1
|
Brissos V, Borges PT, Sancho F, Lucas MF, Frazão C, Conzuelo F, Martins LO. Flexible active-site loops fine-tune substrate specificity of hyperthermophilic metallo-oxidases. J Biol Inorg Chem 2024; 29:339-351. [PMID: 38227199 PMCID: PMC11111587 DOI: 10.1007/s00775-023-02040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024]
Abstract
Hyperthermophilic ('superheat-loving') archaea found in high-temperature environments such as Pyrobaculum aerophilum contain multicopper oxidases (MCOs) with remarkable efficiency for oxidizing cuprous and ferrous ions. In this work, directed evolution was used to expand the substrate specificity of P. aerophilum McoP for organic substrates. Six rounds of error-prone PCR and DNA shuffling followed by high-throughput screening lead to the identification of a hit variant with a 220-fold increased efficiency (kcat/Km) than the wild-type for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) without compromising its intrinsic activity for metal ions. The analysis of the X-ray crystal structure reveals four proximal mutations close to the T1Cu active site. One of these mutations is within the 23-residues loop that occludes this site, a distinctive feature of prokaryotic MCOs. The increased flexibility of this loop results in an enlarged tunnel and one additional pocket that facilitates bulky substrate-enzyme interactions. These findings underscore the synergy between mutations that modulate the dynamics of the active-site loop enabling enhanced catalytic function. This study highlights the potential of targeting loops close to the T1Cu for engineering improvements suitable for biotechnological applications.
Collapse
Affiliation(s)
- Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Felipe Conzuelo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
2
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
4
|
Jiang J, Deng JL, Wang ZG, Chen XY, Wang SJ, Wang YC. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules 2023; 28:molecules28073037. [PMID: 37049802 PMCID: PMC10096025 DOI: 10.3390/molecules28073037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Laccases have been widely used for fruit juice clarification, food modification, and paper pulp delignification. In addition, laccases exhibit remarkable performance in the degradation of toxic substances, including pesticides, organic synthetic dyes, antibiotics, and organic pollutants. Thus, the screening and development of robust laccases has attracted significant attention. In this study, Vibrio sp. LA is a strain capable of producing cold-adapted laccases. The laccase coding gene L01 was cloned from this strain and expressed in Yarrowia lipolytica, a host with good secretion ability. The secreted L01 (approximate MW of 56,000 Da) had the activity and specific activity of 18.6 U/mL and 98.6 U/mg toward ABTS, respectively. The highest activity occurred at 35 °C. At 20 °C, L01 activity was over 70% of the maximum activity in pH conditions ranging from 4.5–10.0. Several synthetic dyes were efficiently degraded by L01. Owing to its robustness, salt tolerance, and pH stability, L01 is a promising catalytic tool for potential industrial applications.
Collapse
Affiliation(s)
- Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Jing-Ling Deng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Gang Wang
- Training Center, Qingdao Harbour Vocational & Technical College, Qingdao 266404, China
| | - Xiao-Yu Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shu-Jie Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong-Chuang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- The National Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Zhang A, Hou Y, Wang Q, Wang Y. Characteristics and polyethylene biodegradation function of a novel cold-adapted bacterial laccase from Antarctic sea ice psychrophile Psychrobacter sp. NJ228. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129656. [PMID: 36104922 DOI: 10.1016/j.jhazmat.2022.129656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Biotreatment of polyethylene (PE) waste is an emerging topic in environmental remediation; in particular, the degrading enzymes requires further exploration. This study described a novel cold-adapted laccase (PsLAC) from an Antarctic psychrophile and characterized its PE-degradation ability. Homology modeling revealed that PsLAC possessed a typical bacterial laccase catalytic structure and unique cold adaptation structural characteristics such as few hydrogen bonds. Recombinant PsLAC (rPsLAC) retained 54.3% residual activity at 0 ℃ and presented increased Km values at low temperatures and a relatively high kcat value (42.65 s-1). Collectively, these factors help resist cold stress. rPsLAC possessed substantial salt tolerance at 1.5 M NaCl, with 119.80% activity, and Cu2+ enhanced its activity to 127.10%. PE-degradation experiments indicated that 13.2% weight was lost, and the water contact angle was decreased to 74.6°. Polar functional groups such as carbonyl and carboxyl groups on PE surface were detected in Fourier transform infrared spectroscopy; X-ray diffraction exhibited that crystallinity reduced by 25%. Enormous damage to PE surface and interior was observed via scanning electron microscopy. Overall, PsLAC, with its unique cold-adapted catalytic structure and biochemical characteristics, could supplement the diversity of sources and properties of bacterial laccases and ensure PE-degradation with a novel cold-adapted enzyme resource.
