1
|
Mazahir F, Alam MI, Yadav AK. Development of nanomedicines for the treatment of Alzheimer's disease: Raison d'être, strategies, challenges and regulatory aspects. Ageing Res Rev 2024; 98:102318. [PMID: 38705362 DOI: 10.1016/j.arr.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive loss of memory. Presently, AD is challenging to treat with current drug therapy as their delivery to the brain is restricted by the presence of the blood-brain barrier. Nanomedicines, due to their size, high surface volume ratio, and ease of tailoring drug release characteristics, showed their potential to treat AD. The nanotechnology-based formulations for brain targeting are expected to enter the market in the near future. So, regulatory frameworks are required to ensure the quality, safety, and effectiveness of the nanomedicines to treat AD. In this review, we discuss different strategies, in-vitro blood-brain permeation models, in-vivo permeation assessment, and regulatory aspects for the development of nanomedicine to treat AD.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Md Imtiyaz Alam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Awesh Kumar Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
2
|
Cruz-Hernández C, López-Camacho PY, Basurto-Islas G, Rojas A, Guadarrama P, Martínez-Herrera M. Click synthesis of dendronized malonates for the preparation of amphiphilic dendro[60]fullerenes. Org Biomol Chem 2024; 22:3328-3339. [PMID: 38584463 DOI: 10.1039/d3ob01986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Fullerene C60 and its malonate derivatives, produced via the Bingel-Hirsch reaction, have displayed promising properties against various diseases. These molecules have great therapeutic potential, but their broad use has been limited due to poor aqueous solubility and toxicity caused by accumulation. In this study, we synthesized new malonates and malonamides attached to first- and second-generation polyester dendrons using click chemistry (CuAAC). These dendrons were then linked at C60 through the Bingel-Hirsch reaction, resulting in an amphiphilic system that retains the hydrophobic nature of C60. The dendronized malonate derivatives showed good reaction yields for the Bingel-Hirsch mono-adducts and were easier to work with than the corresponding malonamides. However, the malonamide derivatives, which were obtained through a multistep reaction sequence, showed moderate yields in the Bingel-Hirsch reaction. Surprisingly, removing acetonide protecting groups from dendritic architectures was more challenging than anticipated, likely due to product decomposition. Only the corresponding free malonate derivatives 25 and 26 were obtained, but in a low yield due to decomposition under the reaction conditions. Meanwhile, it was not possible to obtain the corresponding malonamide derivatives 27 and 28. Currently, efforts are being made to improve the production of the desired molecules and to design new synthesis routes that allow direct access to the desired poly-hydroxylated derivatives. These derivatives will be evaluated as multitarget ligands against Alzheimer's disease, through their use as inhibitors of amyloid β-peptide aggregation, acetylcholinesterase modulators, and antioxidants.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, CDMX, 05300, Mexico.
| | - Perla Y López-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, CDMX, 05300, Mexico.
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierias, Universidad de Guanajuato, Campus León, León Guanajuato, México
| | - Aaron Rojas
- Departamento de Química del Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, C.P. 07360 Mexico City, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Melchor Martínez-Herrera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, CDMX, 05300, Mexico.
| |
Collapse
|
3
|
Perovic M, Ciric J, Matovic V, Srbovan M, Koruga D, Kanazir S, Ivkovic S. The presymptomatic treatment with 3HFWC nanosubstance decreased plaque load in 5XFAD mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14188. [PMID: 36971205 PMCID: PMC10915986 DOI: 10.1111/cns.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION In the present study, we assessed the effects of the hyper-harmonized-hydroxylated fullerene-water complex (3HFWC) on Alzheimer's disease (AD) neuropathological hallmarks in 5XFAD mice, an AD animal model. METHODS The 3-week-old 5XFAD mice were exposed to 3HFWC water solution ad libitum for 3 months in the presymptomatic phase of pathology. The functional effects of the treatment were confirmed through near-infrared spectroscopy (NIRS) analysis through machine learning (ML) using artificial neural networks (ANNs) to classify the control and 3HFWC-treated brain tissue samples. The effects of 3HFWC treatment on amyloid-β (Aβ) accumulation, plaque formation, gliosis, and synaptic plasticity in cortical and hippocampal tissue were assessed. RESULTS The 3HFWC treatment significantly decreased the amyloid-β plaque load in specific parts of the cerebral cortex. At the same time, 3HFWC treatment did not induce the activation of glia (astrocytes and microglia) nor did it negatively affect synaptic protein markers (GAP-43, synaptophysin, and PSD-95). CONCLUSION The obtained results point to the potential of 3HFWC, when applied in the presymptomatic phase of AD, to interfere with amyloid plaque formation without inducing AD-related pathological processes such as neuroinflammation, gliosis, and synaptic vulnerability.
