1
|
T A AR, Rajendra TN, Suhas KP, Ippagunta SK, Chaudhary S. 1,2,4,5-Tetraoxane derivatives/hybrids as potent antimalarial endoperoxides: Chronological advancements, structure-activity relationship (SAR) studies and future perspectives. Med Res Rev 2024; 44:2266-2290. [PMID: 38618882 DOI: 10.1002/med.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Malaria is a life-threatening disease that affects tropical and subtropical regions worldwide. Various drugs were used to treat malaria, including artemisinin and derivatives, antibiotics (tetracycline, doxycycline), quinolines (chloroquine, amodiaquine), and folate antagonists (sulfadoxine and pyrimethamine). Since the malarial parasites developed drug resistance, there is a need to develop new chemical entities with high efficacy and low toxicity. In this context, 1,2,4,5-tetraoxanes emerged as an essential scaffold and have shown promising antimalarial activity. To improve activity and overcome resistance to various antimalarial drugs; 1,2,4,5-tetraoxanes were fused with various aryl/heteroaryl/alicyclic/spiro moieties (steroid-based 1,2,4,5-tetraoxanes, triazine-based 1,2,4,5-tetraoxanes, aminoquinoline-based 1,2,4,5-tetraoxanes, dispiro-based 1,2,4,5-tetraoxanes, piperidine-based 1,2,4,5-tetraoxanes and diaryl-based 1,2,4,5-tetraoxanes). The present review aims to focus on covering the relevant literature published during the past 30 years (1992-2022). We summarize the most significant in vitro, in vivo results and structure-activity relationship studies of 1,2,4,5-tetraoxane-based hybrids as antimalarial agents. The structural evolution of different hybrids can provide the framework for the future development of 1,2,4,5-tetraoxane-based hybrids to treat malaria.
Collapse
Affiliation(s)
- Abdul Rahaman T A
- Department of Medicinal Chemistry, Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Lucknow, India
| | - Thakar Neha Rajendra
- Department of Medicinal Chemistry, Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Lucknow, India
| | - Kshirsagar Prasad Suhas
- Department of Medicinal Chemistry, Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Lucknow, India
| | - Sirish K Ippagunta
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sandeep Chaudhary
- Department of Medicinal Chemistry, Laboratory of Bioactive Heterocycles and Catalysis (BHC lab), National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Lucknow, India
| |
Collapse
|
2
|
Shukla M, Rathi K, Hassam M, Yadav DK, Karnatak M, Rawat V, Verma VP. An overview on the antimalarial activity of 1,2,4-trioxanes, 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes. Med Res Rev 2024; 44:66-137. [PMID: 37222435 DOI: 10.1002/med.21979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).
Collapse
Affiliation(s)
- Monika Shukla
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Komal Rathi
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Mohammad Hassam
- Department of Chemistry, Chemveda Life Sciences Pvt Ltd, Hyderabad, Telangana, India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| |
Collapse
|
3
|
Amado PSM, Lopes S, Brás EM, Paixão JA, Takano MA, Abe M, Fausto R, Cristiano MLS. Molecular and Crystal Structure, Spectroscopy, and Photochemistry of a Dispiro Compound Bearing the Tetraoxane Pharmacophore. Chemistry 2023; 29:e202301315. [PMID: 37343198 DOI: 10.1002/chem.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
The molecular structure and photochemistry of dispiro[cyclohexane-1,3'-[1,2,4,5]tetraoxane-6',2''-tricyclo[3.3.1.13,7 ]decan]-4-one (TX), an antiparasitic 1,2,4,5-tetraoxane was investigated using matrix isolation IR and EPR spectroscopies, together with quantum chemical calculations undertaken at the DFT(B3LYP)/6-311++G(3df,3pd) level of theory, with and without Grimme's dispersion correction. Photolysis of the matrix-isolated TX, induced by in situ broadband (λ>235 nm) or narrowband (λ in the range 220-263 nm) irradiation, led to new bands in the infrared spectrum that could be ascribed to two distinct photoproducts, oxepane-2,5-dione, and 4-oxohomoadamantan-5-one. Our studies show that these photoproducts result from initial photoinduced cleavage of an O-O bond, with the formation of an oxygen-centered diradical that regioselectivity rearranges to a more stable (secondary carbon-centered)/(oxygen-centered) diradical, yielding the final products. Formation of the diradical species was confirmed by EPR