Collapse
Affiliation(s)
- Ailin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Yatong Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Brissos V, Borges P, Núñez-Franco R, Lucas MF, Frazão C, Monza E, Masgrau L, Cordeiro TN, Martins LO. Distal Mutations Shape Substrate-Binding Sites during Evolution of a Metallo-Oxidase into a Laccase. ACS Catal 2022; 12:5022-5035. [PMID: 36567772 PMCID: PMC9775220 DOI: 10.1021/acscatal.2c00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Laccases are in increasing demand as innovative solutions in the biorefinery fields. Here, we combine mutagenesis with structural, kinetic, and in silico analyses to characterize the molecular features that cause the evolution of a hyperthermostable metallo-oxidase from the multicopper oxidase family into a laccase (k cat 273 s-1 for a bulky aromatic substrate). We show that six mutations scattered across the enzyme collectively modulate dynamics to improve the binding and catalysis of a bulky aromatic substrate. The replacement of residues during the early stages of evolution is a stepping stone for altering the shape and size of substrate-binding sites. Binding sites are then fine-tuned through high-order epistasis interactions by inserting distal mutations during later stages of evolution. Allosterically coupled, long-range dynamic networks favor catalytically competent conformational states that are more suitable for recognizing and stabilizing the aromatic substrate. This work provides mechanistic insight into enzymatic and evolutionary molecular mechanisms and spots the importance of iterative experimental and computational analyses to understand local-to-global changes.
Collapse
Affiliation(s)
- Vânia Brissos
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Patrícia
T. Borges
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | | | | | - Carlos Frazão
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Emanuele Monza
- Zymvol
Biomodeling, Carrer Roc
Boronat, 117, 08018 Barcelona, Spain
| | - Laura Masgrau
- Zymvol
Biomodeling, Carrer Roc
Boronat, 117, 08018 Barcelona, Spain,Department
of Chemistry, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Tiago N. Cordeiro
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
7
|
Basharat Z, Yasmin A. Sulphonated azo dye decolorization by Alcaligenes faecalis subsp. phenolicus MB207: Insights from laboratory and computational analysis. Biophys Chem 2022; 286:106806. [DOI: 10.1016/j.bpc.2022.106806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 01/02/2023]
|
8
|
Roulling F, Godin A, Feller G. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance. Biochimie 2022; 194:118-126. [PMID: 34982982 DOI: 10.1016/j.biochi.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Cuproxidases form a subgroup of the blue multicopper oxidase family. They display disordered methionine-rich loops, not observable in most available crystal structures, which have been suggested to bind toxic Cu(I) ions before oxidation into less harmful Cu(II) by the core enzyme. We found that the location of the Met-rich regions is highly variable in bacterial cuproxidases, but always inserted in solvent exposed surface loops, at close proximity of the conserved T1 copper binding site. We took advantage of the large differences in loop length between cold-adapted, mesophilic and thermophilic oxidase homologs to unravel the function of the methionine-rich regions involved in copper detoxification. Using a newly developed anaerobic assay for cuprous ions, it is shown that the number of Cu(I) bound is nearly proportional to the loop lengths in these cuproxidases and to the number of potential Cu(I) ligands in these loops. In order to substantiate this relation, the longest loop in the cold-adapted oxidase was deleted, lowering bound extra Cu(I) from 9 in the wild-type enzyme to 2-3 Cu(I) in deletion mutants. These results demonstrate that methionine-rich loops behave as molecular octopus scavenging toxic cuprous ions in the periplasm and that these regions are essential components of bacterial copper resistance.
