1
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
2
|
van der Linden AJ, Pieters PA, Bartelds MW, Nathalia BL, Yin P, Huck WTS, Kim J, de Greef TFA. DNA Input Classification by a Riboregulator-Based Cell-Free Perceptron. ACS Synth Biol 2022; 11:1510-1520. [PMID: 35381174 PMCID: PMC9016768 DOI: 10.1021/acssynbio.1c00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to recognize molecular patterns is essential for the continued survival of biological organisms, allowing them to sense and respond to their immediate environment. The design of synthetic gene-based classifiers has been explored previously; however, prior strategies have focused primarily on DNA strand-displacement reactions. Here, we present a synthetic in vitro transcription and translation (TXTL)-based perceptron consisting of a weighted sum operation (WSO) coupled to a downstream thresholding function. We demonstrate the application of toehold switch riboregulators to construct a TXTL-based WSO circuit that converts DNA inputs into a GFP output, the concentration of which correlates to the input pattern and the corresponding weights. We exploit the modular nature of the WSO circuit by changing the output protein to the Escherichia coli σ28-factor, facilitating the coupling of the WSO output to a downstream reporter network. The subsequent introduction of a σ28 inhibitor enabled thresholding of the WSO output such that the expression of the downstream reporter protein occurs only when the produced σ28 exceeds this threshold. In this manner, we demonstrate a genetically implemented perceptron capable of binary classification, i.e., the expression of a single output protein only when the desired minimum number of inputs is exceeded.
Collapse
Affiliation(s)
- Ardjan J. van der Linden
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A. Pieters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mart W. Bartelds
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Bryan L. Nathalia
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
3
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Murphy TW, Sheng J, Naler LB, Feng X, Lu C. On-chip manufacturing of synthetic proteins for point-of-care therapeutics. MICROSYSTEMS & NANOENGINEERING 2019; 5:13. [PMID: 31057940 PMCID: PMC6431678 DOI: 10.1038/s41378-019-0051-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/29/2023]
Abstract
Therapeutic proteins have recently received increasing attention because of their clinical potential. Currently, most therapeutic proteins are produced on a large scale using various cell culture systems. However, storing and transporting these therapeutic proteins at low temperatures makes their distribution expensive and problematic, especially for applications in remote locations. To this end, an emerging solution is to use point-of-care technologies that enable immediate and accessible protein production at or near the patient's bedside. Here we present the development of "Therapeutics-On-a-Chip (TOC)", an integrated microfluidic platform that enables point-of-care synthesis and purification of therapeutic proteins. We used fresh and lyophilized materials for cell-free synthesis of therapeutic proteins on microfluidic chips and applied immunoprecipitation for highly efficient, on-chip protein purification. We first demonstrated this approach by expressing and purifying a reporter protein, green fluorescent protein. Next, we used TOC to produce cecropin B, an antimicrobial peptide that is widely used to control biofilm-associated diseases. We successfully synthesized and purified cecropin B at 63 ng/μl within 6 h with a 92% purity, followed by confirming its antimicrobial functionality using a growth inhibition assay. Our TOC technology provides a new platform for point-of-care production of therapeutic proteins at a clinically relevant quantity.
Collapse
Affiliation(s)
- Travis W. Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Lynette B. Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
6
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
7
|
Retterer ST, Morrell-Falvey JL, Doktycz MJ. Nano-Enabled Approaches to Chemical Imaging in Biosystems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:351-373. [PMID: 29490189 DOI: 10.1146/annurev-anchem-061417-125635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabled by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. Integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.
Collapse
Affiliation(s)
- Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
8
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
9
|
Hurst GB, Asano KG, Doktycz CJ, Consoli EJ, Doktycz WL, Foster CM, Morrell-Falvey JL, Standaert RF, Doktycz MJ. Proteomics-Based Tools for Evaluation of Cell-Free Protein Synthesis. Anal Chem 2017; 89:11443-11451. [DOI: 10.1021/acs.analchem.7b02555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Robert F. Standaert
- University of Tennessee, Department of Biochemistry & Cellular and Molecular Biology, Knoxville, Tennessee 37996, United States
| | | |
Collapse
|
10
|
Progress in programming spatiotemporal patterns and machine-assembly in cell-free protein expression systems. Curr Opin Chem Biol 2017. [DOI: 10.1016/j.cbpa.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Caveney PM, Norred SE, Chin CW, Boreyko JB, Razooky BS, Retterer ST, Collier CP, Simpson ML. Resource Sharing Controls Gene Expression Bursting. ACS Synth Biol 2017; 6:334-343. [PMID: 27690390 DOI: 10.1021/acssynbio.6b00189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.