measurements, upon photolysis of the compound at λ=266 nm, in acetonitrile ice (T=10-80 K). Single-crystal X-ray diffraction (XRD) studies demonstrated that the TX molecule adopts nearly the same conformation in the crystal and matrix-isolation conditions, revealing that the intermolecular interactions in the TX crystal are weak. This result is in keeping with observed similarities between the infrared spectrum of the crystalline material and that of matrix-isolated TX. The detailed structural, vibrational, and photochemical data reported here appear relevant to the practical uses of TX in medicinal chemistry, considering its efficient and broad parasiticidal properties.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy Faculty of Sciences and Technology, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
| | - Susy Lopes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Elisa M Brás
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - José A Paixão
- CFisUC, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal
| | - Ma-Aya Takano
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2) Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Manabu Abe
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2) Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University Ataköy Campus, Bakirköy, 34156, Istanbul, Turkey
| | - Maria L S Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy Faculty of Sciences and Technology, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
| |
Collapse
|
4
|
Amado PSM, Jesus AJL, Paixão JA, Fausto R, Cristiano MLS. Unravelling the structure of peroxides with antiparasitic activity: relative impact of a trioxolane or a tetraoxane pharmacophore on the overall molecular structure. Chempluschem 2022; 87:e202200207. [DOI: 10.1002/cplu.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Patrícia S. M. Amado
- University of Algarve Faculty of Science and Technology: Universidade do Algarve Faculdade de Ciencias e Tecnologia Chemistry and Pharmacy PORTUGAL
| | - A. J. Lopes Jesus
- University of Coimbra Faculty of Pharmacy: Universidade de Coimbra Faculdade de Farmacia Chemistry PORTUGAL
| | - José A. Paixão
- University of Coimbra Faculty of Sciences and Technology: Universidade de Coimbra Faculdade de Ciencias e Tecnologia Department of Physics PORTUGAL
| | - Rui Fausto
- University of Coimbra Faculty of Sciences and Technology: Universidade de Coimbra Faculdade de Ciencias e Tecnologia Department of Chemistry PORTUGAL
| | - M. Lurdes S. Cristiano
- Universidade do Algarve Faculdade de Ciencias e Tecnologia Quimica e Farmácia Campus de Gambelas 8005-139 Faro PORTUGAL
| |
Collapse
|
5
|
Amado PSM, Frija LMT, Coelho JAS, O'Neill PM, Cristiano MLS. Synthesis of Non-symmetrical Dispiro-1,2,4,5-Tetraoxanes and Dispiro-1,2,4-Trioxanes Catalyzed by Silica Sulfuric Acid. J Org Chem 2021; 86:10608-10620. [PMID: 34279102 DOI: 10.1021/acs.joc.1c01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol for the preparation of non-symmetrical 1,2,4,5-tetraoxanes and 1,2,4-trioxanes, promoted by the heterogeneous silica sulfuric acid (SSA) catalyst, is reported. Different ketones react under mild conditions with gem-dihydroperoxides or peroxysilyl alcohols/β-hydroperoxy alcohols to generate the corresponding endoperoxides in good yields. Our mechanistic proposal, assisted by molecular orbital calculations, at the ωB97XD/def2-TZVPP/PCM(DCM)//B3LYP/6-31G(d) level of theory, enhances the role of SSA in the cyclocondensation step. This novel procedure differs from previously reported methods by using readily available and inexpensive reagents, with recyclable properties, thereby establishing a valid alternative approach for the synthesis of new biologically active endoperoxides.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Luís M T Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural (CQE), Faculdade de Ciências, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal
| |
Collapse
|
6
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
7
|
Oguri H. Synthesis and Structural Diversification of Artemisinins towards the Generation of Potent Anti-malarial Agents. CHEM LETT 2021. [DOI: 10.1246/cl.200920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
9
|