Collapse
Affiliation(s)
- Frédéric Roulling
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Amandine Godin
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium.
| |
Collapse
|
9
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
10
|
Kumar A, Ahlawat S, Mohan H, Sharma KK. Stabilization-destabilization and redox properties of laccases from medicinal mushroom Ganoderma lucidum and human pathogen Yersinia enterocolitica. Int J Biol Macromol 2020; 167:369-381. [PMID: 33275974 DOI: 10.1016/j.ijbiomac.2020.11.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023]
Abstract
Laccases or benzenediol oxygen oxidoreductases (EC 1.10.3.2) are polyphenol multicopper oxidases that are known for their structural and functional diversity in various life forms. In the present study, the molecular and physico-chemical properties (redox-potential and secondary structures) of fungal laccase isozymes (FLIs) isolated from a medicinal mushroom Ganoderma lucidum were analyzed and compared with those of the recombinant bacterial laccases (rLac) obtained from different Yersinia enterocolitica strains. It was revealed that the FLIs contained His-Cys-His as the most conserved residue in its domain I Cu site, while the fourth and fifth residues were variable (Ile, Leu, or Phe). Evidently, the cyclic voltammetric measurements of Glac L2 at Type 1 Cu site revealed greater E° for ABTS/ABTS+ (0.312 V) and ABTS+/ABTS2+ (0.773 V) compared to the E° of rLac. Furthermore, circular dichroism-based conformational analysis revealed structural stability of the FLIs at acidic pH (3.0) and low temperature (<30 °C), while the isozymes were destabilized at neutral pH (7.0) and high-temperature conditions (>70 °C). The zymographic studies further confirmed the functional inactivation of FLIs at high temperatures (≥70 °C), predominantly due to domain unfolding. These findings provide novel insight into the evolution of the catalytic efficiency and redox properties of the FLIs, contributing to the existing knowledge regarding stress responses, metabolite production, and the biotechnological utilization of metabolites.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
11
|
Zhang Y, Lin DF, Hao J, Zhao ZH, Zhang YJ. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons. World J Microbiol Biotechnol 2020; 36:116. [PMID: 32661601 DOI: 10.1007/s11274-020-02888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Laccases (EC 1.10.3.2) are a class of metallo-oxidases found in a variety of fungi, plants, and bacteria as well as in certain insects. They can oxidize a wide variety of organic compounds and can be widely applied in many fields, especially in the field of biodegradation and detoxification of environmental pollutants. The practical efficacy of laccases depends on their ability to capture the target substance as well as their catalytic activity, which is related to their catalytic center, substrate selectivity, and substrate tolerance. Over the past few decades, many laccases have been identified in plants and fungi. Concurrently, bacterial laccases have received increasing attention because of their high thermostability and high tolerance to organic compounds. The aim of this review is to summarize the role of bacterial laccases in the bioremediation of petroleum hydrocarbons and to outline the correlation between the molecular structure of the mononuclear T1 Cu center of bacterial laccases and their substrate preference.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Dong-Fa Lin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jun Hao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhi-Hao Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying-Jiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China. .,School of Life Science, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
12
|
Dasgupta R, Gupta KBSS, Nami F, de Groot HJM, Canters GW, Groenen EJJ, Ubbink M. Chemical Exchange at the Trinuclear Copper Center of Small Laccase from Streptomyces coelicolor. Biophys J 2020; 119:9-14. [PMID: 32531206 PMCID: PMC7335907 DOI: 10.1016/j.bpj.2020.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
The trinuclear copper center (TNC) of laccase reduces oxygen to water with very little overpotential. The arrangement of the coppers and ligands in the TNC is known to be from many crystal structures, yet information about possible dynamics of the ligands is absent. Here, we report dynamics at the TNC of small laccase from Streptomyces coelicolor using paramagnetic NMR and electron paramagnetic resonance spectroscopy. Fermi contact-shifted resonances tentatively assigned to histidine Hδ1 display a two-state chemical exchange with exchange rates in the order of 100 s−1. In the electron paramagnetic resonance spectra, at least two forms are observed with different gz-values. It is proposed that the exchange processes reflect the rotational motion of histidine imidazole rings that coordinate the coppers in the TNC.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karthick B S S Gupta
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Faezeh Nami
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Huub J M de Groot
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Gerard W Canters
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Edgar J J Groenen
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
13
|