Collapse
Affiliation(s)
- Patrick M. Caveney
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - S. Elizabeth Norred
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Charles W. Chin
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jonathan B. Boreyko
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department
of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brandon S. Razooky
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Laboratory
of Immune Cell Epigenetics and Signaling, The Rockefeller University, New
York, New York 10065, United States
| | - Scott T. Retterer
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C. Patrick Collier
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Michael L. Simpson
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Joint
Institute
for Biological Sciences, University of Tennessee−Knoxville and Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
12
|
Yeo JC, Lim CT. Emergence of microfluidic wearable technologies. LAB ON A CHIP 2016; 16:4082-4090. [PMID: 27713996 DOI: 10.1039/c6lc00926c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
There has been an intense interest in the development of wearable technologies, arising from increasing demands in the areas of fitness and healthcare. While still at an early stage, incorporating microfluidics in wearable technologies has enormous potential, especially in healthcare applications. For example, current microfluidic fabrication techniques can be innovatively modified to fabricate microstructures and incorporate electrically conductive elements on soft, flexible and stretchable materials. In fact, by leverarging on such microfabrication and liquid manipulation techniques, the developed flexible microfluidic wearable technologies have enabled several biosensing applications, including in situ sweat metabolites analysis, vital signs monitoring, and gait analysis. As such, we anticipate further significant breakthroughs and potential uses of wearable microfluidics in active drug delivery patches, soft robotics sensing and control, and even implantable artificial organs in the near future.
Collapse
Affiliation(s)
- Joo Chuan Yeo
- Department of Biomedical Engineering, National University of Singapore, 117575 Singapore.
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 117575 Singapore. and Mechanobiology Institute, National University of Singapore, 117411 Singapore
| |
Collapse
|
13
|
Davern SM, McKnight TE, Standaert RF, Morrell-Falvey JL, Shpak ED, Kalluri UC, Jelenska J, Greenberg JT, Mirzadeh S. Carbon Nanofiber Arrays: A Novel Tool for Microdelivery of Biomolecules to Plants. PLoS One 2016; 11:e0153621. [PMID: 27119338 PMCID: PMC4847769 DOI: 10.1371/journal.pone.0153621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
Effective methods for delivering bioprobes into the cells of intact plants are essential for investigating diverse biological processes. Increasing research on trees, such as Populus spp., for bioenergy applications is driving the need for techniques that work well with tree species. This report introduces vertically aligned carbon nanofiber (VACNF) arrays as a new tool for microdelivery of labeled molecules to Populus leaf tissue and whole plants. We demonstrated that VACNFs penetrate the leaf surface to deliver sub-microliter quantities of solution containing fluorescent or radiolabeled molecules into Populus leaf cells. Importantly, VACNFs proved to be gentler than abrasion with carborundum, a common way to introduce material into leaves. Unlike carborundum, VACNFs did not disrupt cell or tissue integrity, nor did they induce production of hydrogen peroxide, a typical wound response. We show that femtomole to picomole quantities of labeled molecules (fluorescent dyes, small proteins and dextran), ranging from 0.5-500 kDa, can be introduced by VACNFs, and we demonstrate the use of the approach to track delivered probes from their site of introduction on the leaf to distal plant regions. VACNF arrays thus offer an attractive microdelivery method for the introduction of biomolecules and other probes into trees and potentially other types of plants.
Collapse
Affiliation(s)
- Sandra M. Davern
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Timothy E. McKnight
- Electrical & Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert F. Standaert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jennifer L. Morrell-Falvey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Elena D. Shpak
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Saed Mirzadeh
- Nuclear Security & Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
14
|
Timm AC, Shankles PG, Foster CM, Doktycz MJ, Retterer ST. Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:810-7. [PMID: 26690885 DOI: 10.1002/smll.201502764] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/14/2015] [Indexed: 05/04/2023]
Abstract
Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.