Collapse
Affiliation(s)
- Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Valentina Matovic
- NanoLab, Biomedical Engineering, Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
| | - Maja Srbovan
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | | | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic” ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences ‐ National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
4
|
Yin X, Zhou H, Zhang M, Su J, Wang X, Li S, Yang Z, Kang Z, Zhou R. C 3N nanodots inhibits Aβ peptides aggregation pathogenic path in Alzheimer's disease. Nat Commun 2023; 14:5718. [PMID: 37714837 PMCID: PMC10504243 DOI: 10.1038/s41467-023-41489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Despite the accumulating evidence linking the development of Alzheimer's disease (AD) to the aggregation of Aβ peptides and the emergence of Aβ oligomers, the FDA has approved very few anti-aggregation-based therapies over the past several decades. Here, we report the discovery of an Aβ peptide aggregation inhibitor: an ultra-small nanodot called C3N. C3N nanodots alleviate aggregation-induced neuron cytotoxicity, rescue neuronal death, and prevent neurite damage in vitro. Importantly, they reduce the global cerebral Aβ peptides levels, particularly in fibrillar amyloid plaques, and restore synaptic loss in AD mice. Consequently, these C3N nanodots significantly ameliorate behavioral deficits of APP/PS1 double transgenic male AD mice. Moreover, analysis of critical tissues (e.g., heart, liver, spleen, lung, and kidney) display no obvious pathological damage, suggesting C3N nanodots are biologically safe. Finally, molecular dynamics simulations also reveal the inhibitory mechanisms of C3N nanodots in Aβ peptides aggregation and its potential application against AD.
Collapse
Grants
- the National Key Research and Development Program of China (2021YFA1201201 and 2021YFF1200404), the National MCF Energy R&D Program of China (2018YFE0306105), the National Key R&D Program of China (2020YFA0406104, 2020YFA0406101), the Innovative Research Group Project of the National Natural Science Foundation of China (51821002), the National Natural Science Foundation of China (U1967217, 22176137, 51725204, 21771132, 51972216, and 52041202), the National Independent Innovation Demonstration Zone Shanghai Zhangjiang Major Projects (ZJZX2020014), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA150010), the Starry Night Science Fund at Shanghai Institute for Advanced Study of Zhejiang University (SN-ZJU-SIAS-003), and BirenTech Research (BR-ZJU-SIAS-001).