Borges PT, Brissos V, Hernandez G, Masgrau L, Lucas MF, Monza E, Frazão C, Cordeiro TN, Martins LO. Methionine-Rich Loop of Multicopper Oxidase McoA Follows Open-to-Close Transitions with a Role in Enzyme Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Emanuele Monza
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
14
|
Kaur K, Sidhu H, Capalash N, Sharma P. Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence. Microb Pathog 2020; 143:104124. [PMID: 32169492 DOI: 10.1016/j.micpath.2020.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
A putative multicopper oxidase, encoded as CopA in the proteome of Acinetobacter baumannii 19606, and designated as AbMCO, was expressed heterologously in E. coli (pET-28a) and purified by Ni-NTA affinity chromatography. The purified AbMCO exhibited in vitro oxidase activities upon exogenous addition of ≥1 μM copper ions. Kinetic studies revealed its phenol oxidase activity as it could catalyze the oxidation of substrates viz. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol, pyrogallol and catechol. Additionally, AbMCO displayed siderophore oxidase activity which depicted its role in metal homeostasis and protection from the toxic redox states of copper and iron. Importantly, expression of abMCO increased manifold upon challenge with high concentrations of copper sulphate (CuSO4, 1.5 mM) and sodium chloride (NaCl, 700 mM) which suggested its protective role in stress adaptation and management. Intra-macrophage assay of abMCO-expressing and abMCO-non expressing cells depicted no significant change in the survival rate of A. baumannii inside the macrophages. These findings indicate that A. baumannii encodes a multicopper oxidase, conferring copper tolerance and survival under stress conditions but had no role in virulence of this pathogen.
Collapse
Affiliation(s)
- Kavleen Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
15
|
Zhang R, Zhou Y, Yan X, Fan K. Advances in chiral nanozymes: a review. Mikrochim Acta 2019; 186:782. [DOI: 10.1007/s00604-019-3922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/12/2019] [Indexed: 02/08/2023]
|
16
|
Kinkar E, Kinkar A, Saleh M. The multicopper oxidase of Mycobacterium tuberculosis (MmcO) exhibits ferroxidase activity and scavenges reactive oxygen species in activated THP-1 cells. Int J Med Microbiol 2019; 309:151324. [PMID: 31278055 DOI: 10.1016/j.ijmm.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022] Open
Abstract
The MmcO protein of Mycobacterium tuberculosis is a membrane-associated multicopper oxidase. Its natural substrate(s) and its role in pathogenesis are not well characterized. A recent report proposes that MmcO contributes to copper resistance in M. tuberculosis during infection. We have expressed and reconstituted the active enzyme from inclusion bodies in E. coli. MmcO exhibits maximal activity against the experimental substrate 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) or ABTS, at pH 4. The enzyme also exhibits ferroxidase activity at pH 4. Most notable was the finding that MmcO is able to scavenge the reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase enzyme system. This ROS scavenging activity of MmcO was also evident against ROS generated by THP-1 cells. We propose that MmcO protects M. tuberculosis during infection against ROS attack in addition to providing copper resistance to the pathogen.
Collapse
Affiliation(s)
- Eyad Kinkar
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Ayat Kinkar
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | - Mazen Saleh
- Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada.
| |
Collapse
|
17
|
Interaction of Copper Toxicity and Oxidative Stress in Campylobacter jejuni. J Bacteriol 2018; 200:JB.00208-18. [PMID: 30150230 DOI: 10.1128/jb.00208-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022] Open
Abstract
Copper is both a required micronutrient and a source of toxicity in most organisms, including Campylobacter jejuni Two proteins expressed in C. jejuni (termed CopA and CueO) have been shown to be a copper transporter and multicopper oxidase, respectively. We have isolated strains with mutations in these genes, and here we report that they were more susceptible to both the addition of copper in the growth media and to induced oxidative stress. Both mutant strains were defective in colonization of an avian host, and copper in the feed exacerbated the colonization deficiency. Overexpression of a cytoplasmic peptide derived from the normally periplasmic copper-binding region of CueO also caused copper intolerance compared to nonexpressing strains or strains expressing the non-copper-binding versions of the peptide. Taken together, the results indicate that copper toxicity in C. jejuni is due to a failure to effectively sequester cytoplasmic copper, resulting in an increase in copper-mediated oxidative damage.IMPORTANCE Copper is a required micronutrient for most aerobic organisms, but it is universally toxic at elevated levels. These organisms use homeostatic mechanisms that allow for cells to acquire enough of the element to sustain metabolic requirements while ensuring that lethal levels cannot build up in the cell. Campylobacter jejuni is an important foodborne pathogen that typically makes its way into the food chain through contaminated poultry. C. jejuni has a metabolic requirement for copper and encodes a copper detoxification system. In the course of studying this system, we have learned that it is important for avian colonization. We have also gained insight into how copper exerts its toxic effects in C. jejuni by promoting oxidative stress.