Gellini C, Muniz-Miranda M, Pagliai M, Salvi PR. Spectroscopic studies on antimalarial Artesunate: Raman and surface-enhanced Raman scattering and adsorption geometries of Artesunate on silver nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Bonepally KR, Takahashi N, Matsuoka N, Koi H, Mizoguchi H, Hiruma T, Ochiai K, Suzuki S, Yamagishi Y, Oikawa H, Ishiyama A, Hokari R, Iwatsuki M, Otoguro K, O Mura S, Kato N, Oguri H. Rapid and Systematic Exploration of Chemical Space Relevant to Artemisinins: Anti-malarial Activities of Skeletally Diversified Tetracyclic Peroxides and 6-Aza-artemisinins. J Org Chem 2020; 85:9694-9712. [PMID: 32610901 DOI: 10.1021/acs.joc.0c01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To achieve both structural changes and rapid synthesis of the tetracyclic scaffold relevant to artemisinins, we explored two kinds of de novo synthetic approaches that generate both skeletally diversified tetracyclic peroxides and 6-aza-artemisinins. The anti-malarial activities of the tetracyclic peroxides with distinct skeletal arrays, however, were moderate and far inferior to artemisinins. Given the privileged scaffold of artemisinins, we next envisioned element implantation at the C6 position with a nitrogen without the trimmings of substituents and functional groups. This molecular design allowed the deep-seated structural modification of the hitherto unexplored cyclohexane moiety (C-ring) while keeping the three-dimensional structure of artemisinins. Notably, this approach induced dramatic changes of retrosynthetic transforms that allow an expeditious catalytic asymmetric synthesis with generation of substitutional variations at three sites (N6, C9, and C3) of the 6-aza-artemisinins. These de novo synthetic approaches led to the lead discovery with substantial intensification of the in vivo activities, which undermine the prevailing notion that the C-ring of artemisinins appears to be merely a structural unit but to be a functional area as the anti-malarial pharmacophore. Furthermore, we unexpectedly found that racemic 6-aza-artemisinin (33) exerted exceedingly potent in vivo efficacies superior to the chiral one and the first-line drug, artesunate.
Collapse
Affiliation(s)
- Karunakar Reddy Bonepally
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Matsuoka
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hikari Koi
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Haruki Mizoguchi
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Takahisa Hiruma
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Kyohei Ochiai
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Shun Suzuki
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Yutaka Yamagishi
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Kitaku, Sapporo 060-0810, Japan
| | - Aki Ishiyama
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Rei Hokari
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuhiko Otoguro
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi O Mura
- Research Center for Tropical Diseases, O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobutaka Kato
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Synthesis and Antileishmanial Activity of 1,2,4,5-Tetraoxanes against Leishmania donovani. Molecules 2020; 25:molecules25030465. [PMID: 31979089 PMCID: PMC7038143 DOI: 10.3390/molecules25030465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
A chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.
Collapse
|
12
|
Puttappa N, Kumar RS, Kuppusamy G, Radhakrishnan A. Nano-facilitated drug delivery strategies in the treatment of plasmodium infection. Acta Trop 2019; 195:103-114. [PMID: 31039335 DOI: 10.1016/j.actatropica.2019.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Malaria, one of the major infectious disease-causing sizeable morbidity, mortality and economic loss worldwide. The main drawback for the failure to eradicate malaria is the spread of multiple drug resistance to the majority of currently available chemotherapy. At present nanotechnology offers an advanced opportunity in the delivery of drugs and vaccines to the desired targeted site in the body following oral and systemic administration. It confers the major advantages like improving drug pharmacokinetic profiles, reduce dose frequency and reduction in drug toxicity. Hence, Nano-based drug delivery system can provide a promising prospect in the way of malaria treatment. This paper is a review of recent researches highlighting includes nanocarriers loaded antimalarial drugs for better therapeutic efficacy and future perspective in the treatment of malaria.
