distances in thin films is described. Nanorods with aspect ratio of 8-12 can be aligned parallel to the surface in an end-to-end fashion by imposing geometric confinement via block copolymer-based supramolecular assemblies. Successful control over the orientation and location of nanorods requires a balance of particle-particle interactions and entropy associated with geometric confinement from the supramolecular framework, as well as consideration of the kinetics of assembly.
Collapse
Affiliation(s)
- Kari Thorkelsson
- Department of Materials Science and Engineering and ‡Department of Chemistry, University of California , Berkeley, California, United States
| | | | | | | |
Collapse
|
33
|
Wei WB, Chen K, Ge GL. Electrostatically controlled nematic and smectic assembly of gold nanorods. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Nguyen TM, Gigault J, Hackley VA. PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-Vis detection. Anal Bioanal Chem 2013; 406:1651-9. [DOI: 10.1007/s00216-013-7318-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
35
|
Abstract
Gold nanorods have been receiving extensive attention owing to their extremely attractive applications in biomedical technologies, plasmon-enhanced spectroscopies, and optical and optoelectronic devices. The growth methods and plasmonic properties of Au nanorods have therefore been intensively studied. In this review, we present a comprehensive overview of the flourishing field of Au nanorods in the past five years. We will focus mainly on the approaches for the growth, shape and size tuning, functionalization, and assembly of Au nanorods, as well as the methods for the preparation of their hybrid structures. The plasmonic properties and the associated applications of Au nanorods will also be discussed in detail.
Collapse
Affiliation(s)
- Huanjun Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
36
|
Guerrini L, Graham D. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem Soc Rev 2013; 41:7085-107. [PMID: 22833008 DOI: 10.1039/c2cs35118h] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, Surface-Enhanced Raman Spectroscopy (SERS) has experienced a tremendous increase of attention in the scientific community, expanding to a continuously wider range of diverse applications in nanoscience, which can mostly be attributed to significant improvements in nanofabrication techniques that paved the way for the controlled design of reliable and effective SERS nanostructures. In particular, the plasmon coupling properties of interacting nanoparticles are extremely intriguing due to the concentration of enormous electromagnetic enhancements at the interparticle gaps. Recently, great efforts have been devoted to develop new nanoparticle assembly strategies in suspension with improved control over hot-spot architecture and cluster structure, laying the foundation for the full exploitation of their exceptional potential as SERS materials in a wealth of chemical and biological sensing. In this review we summarize in an exhaustive and systematic way the state-of-art of plasmonic nanoparticle assembly in suspension specifically developed for SERS applications in the last 5 years, focusing in particular on those strategies which exploited molecular linkers to engineer interparticle gaps in a controlled manner. Importantly, the novel advances in this rather new field of nanoscience are organized into a coherent overview aimed to rationally describe the different strategies and improvements in the exploitation of colloidal nanoparticle assembly for SERS application to real problems.
Collapse
Affiliation(s)
- Luca Guerrini
- Centre for Molecular Nanometrology, WestCHEM, Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | | |
Collapse
|
37
|
Guerrini L, Jurasekova Z, del Puerto E, Hartsuiker L, Domingo C, Garcia-Ramos JV, Otto C, Sanchez-Cortes S. Effect of metal-liquid interface composition on the adsorption of a cyanine dye onto gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1139-1147. [PMID: 23281711 DOI: 10.1021/la304617t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Synthesis of asymmetric nanoparticles, such as gold nanorods, with tunable optical properties providing metal structures with improved SERS performance is playing a critical role in expanding the use of SERS to imaging and sensing applications. However, the synthetic methods usually require surfactants or polymers as shape-directing agents. These chemicals normally remain firmly bound to the metal after the synthesis, preventing the direct adsorption of a large number of potential analytes and often hampering the chemical functionalization of the surface unless extended, and critical for the nanoparticle stability, postremoval steps were performed. For this reason, it is of great importance for the full exploitation of these nanostructures to gain a deeper insight into the dependence of the analyte-metal interaction to the metal-liquid interface composition. In this article, we investigated in detail the role played by each component of the gold nanorod (GNR) interface in the adsorption of indocyanine green (ICG) as a probe molecule. Citrate-reduced gold nanospheres were used as a model substrate since the negative citrate anions adsorbed onto the metal surface can be easily displaced by those chemicals usually involved in the GNR synthesis, allowing the GNR-like interface composition to be progressively rebuilt and modified at will on the citrate-capped nanoparticles. The obtained results provide a meticulous description of the role played by each individual component of the metal-liquid interface on the ICG interaction with the metal, illustrating how apparently minor experimental changes can dramatically modify the affinity and optical properties of the ICG probe adsorbed onto the nanoparticle.
Collapse
Affiliation(s)
- Luca Guerrini
- Centro Tecnológico de la Química de Catalunya, 43007 Tarragona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ke S, Kan C, Liu J, Cong B. Controlled assembly of gold nanorods using tetrahydrofuran. RSC Adv 2013. [DOI: 10.1039/c2ra23300b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Zhou X, Wang Y, Zhong L, Bao S, Han Y, Ren L, Zhang Q. Rational design of oriented assembly of gold nanospheres with nanorods by biotin-streptavidin connectors. NANOSCALE 2012; 4:6256-6259. [PMID: 22955723 DOI: 10.1039/c2nr32022c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Through the different functionalities on Au nanosphere (AuNSs) and Au nanorod (AuNRs) surfaces, we successfully control AuNSs attachment onto either the end or side surface of anisotropic AuNRs via bio-recognition, and then consciously construct side-by-side or end-to-end assembly nanostructures. This study provides a feasible approach to organize nanoparticles with different morphologies into controllable assembly geometries, which can potentially benefit the construction of future nanodevices.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Biomaterials, College of Materials, The Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen, 361005, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhao S, Guo Y, Song S, Choi D, Hahm JI. Application of well-defined indium tin oxide nanorods as Raman active platforms. APPLIED PHYSICS LETTERS 2012; 101:53117. [PMID: 22933825 PMCID: PMC3422322 DOI: 10.1063/1.4740273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/17/2012] [Indexed: 05/14/2023]
Abstract
We determine the surface enhanced Raman (SER) capability of indium tin oxide nanorods (ITO NRs) whose physical, chemical, and optical properties are precisely and uniformly controlled during synthesis. We demonstrate that the Raman intensities observed from varying concentrations of the pure and mixed molecules of rhodamine 6G and 4',6-diamidino-2-phenylindole are much larger on ITO NRs relative to those measured on commercially available ITO-coated glass or Si. Our efforts signify the first attempt to assess the SER capability of precisely controlled metal oxide NRs and will be highly beneficial to many basic and applied Raman applications requiring exceptional detection sensitivity.
Collapse
Affiliation(s)
- Songqing Zhao
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057 USA
| | | | | | | | | |
Collapse
|
41
|
Xie Y, Guo S, Ji Y, Guo C, Liu X, Chen Z, Wu X, Liu Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11394-11400. [PMID: 21830776 DOI: 10.1021/la202320k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications.
Collapse
Affiliation(s)
- Yong Xie
- Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|