Collapse
Affiliation(s)
- Andrea C Timm
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Peter G Shankles
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- The University of Tennessee, Knoxville, TN, 37996, USA
| | - Carmen M Foster
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Mitchel J Doktycz
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- The University of Tennessee, Knoxville, TN, 37996, USA
| | - Scott T Retterer
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
15
|
Shankles PG, Timm AC, Doktycz MJ, Retterer ST. Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2015; 33:06FM03. [PMID: 26543684 PMCID: PMC4617741 DOI: 10.1116/1.4932671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 05/20/2023]
Abstract
New strategies for combining conventional photo- and soft-lithographic techniques with high-resolution patterning and etching strategies are needed in order to produce multiscale fluidic platforms that address the full range of functional scales seen in complex biological and chemical systems. The smallest resolution required for an application often dictates the fabrication method used. Micromachining and micropowder blasting yield higher throughput, but lack the resolution needed to fully address biological and chemical systems at the cellular and molecular scales. In contrast, techniques such as electron beam lithography or nanoimprinting allow nanoscale resolution, but are traditionally considered costly and slow. Other techniques such as photolithography or soft lithography have characteristics between these extremes. Combining these techniques to fabricate multiscale or hybrid fluidics allows fundamental biological and chemical questions to be answered. In this study, a combination of photolithography and electron beam lithography are used to produce two multiscale fluidic devices that incorporate porous membranes into complex fluidic networks in order to control the flow of energy, information, and materials in chemical form. In the first device, materials and energy were used to support chemical reactions. A nanoporous membrane fabricated with e-beam lithography separates two parallel, serpentine channels. Photolithography was used to pattern microfluidic channels around the membrane. The pores were written at 150 nm and reduced in size with silicon dioxide deposition from plasma enhanced chemical vapor deposition and atomic layer deposition. Using this method, the molecular weight cutoff of the membrane can be adapted to the system of interest. In the second approach, photolithography was used to fabricate 200 nm thin pores. The pores confined microbes and allowed energy replenishment from a media perfusion channel. The same device can be used for study of intercellular communication via the secretion and uptake of signal molecules. Pore size was tested with 750 nm fluorescent polystyrene beads and fluorescein dye. The 200 nm polydimethylsiloxane pores were shown to be robust enough to hold 750 nm beads while under pressure, but allow fluorescein to diffuse across the barrier. Further testing showed that extended culture of bacteria within the chambers was possible. These two examples show how lithographically defined porous membranes can be adapted to two unique situations and used to tune the flow of chemical energy, materials, and information within a microfluidic network.
Collapse
Affiliation(s)
- Peter G Shankles
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996
| | - Andrea C Timm
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996
| |
Collapse
|
16
|
Shankles PG, Timm AC, Doktycz MJ, Retterer ST. Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2015. [PMID: 26543684 DOI: 10.1116/1.4932155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
New strategies for combining conventional photo- and soft-lithographic techniques with high-resolution patterning and etching strategies are needed in order to produce multiscale fluidic platforms that address the full range of functional scales seen in complex biological and chemical systems. The smallest resolution required for an application often dictates the fabrication method used. Micromachining and micropowder blasting yield higher throughput, but lack the resolution needed to fully address biological and chemical systems at the cellular and molecular scales. In contrast, techniques such as electron beam lithography or nanoimprinting allow nanoscale resolution, but are traditionally considered costly and slow. Other techniques such as photolithography or soft lithography have characteristics between these extremes. Combining these techniques to fabricate multiscale or hybrid fluidics allows fundamental biological and chemical questions to be answered. In this study, a combination of photolithography and electron beam lithography are used to produce two multiscale fluidic devices that incorporate porous membranes into complex fluidic networks in order to control the flow of energy, information, and materials in chemical form. In the first device, materials and energy were used to support chemical reactions. A nanoporous membrane fabricated with e-beam lithography separates two parallel, serpentine channels. Photolithography was used to pattern microfluidic channels around the membrane. The pores were written at 150 nm and reduced in size with silicon dioxide deposition from plasma enhanced chemical vapor deposition and atomic layer deposition. Using this method, the molecular weight cutoff of the membrane can be adapted to the system of interest. In the second approach, photolithography was used to fabricate 200 nm thin pores. The pores confined microbes and allowed energy replenishment from a media perfusion channel. The same device can be used for study of intercellular communication via the secretion and uptake of signal molecules. Pore size was tested with 750 nm fluorescent polystyrene beads and fluorescein dye. The 200 nm polydimethylsiloxane pores were shown to be robust enough to hold 750 nm beads while under pressure, but allow fluorescein to diffuse across the barrier. Further testing showed that extended culture of bacteria within the chambers was possible. These two examples show how lithographically defined porous membranes can be adapted to two unique situations and used to tune the flow of chemical energy, materials, and information within a microfluidic network.