Collapse
Affiliation(s)
- Nethravathi Puttappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India
| | - Raman Suresh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India.
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India
| | - Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (Deemed to be University), Ooty, Tamil Nadu, India
| |
Collapse
|
13
|
Kazakov DV, Nazyrov TI, Safarov FE, Yaremenko IA, Terent'ev AO. Chemiluminescence in the reaction of 1,2,4,5-tetraoxanes with ferrous ions in the presence of xanthene dyes: fundamentals and perspectives of analytical applications. Photochem Photobiol Sci 2019; 18:1130-1137. [DOI: 10.1039/c8pp00472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reaction of biologically active bridged 1,2,4,5-tetraoxanes and diperoxide of trifluoroacetone with Fe2+ ions in the presence of xanthenes, methylene blue and methylene green is accompanied by bright chemiluminescence.
Collapse
Affiliation(s)
- Dmitri V. Kazakov
- Non-profit Scientific
- Educational and Innovational Partnership “Centre of Diagnostics for Nanostructures and Nanomaterials”
- 119991 Moscow
- Russia
- Ufa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
| | - Timur I. Nazyrov
- Ufa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
- 450054 Ufa
- Russia
| | - Farit E. Safarov
- Ufa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
- 450054 Ufa
- Russia
| | - Ivan A. Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry of the RAS
- 119991 Moscow
- Russia
| | | |
Collapse
|
14
|
Yang J, Tu Z, Xu X, Luo J, Yan X, Ran C, Mao X, Ding K, Qiao C. Novel conjugates of endoperoxide and 4-anilinoquinazoline as potential anticancer agents. Bioorg Med Chem Lett 2017; 27:1341-1345. [PMID: 28236592 DOI: 10.1016/j.bmcl.2017.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
In the present study, endoperoxide and 4-anilinoqnazoline were conjugated to obtain a series of compounds. These conjugates exhibited high antiproliferative potency against a number of cancer cell lines, including the epidermal growth factor receptor (EGFR) L858R/T790M mutant cell. Compound 5 was selected as a representative for mechanistic study. Further experiments revealed the conjugate's reactive oxygen species (ROS) generating ability, apoptosis inducing activity and involvement in EGFR downstream signaling pathways.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou 215123, China
| | - Zhengchao Tu
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xin Xu
- College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou 215123, China
| | - Jinfeng Luo
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xing Yan
- College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou 215123, China
| | - Chongzhao Ran
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Building 75, Charlestown, MA 02129, United States
| | - Xinliang Mao
- College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou 215123, China
| | - Ke Ding
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China.
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou 215123, China.
| |
Collapse
|
15
|
O' Neill PM, Sabbani S, Nixon GL, Schnaderbeck M, Roberts NL, Shore ER, Riley C, Murphy B, McGillan P, Ward SA, Davies J, Amewu RK. Optimisation of the synthesis of second generation 1,2,4,5 tetraoxane antimalarials. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Fernández-Álvaro E, Hong WD, Nixon GL, O’Neill PM, Calderón F. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. J Med Chem 2016; 59:5587-603. [DOI: 10.1021/acs.jmedchem.5b01485] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fernández-Álvaro
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| | - W. David Hong
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Gemma L. Nixon
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Paul M. O’Neill
- Robert Robinson
Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Félix Calderón
- Diseases of the Developing World, Tres
Cantos Medicines Development Campus, GlaxoSmithKline, c/Severo Ochoa, 2, 28760, Tres Cantos, Madrid, Spain
| |
Collapse
|
17
|
Cortes S, Albuquerque A, Cabral LIL, Lopes L, Campino L, Cristiano MLS. In Vitro Susceptibility of Leishmania infantum to Artemisinin Derivatives and Selected Trioxolanes. Antimicrob Agents Chemother 2015; 59:5032-5. [PMID: 26014947 PMCID: PMC4505222 DOI: 10.1128/aac.00298-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is among the world's most neglected diseases. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. A small library of artemisinin-derived trioxanes and synthetic trioxolanes was tested against promastigote and intramacrophage amastigote forms of Leishmania infantum. The trioxolanes LC50 and LC95 presented the best activity and safety profiles, showing potential for further studies in the context of leishmanial therapy. Our results indicate that the compounds tested exhibit peroxide-dependent activity.