Collapse
|
18
|
Zhang H, He H, Jiang X, Xia Z, Wei W. Preparation and Characterization of Chiral Transition-Metal Dichalcogenide Quantum Dots and Their Enantioselective Catalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30680-30688. [PMID: 30113158 DOI: 10.1021/acsami.8b10594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional transition-metal dichalcogenides (TMDs) had attracted enormous interests owing to their extraordinary optical, physical, and chemical properties. Herein, we prepared for the first time a series of chiral TMD quantum dots (QDs) from MoS2 and WS2 bulk crystals by covalent modification with chiral ligands cysteine and penicillamine. The chiral TMD QDs were carefully investigated by spectroscopic and microscopic techniques. Their chiral optical activity was confirmed by distinct circular dichroism signals different to those of the chiral ligands. Interestingly, with the assistance of copper ions, the chiral QDs displayed strong and chiral selective peroxidase-like activity. Up to now, inorganic nanomaterials with peroxidase-like activity were tremendous but seldom examples with enantioselectivity. The enantioselectivity of our chiral TMD QDs toward chiral substrates d- and l-tyrosinol was highly up to 6.77, which was almost the best performance ever reported. The mechanisms of enantioselectivity was further investigated by quartz crystal microbalance assays. We believed that because of the extraordinary electronic and optical properties, the chiral TMD QDs should be useful for nonlinear optical materials, asymmetric catalysis, chiral and biological sensors, and so on.
Collapse
Affiliation(s)
- Huan Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre , Chongqing University , Chongqing 401331 , P. R. China
| | - Hui He
- School of Pharmaceutical Sciences and Innovative Drug Research Centre , Chongqing University , Chongqing 401331 , P. R. China
| | - Xuemei Jiang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre , Chongqing University , Chongqing 401331 , P. R. China
| | - Zhining Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Centre , Chongqing University , Chongqing 401331 , P. R. China
| | - Weili Wei
- School of Pharmaceutical Sciences and Innovative Drug Research Centre , Chongqing University , Chongqing 401331 , P. R. China
| |
Collapse
|
19
|
Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, Mandić-Mulec I. Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl Microbiol Biotechnol 2018; 102:2425-2439. [DOI: 10.1007/s00253-018-8785-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/01/2022]
|
20
|
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 2017; 7:323. [PMID: 28955620 PMCID: PMC5602783 DOI: 10.1007/s13205-017-0955-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- School of Biological Sciences, G. B. Pant, University of Agricultural and Technology, Pantnagar, Uttarakhand 263145 India
| | - Bindi Goradia
- Marine Biotechnology and Ecology Division, Council of Scientific and Industrial Research – Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 021 India
| | - Arunika Saxena
- Department of Chemistry, Samrat Prithviraj Chauhan Government College, Beawar Road, Ajmer, Rajasthan 305001 India
| |
Collapse
|
21
|
Liu Z, Xie T, Zhong Q, Wang G. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Acta Crystallogr F Struct Biol Commun 2016; 72:328-35. [PMID: 27050268 PMCID: PMC4822991 DOI: 10.1107/s2053230x1600426x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/13/2016] [Indexed: 01/13/2023] Open
Abstract
The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.
Collapse
Affiliation(s)
- Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
| | - Qiuping Zhong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
| |
Collapse
|
22
|
Singh D, Rawat S, Waseem M, Gupta S, Lynn A, Nitin M, Ramchiary N, Sharma KK. Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun 2016; 469:306-12. [DOI: 10.1016/j.bbrc.2015.11.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 01/30/2023]
|
23
|
Serrano-Posada H, Centeno-Leija S, Rojas-Trejo SP, Rodríguez-Almazán C, Stojanoff V, Rudiño-Piñera E. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2396-411. [PMID: 26627648 PMCID: PMC4934174 DOI: 10.1107/s1399004715018714] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Å from the TNC) and Glu451b (∼4.5 Å from the TNC). A positive peak of electron density above 3.5σ in an Fo - Fc map for Glu451a O(ℇ2) indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1-8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.