Collapse
Affiliation(s)
- Peter G Shankles
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996
| | - Andrea C Timm
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996
| |
Collapse
|
17
|
Norred SE, Caveney PM, Retterer ST, Boreyko JB, Fowlkes JD, Collier CP, Simpson ML. Sealable femtoliter chamber arrays for cell-free biology. J Vis Exp 2015:52616. [PMID: 25867144 PMCID: PMC4401254 DOI: 10.3791/52616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g., global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) device contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Here we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques used in cellular systems to characterize CFPS gene circuits and their interactions with the cell-free environment.
Collapse
Affiliation(s)
- Sarah Elizabeth Norred
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Patrick M Caveney
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Scott T Retterer
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Jonathan B Boreyko
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Jason D Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; Department of Materials Science and Engineering, University of Tennessee, Knoxville
| | | | - Michael L Simpson
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; Department of Materials Science and Engineering, University of Tennessee, Knoxville;
| |
Collapse
|
18
|
Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC. The emerging age of cell-free synthetic biology. FEBS Lett 2014; 588:2755-61. [PMID: 24931378 DOI: 10.1016/j.febslet.2014.05.062] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/16/2023]
Abstract
The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.
Collapse
Affiliation(s)
- Mark Thomas Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Kristen M Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jeremy M Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Anthony M Bennett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
19
|
Iyer S, Karig DK, Norred SE, Simpson ML, Doktycz MJ. Multi-input regulation and logic with T7 promoters in cells and cell-free systems. PLoS One 2013; 8:e78442. [PMID: 24194933 PMCID: PMC3806817 DOI: 10.1371/journal.pone.0078442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/10/2013] [Indexed: 11/21/2022] Open
Abstract
Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on native host promoters for the construction of circuit elements, such as logic gates, can make the implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a simple orthogonal expression system for use in a variety of cellular backgrounds and even in cell-free systems. Here we develop a T7 promoter system that can be regulated by two different transcriptional repressors for the construction of a logic gate that functions in cells and in cell-free systems. We first present LacI repressible T7lacO promoters that are regulated from a distal lac operator site for repression. We next explore the positioning of a tet operator site within the T7lacO framework to create T7 promoters that respond to tet and lac repressors and realize an IMPLIES gate. Finally, we demonstrate that these dual input sensitive promoters function in an E. coli cell-free protein expression system. Our results expand the utility of T7 promoters in cell based as well as cell-free synthetic biology applications.
Collapse
Affiliation(s)
- Sukanya Iyer
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - David K. Karig
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - S. Elizabeth Norred
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
| | - Michael L. Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
| | - Mitchel J. Doktycz
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Karig DK, Jung SY, Srijanto B, Collier CP, Simpson ML. Probing cell-free gene expression noise in femtoliter volumes. ACS Synth Biol 2013; 2:497-505. [PMID: 23688072 DOI: 10.1021/sb400028c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-free systems offer a simplified and flexible context that enables important biological reactions while removing complicating factors such as fitness, division, and mutation that are associated with living cells. However, cell-free expression in unconfined spaces is missing important elements of expression in living cells. In particular, the small volume of living cells can give rise to significant stochastic effects, which are negligible in bulk cell-free reactions. Here, we confine cell-free gene expression reactions to cell-relevant 20 fL volumes (between the volumes of Escherichia coli and Saccharomyces cerevisiae ), in polydimethylsiloxane (PDMS) containers. We demonstrate that expression efficiency varies widely among different containers, likely due to non-Poisson distribution of expression machinery at the observed scale. Previously, this phenomenon has been observed only in liposomes. In addition, we analyze gene expression noise. This analysis is facilitated by our use of cell-free systems, which allow the mapping of the measured noise properties to intrinsic noise models. In contrast, previous live cell noise analysis efforts have been complicated by multiple noise sources. Noise analysis reveals signatures of translational bursting, while noise dynamics suggest that overall cell-free expression is limited by a diminishing translation rate. In addition to offering a unique approach to understanding noise in gene circuits, our work contributes to a deeper understanding of the biophysical properties of cell-free expression systems, thus aiding efforts to harness cell-free systems for synthetic biology applications.