Collapse
Affiliation(s)
- Sofia Cortes
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Centro de Malária e Outras Doenças Tropicais, IHMT, UNL, Lisbon, Portugal
| | - Andreia Albuquerque
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Lília I L Cabral
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve (UAlg), Campus de Gambelas, Faro, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal
| | - Liliana Lopes
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Departamento Ciências Biomédicas e Medicina, UAlg, Campus de Gambelas, Faro, Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal Departamento Ciências Biomédicas e Medicina, UAlg, Campus de Gambelas, Faro, Portugal
| | - Maria L S Cristiano
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve (UAlg), Campus de Gambelas, Faro, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
18
|
Abstract
Despite substantial scientific progress over the past two decades, malaria remains a worldwide burden that causes hundreds of thousands of deaths every year. New, affordable and safe drugs are required to overcome increasing resistance against artemisinin-based treatments, treat vulnerable populations, interrupt the parasite life cycle by blocking transmission to the vectors, prevent infection and target malaria species that transiently remain dormant in the liver. In this Review, we discuss how the antimalarial drug discovery pipeline has changed over the past 10 years, grouped by the various target compound or product profiles, to assess progress and gaps, and to recommend priorities.
Collapse
|
19
|
Starkl Renar K, Pečar S, Iskra J. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water. Org Biomol Chem 2015; 13:9369-72. [DOI: 10.1039/c5ob01503k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72–99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst.
Collapse
Affiliation(s)
- K. Starkl Renar
- Laboratory of Organic and Bioorganic Chemistry
- Department of Physical and Organic Chemistry
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| | - S. Pečar
- Faculty of Pharmacy
- University of Ljubljana
- Slovenia
| | - J. Iskra
- Laboratory of Organic and Bioorganic Chemistry
- Department of Physical and Organic Chemistry
- Jožef Stefan Institute
- Ljubljana
- Slovenia
| |
Collapse
|
20
|
Fontaine SD, Spangler B, Gut J, Lauterwasser EMW, Rosenthal PJ, Renslo AR. Drug delivery to the malaria parasite using an arterolane-like scaffold. ChemMedChem 2014; 10:47-51. [PMID: 25314098 DOI: 10.1002/cmdc.201402362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Indexed: 11/06/2022]
Abstract
Antimalarial agents artemisinin and arterolane act via initial reduction of a peroxide bond in a process likely mediated by ferrous iron sources in the parasite. Here, we report the synthesis and antiplasmodial activity of arterolane-like 1,2,4-trioxolanes specifically designed to release a tethered drug species within the malaria parasite. Compared with our earlier drug delivery scaffolds, these new arterolane-inspired systems are of significantly decreased molecular weight and possess superior metabolic stability. We describe an efficient, concise and scalable synthesis of the new systems, and demonstrate the use of the aminonucleoside antibiotic puromycin as a chemo/biomarker to validate successful drug release in live Plasmodium falciparum parasites. Together, the improved drug-like properties, more efficient synthesis, and proof of concept using puromycin, suggests these new molecules as improved vehicles for targeted drug delivery to the malaria parasite.