Collapse
Affiliation(s)
- Hugo Serrano-Posada
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, Mexico
| | - Sara Centeno-Leija
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, Mexico
| | - Sonia Patricia Rojas-Trejo
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
| | - Claudia Rodríguez-Almazán
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
| | - Vivian Stojanoff
- NSLS, Brookhaven National Laboratory, 75 Brookhaven Avenue, Building 725D, Upton, NY 11973-5000, USA
| | - Enrique Rudiño-Piñera
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, MOR, Mexico
| |
Collapse
|
24
|
Brissos V, Ferreira M, Grass G, Martins LO. Turning a Hyperthermostable Metallo-Oxidase into a Laccase by Directed Evolution. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vânia Brissos
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Maura Ferreira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | - Gregor Grass
- Bundeswehr
Institute of Microbiology, DZIF, Partner Site of German Center for Infection Research, Neuherbergstrasse 11, Munich DE 80937, Germany
| | - Lígia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
25
|
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci 2015; 72:857-68. [PMID: 25586561 PMCID: PMC11113281 DOI: 10.1007/s00018-014-1827-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Laccases are phenol oxidases that belong to the family of multi-copper oxidases and the superfamily of cupredoxins. A number of potential industrial applications for laccases have led to intensive structure-function studies and an increased amount of crystal structures has been solved. The objective of this review is to summarize and analyze available crystal structures of laccases. The experimental crystallographic data are now easily available from the websites and electron density maps can be used for the interpretation of the structural models. The crystal structures can give valuable insights into the functional mechanisms and may serve as the basis for the development of laccases for industrial applications.
Collapse
Affiliation(s)
- N Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, 80101, Joensuu, Finland,
| | | |
Collapse
|
26
|
Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 2015; 72:911-22. [PMID: 25572294 PMCID: PMC11113980 DOI: 10.1007/s00018-014-1822-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The ubiquitous members of the multicopper oxidase family of enzymes oxidize a range of aromatic substrates such as polyphenols, methoxy-substituted phenols, amines and inorganic compounds, concomitantly with the reduction of molecular dioxygen to water. This family of enzymes can be broadly divided into two functional classes: metalloxidases and laccases. Several prokaryotic metalloxidases have been described in the last decade showing a robust activity towards metals, such as Cu(I), Fe(II) or Mn(II) and have been implicated in the metal metabolism of the corresponding microorganisms. Many laccases, with a superior efficiency for oxidation of organic compounds when compared with metals, have also been identified and characterized from prokaryotes, playing roles that more closely conform to those of intermediary metabolism. This review aims to present an update of current knowledge on prokaryotic multicopper oxidases, with a special emphasis on laccases, anticipating their enormous potential for industrial and environmental applications.
Collapse
Affiliation(s)
- Lígia O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2781-901, Oeiras, Portugal,
| | | | | | | |
Collapse
|
27
|
Osipov E, Polyakov K, Kittl R, Shleev S, Dorovatovsky P, Tikhonova T, Hann S, Ludwig R, Popov V. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2913-23. [PMID: 25372682 PMCID: PMC4220974 DOI: 10.1107/s1399004714020380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/10/2014] [Indexed: 12/04/2022]
Abstract
Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomycete Botrytis aclada was studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 Å resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined: E0 = 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme.