Collapse
Affiliation(s)
- David K. Karig
- Center
for Nanophase
Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Seung-Yong Jung
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
| | - Bernadeta Srijanto
- Center
for Nanophase
Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - C. Patrick Collier
- Center
for Nanophase
Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Michael L. Simpson
- Center
for Nanophase
Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department of Materials
Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center for Environmental
Biotechnology, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
| |
Collapse
|
21
|
Abstract
Living cells maintain a steady state of biochemical reaction rates by exchanging energy and matter with the environment. These exchanges usually do not occur in in vitro systems, which consequently go to chemical equilibrium. This in turn has severely constrained the complexity of biological networks that can be implemented in vitro. We developed nanoliter-scale microfluidic reactors that exchange reagents at dilution rates matching those of dividing bacteria. In these reactors we achieved transcription and translation at steady state for 30 h and implemented diverse regulatory mechanisms on the transcriptional, translational, and posttranslational levels, including RNA polymerases, transcriptional repression, translational activation, and proteolysis. We constructed and implemented an in vitro genetic oscillator and mapped its phase diagram showing that steady-state conditions were necessary to produce oscillations. This reactor-based approach will allow testing of whether fundamental limits exist to in vitro network complexity.
Collapse
|
22
|
Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 2013; 85:451-72. [PMID: 23140554 PMCID: PMC3546124 DOI: 10.1021/ac3031543] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adam T. Melvin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra J. Dickinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Philip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pavak K. Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
23
|
Muhandiramlage TP, Cheng Z, Roberts DL, Keogh JP, Hall HK, Aspinwall CA. Determination of pore sizes and relative porosity in porous nanoshell architectures using dextran retention with single monomer resolution and proton permeation. Anal Chem 2012; 84:9754-61. [PMID: 23083108 DOI: 10.1021/ac301510k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unilamellar phospholipid vesicles prepared using the polymerizable lipid bis-sorbylphosphatidylcholine (bis-SorbPC) yield three-dimensional nanoarchitectures that are highly permeable to small molecules. The resulting porous phospholipid nanoshells (PPNs) are potentially useful for a range of biomedical applications including nanosensors and nanodelivery vehicles for cellular assays and manipulations. The uniformity and size distribution of the pores, key properties for sensor design and utilization, have not previously been reported. Fluorophore-assisted carbohydrate electrophoresis (FACE) was utilized to assess the nominal molecular weight cutoff limit (NMCL) of the PPN via analysis of retained dextran with single monomer resolution. The NMCL of PPNs prepared from pure bis-SorbPC was equivalent to a 1800 Da linear dextran, corresponding to a maximum pore diameter of 2.6 nm. Further investigation of PPNs prepared using binary mixtures of bis-SorbPC and dioleoylphosphatidylcholine (DOPC) revealed a similar NMCL when the bis-SorbPC content exceeded 30 mol %, whereas different size-dependent permeation was observed below this composition. Below 30 mol % bis-SorbPC, dextran retention provided insufficient mass resolution (162 Da) to observe porosity on the experimental time scale; however, proton permeability showed a marked enhancement for bis-SorbPC ≥ 10 mol %. Combined, these data suggest that the NMCL for native pores in bis-SorbPC PPNs results from an inherent property within the lipid assembly that can be partially disrupted by dilution of bis-SorbPC below a critical value for domain formation. Additionally, the analytical method described herein should prove useful for the challenging task of elucidating porosity in a range of three-dimensional nanomaterials.