Collapse
Affiliation(s)
- Shaun D Fontaine
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158 (USA)
| | | | | | | | | | | |
Collapse
|
21
|
de Paula MC, Valle MS, Pliego JR. Electron affinity and dipole moment of 1,2,4,5-tetraoxanes antimalarials and correlation with activity against Plasmodium falciparum. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1088-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Miranda D, Capela R, Albuquerque IS, Meireles P, Paiva I, Nogueira F, Amewu R, Gut J, Rosenthal PJ, Oliveira R, Mota MM, Moreira R, Marti F, Prudêncio M, O’Neill PM, Lopes F. Novel endoperoxide-based transmission-blocking antimalarials with liver- and blood-schizontocidal activities. ACS Med Chem Lett 2014; 5:108-12. [PMID: 24900781 DOI: 10.1021/ml4002985] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022] Open
Abstract
In a search for effective compounds against both the blood- and liver-stages of infection by malaria parasites with the ability to block the transmission of the disease to mosquito vectors, a series of hybrid compounds combining either a 1,2,4-trioxane or 1,2,4,5-tetraoxane and 8-aminoquinoline moieties were synthesized and screened for their antimalarial activity. These hybrid compounds showed high potency against both exoerythrocytic and erythrocytic forms of malaria parasites, comparable to representative trioxane-based counterparts. Furthermore, they efficiently blocked the development of the sporogonic cycle in the mosquito vector. The tetraoxane-based hybrid 5, containing an amide linker between the two moieties, effectively cleared a patent blood-stage P. berghei infection in mice after i.p. administration. Overall, these results indicate that peroxide-8-aminoquinoline hybrids are excellent starting points to develop an agent that conveys all the desired antimalarial multistage activities in a single chemical entity and, as such, with the potential to be used in malaria elimination campaigns.
Collapse
Affiliation(s)
- Daniela Miranda
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty
of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | - Rita Capela
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty
of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | - Inês S. Albuquerque
- Instituto
de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Patrícia Meireles
- Instituto
de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Isa Paiva
- Centro
de Malária e Outras Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira No. 100, P-1349-008 Lisbon, Portugal
| | - Fátima Nogueira
- Centro
de Malária e Outras Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira No. 100, P-1349-008 Lisbon, Portugal
| | - Richard Amewu
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Jiri Gut
- Department
of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department
of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California 94143, United States
| | - Rudi Oliveira
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty
of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | - Maria M. Mota
- Instituto
de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rui Moreira
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty
of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | - Francesc Marti
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Miguel Prudêncio
- Instituto
de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Francisca Lopes
- Research
Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty
of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| |
Collapse
|
23
|
Araujo N, Afonso R, Bringela A, Cancela M, Cristiano M, Leite R. Peroxides with antiplasmodial activity inhibit proliferation of Perkinsus olseni, the causative agent of Perkinsosis in bivalves. Parasitol Int 2013; 62:575-82. [DOI: 10.1016/j.parint.2013.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
|
24
|
Oliveira R, Newton AS, Guedes RC, Miranda D, Amewu RK, Srivastava A, Gut J, Rosenthal PJ, O'Neill PM, Ward SA, Lopes F, Moreira R. An Endoperoxide‐Based Hybrid Approach to Deliver Falcipain Inhibitors Inside Malaria Parasites. ChemMedChem 2013; 8:1528-36. [DOI: 10.1002/cmdc.201300202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Rudi Oliveira
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Ana S. Newton
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Rita C. Guedes
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Daniela Miranda
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Richard K. Amewu
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX (UK)
| | - Abhishek Srivastava
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA (UK)
| | - Jiri Gut
- Department of Medicine, University of California, San Francisco, CA 94143 (USA)
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143 (USA)
| | - Paul M. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX (UK)
| | - Stephen A. Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA (UK)
| | - Francisca Lopes
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| | - Rui Moreira
- iMed.UL and Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649‐003 (Portugal)
| |
Collapse
|
25
|
Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MMK, Chen MJ, Guo ZF, Guo ZH, Sinniah K, Witte AB, Coghi P, Monti D. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action. ChemMedChem 2012; 7:2204-26. [PMID: 23112085 DOI: 10.1002/cmdc.201200383] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/30/2012] [Indexed: 01/14/2023]
Abstract
Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Slack RD, Jacobine AM, Posner GH. Antimalarial peroxides: advances in drug discovery and design. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00277a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|