Collapse
Affiliation(s)
- Evgeny Osipov
- A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071, Russian Federation
| | - Konstantin Polyakov
- A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071, Russian Federation
- Engelhardt Institute of Molecular Biology, Vavilova Str. 32, Moscow 119991, Russian Federation
| | - Roman Kittl
- BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien, Austria
| | - Sergey Shleev
- RSC ‘Kurchatov Institute’, Acad. Kurchatov Sq. 1, Moscow 123182, Russian Federation
- Biomedical Sciences, Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Pavel Dorovatovsky
- RSC ‘Kurchatov Institute’, Acad. Kurchatov Sq. 1, Moscow 123182, Russian Federation
| | - Tamara Tikhonova
- A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071, Russian Federation
| | - Stephan Hann
- BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien, Austria
| | - Roland Ludwig
- BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien, Austria
| | - Vladimir Popov
- A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071, Russian Federation
- RSC ‘Kurchatov Institute’, Acad. Kurchatov Sq. 1, Moscow 123182, Russian Federation
| |
Collapse
|
28
|
Chen W, Ye D, Wang H, Lin D, Huang J, Sun H, Zhong W. Binding of oxo-Cu2 clusters to ferric ion-binding protein A from Neisseria gonorrhoeae: a structural insight. Metallomics 2014; 5:1430-9. [PMID: 23884152 DOI: 10.1039/c3mt00091e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion-binding protein A (FbpA), a member of transferrin superfamily, is a periplasmic iron transporter employed by many Gram-negative pathogens. Our experiments indicated copper(ii) could bind with Neisseria gonorrhoeae FbpA (NgFbpA), and the binding constant reached up to (8.7 ± 0.2) × 10(8) M(-1)via UV-vis titration. The crystal structure of recombinant Cu-NgFbpA at 2.1 Å revealed that the oxo-Cu2 clusters (dinuclear centres) assembled in the iron binding cleft and were bound to the two adjacent tyrosine residues (Y195 and Y196) of the protein, two Cu ions coordinated with two tyrosines, Y195 and Y196, respectively, which was different from the binding model of Fe ion with FbpA, in which Y195 and Y196 coordinated together with one Fe ion. While this was similar to the binding of Zr and Hf ion clusters, Y195 and Y196 coordinated with two metal ions and the μ-oxo-bridges linking the metal ions. Structural superimposition demonstrated that oxo-Cu2-NgFbpA still keeping an open conformation, similar to the apo-form of NgFbpA. The structure presented additional information towards an understanding of the function of FbpA, and provided a detailed binding model for FbpA protein with the possible metal ions in a biological system.
Collapse
Affiliation(s)
- Weijing Chen
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bello M, Correa-Basurto J, Rudiño-Piñera E. Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways. J Biomol Struct Dyn 2013; 32:1303-17. [DOI: 10.1080/07391102.2013.817954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 2013; 195:3724-33. [PMID: 23772064 DOI: 10.1128/jb.00546-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most important bacterial pathogens. Recent work has revealed that the natural bactericidal properties of copper are utilized by the host immune system to combat infections with bacteria, including M. tuberculosis. However, M. tuberculosis employs multiple mechanisms to reduce the internal copper amount by efflux and sequestration, which are required for virulence of M. tuberculosis. Here, we describe an alternative mechanism of copper resistance by M. tuberculosis. Deletion of the rv0846c gene increased the susceptibility of M. tuberculosis to copper at least 10-fold, establishing Rv0846c as a major component of copper resistance in M. tuberculosis. In vitro assays showed that Rv0846c oxidized organic substrates and Fe(II). Importantly, mutation of the predicted copper-coordinating cysteine 486 resulted in inactive Rv0846c protein which did not protect M. tuberculosis against copper stress. Hence, Rv0846c is a multicopper oxidase of M. tuberculosis and was renamed mycobacterial multicopper oxidase (MmcO). MmcO is membrane associated, probably by lipidation after export across the inner membrane by the twin-arginine translocation system. However, mutation of the lipidation site did not affect the oxidase activity or the copper protective function of MmcO. Our study revealed MmcO as an important copper resistance mechanism of M. tuberculosis, which possibly acts by oxidation of toxic Cu(I) in the periplasm.
Collapse
|
31
|
Cun S, Lai YT, Chang YY, Sun H. Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics 2013; 5:904-12. [DOI: 10.1039/c3mt00026e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Rulíšek L, Ryde U. Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Tamayo-Ramos JA, van Berkel WJH, de Graaff LH. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb Cell Fact 2012; 11:165. [PMID: 23270588 PMCID: PMC3548707 DOI: 10.1186/1475-2859-11-165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA) and 2,2-azino-di(3-ethylbenzthiazoline) sulfonic acid (ABTS), and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. CONCLUSIONS The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.
Collapse
Affiliation(s)
- Juan Antonio Tamayo-Ramos
- Microbial Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Willem JH van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | - Leo H de Graaff
- Microbial Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| |
Collapse
|