Collapse
Affiliation(s)
- Thusitha P Muhandiramlage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
24
|
Nand A, Gautam A, Pérez JB, Merino A, Zhu J. Emerging technology of in situ cell free expression protein microarrays. Protein Cell 2012; 3:84-8. [PMID: 22426976 DOI: 10.1007/s13238-012-2012-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recently, in situ protein microarrays have been developed for large scale analysis and high throughput studies of proteins. In situ protein microarrays produce proteins directly on the solid surface from pre-arrayed DNA or RNA. The advances in in situ protein microarrays are exemplified by the ease of cDNA cloning and cell free protein expression. These technologies can evaluate, validate and monitor protein in a cost effective manner and address the issue of a high quality protein supply to use in the array. Here we review the importance of recently employed methods: PISA (protein in situ array), DAPA (DNA array to protein array), NAPPA (nucleic acid programmable protein array) and TUSTER microarrays and the role of these methods in proteomics.
Collapse
Affiliation(s)
- Amita Nand
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | | | |
Collapse
|
25
|
Schroeder A, Goldberg MS, Kastrup C, Wang Y, Jiang S, Joseph BJ, Levins CG, Kannan ST, Langer R, Anderson DG. Remotely activated protein-producing nanoparticles. NANO LETTERS 2012; 12:2685-9. [PMID: 22432731 PMCID: PMC3388722 DOI: 10.1021/nl2036047] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of responsive nanomaterials, nanoscale systems that actively respond to stimuli, is one general goal of nanotechnology. Here we develop nanoparticles that can be controllably triggered to synthesize proteins. The nanoparticles consist of lipid vesicles filled with the cellular machinery responsible for transcription and translation, including amino acids, ribosomes, and DNA caged with a photolabile protecting group. These particles served as nanofactories capable of producing proteins including green fluorescent protein (GFP) and enzymatically active luciferase. In vitro and in vivo, protein synthesis was spatially and temporally controllable, and could be initiated by irradiating micrometer-scale regions on the time scale of milliseconds. The ability to control protein synthesis inside nanomaterials may enable new strategies to facilitate the study of orthogonal proteins in a confined environment and for remotely activated drug delivery.
Collapse
Affiliation(s)
- Avi Schroeder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Michael S. Goldberg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Christian Kastrup
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z4 Canada
| | - Yingxia Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Shan Jiang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Brian J. Joseph
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Christopher G. Levins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Sneha T. Kannan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Harvard MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Harvard MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
26
|
Siuti P, Retterer ST, Choi CK, Doktycz MJ. Enzyme reactions in nanoporous, picoliter volume containers. Anal Chem 2011; 84:1092-7. [PMID: 22148720 DOI: 10.1021/ac202726n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advancements in nanoscale fabrication allow creation of small-volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ∼19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Assessment of small-molecule and green fluorescent protein diffusion from the vessels indicates that pore sizes on the order of 10 nm can be obtained, allowing capture of proteins and diffusive exchange of small molecules. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate amplex red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme (K(m) and V(max)) were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics, and high-throughput screening.
Collapse
Affiliation(s)
- Piro Siuti
- Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, Knoxville, Tennessee 37996, United States
| | | | | | | |
Collapse
|
27
|
Karig DK, Iyer S, Simpson ML, Doktycz MJ. Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Res 2011; 40:3763-74. [PMID: 22180537 PMCID: PMC3333853 DOI: 10.1093/nar/gkr1191] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic biology offers great promise to a variety of applications through the forward engineering of biological function. Most efforts in this field have focused on employing living cells, yet cell-free approaches offer simpler and more flexible contexts. Here, we evaluate cell-free regulatory systems based on T7 promoter-driven expression by characterizing variants of TetR and LacI repressible T7 promoters in a cell-free context and examining sequence elements that determine expression efficiency. Using the resulting constructs, we then explore different approaches for composing regulatory systems, leading to the implementation of inducible negative feedback in Escherichia coli extracts and in the minimal PURE system, which consists of purified proteins necessary for transcription and translation. Despite the fact that negative feedback motifs are common and essential to many natural and engineered systems, this simple building block has not previously been implemented in a cell-free context. As a final step, we then demonstrate that the feedback systems developed using our cell-free approach can be implemented in live E. coli as well, illustrating the potential for using cell-free expression to fast track the development of live cell systems in synthetic biology. Our quantitative cell-free component characterizations and demonstration of negative feedback embody important steps on the path to harnessing biological function in a bottom-up fashion.
Collapse
Affiliation(s)
- David K Karig
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | |
Collapse
|