Collapse
Affiliation(s)
- Xiuhua Yin
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Mengling Zhang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Juan Su
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Xiao Wang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Sijie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Martínez-Herrera M, Figueroa-Gerstenmaier S, López-Camacho PY, Millan-Pacheco C, Balderas-Altamirano MA, Mendoza-Franco G, García-Sierra F, Zavala-Ocampo LM, Basurto-Islas G. Multiadducts of C60 Modulate Amyloid-β Fibrillation with Dual Acetylcholinesterase Inhibition and Antioxidant Properties: In Vitro and In Silico Studies. J Alzheimers Dis 2022; 87:741-759. [DOI: 10.3233/jad-215412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Amyloid-β (Aβ) fibrils induce cognitive impairment and neuronal loss, leading to onset of Alzheimer’s disease (AD). The inhibition of Aβ aggregation has been proposed as a therapeutic strategy for AD. Pristine C60 has shown the capacity to interact with the Aβ peptide and interfere with fibril formation but induces significant toxic effects in vitro and in vivo. Objective: To evaluate the potential of a series of C60 multiadducts to inhibit the Aβ fibrillization. Methods: A series of C60 multiadducts with four to six diethyl malonyl and their corresponding disodium-malonyl substituents were synthesized as individual isomers. Their potential on Aβ fibrillization inhibition was evaluated in vitro, in cellulo, and silico. Antioxidant activity, acetylcholinesterase inhibition capacity, and toxicity were assessed in vitro. Results: The multiadducts modulate Aβ fibrils formation without inducing cell toxicity, and that the number and polarity of the substituents play a significant role in the adducts efficacy to modulate Aβ aggregation. The molecular mechanism of fullerene-Aβ interaction and modulation was identified. Furthermore, the fullerene derivatives exhibited antioxidant capacity and reduction of acetylcholinesterase activity. Conclusion: Multiadducts of C60 are novel multi-target-directed ligand molecules that could hold considerable promise as the starting point for the development of AD therapies.
Collapse
Affiliation(s)
- Melchor Martínez-Herrera
- Departamento de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Cuajimalpa, Ciudad de México, México
| | | | - Perla Y. López-Camacho
- Departamento de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Cuajimalpa, Ciudad de México, México
| | - Cesar Millan-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Graciela Mendoza-Franco
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Franciscos García-Sierra
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Lizeth M. Zavala-Ocampo
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Cuajimalpa, Ciudad de México, México
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, León, Gto., Mexico
| |
Collapse
|
6
|
Huang Y, Chang Y, Liu L, Wang J. Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides. Molecules 2021; 26:4301. [PMID: 34299575 PMCID: PMC8305396 DOI: 10.3390/molecules26144301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer's disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.
Collapse
Affiliation(s)
- Yaliang Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
7
|
Voronov II, Martynenko VM, Chernyak AV, Godovikov I, Peregudov AS, Balzarini J, Shestakov AF, Schols D, Troshin PA. Synthesis, characterization and anti-HIV activity of polycarboxylic [60]fullerene derivatives obtained in the reaction of C60Cl6 with a hydroquinone ether. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Bai C, Lao Z, Chen Y, Tang Y, Wei G. Pristine and Hydroxylated Fullerenes Prevent the Aggregation of Human Islet Amyloid Polypeptide and Display Different Inhibitory Mechanisms. Front Chem 2020; 8:51. [PMID: 32117877 PMCID: PMC7013002 DOI: 10.3389/fchem.2020.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
Protein aggregation, involving the formation of dimers, oligomers, and fibrils, is associated with many human diseases. Type 2 diabetes is one of the common amyloidosis and linked with the aggregation of human islet amyloid polypeptide (hIAPP). A series of nanoparticles are reported to be able to interact with proteins and enhance/inhibit protein aggregation. However, the effects of C60 (a model system of hydrophobic nanoparticle) and C60(OH)8 (a hydroxylated fullerene) on hIAPP aggregation remain unknown. In this study, we investigate the influences of pristine fullerene C60 and hydroxylated C60 on the dimerization of hIAPP using molecular dynamics (MD) simulations. Extensive replica exchange molecular dynamics (REMD) simulations show that isolated hIAPP dimers adopt β-sheet structure containing the amyloid-precursor (β-hairpin). Both C60 and C60(OH)8 notably inhibit the β-sheet formation of hIAPP dimer and induce the formation of collapsed disordered coil-rich conformations. Protein—nanoparticle interaction analyses reveal that the inhibition of hIAPP aggregation by C60 is mainly via hydrophobic and aromatic-stacking interactions, while the prevention of hIAPP aggregation by C60(OH)8 is mostly through collective hydrogen bonding and aromatic-stacking interactions. Conventional MD simulations indicate that both C60 and C60(OH)8 weaken the interactions within hIAPP protofibril and disrupt the β-sheet structure. These results provide mechanistic insights into the possible inhibitory mechanism of C60 and C60(OH)8 toward hIAPP aggregation, and they are of great reference value for the screening of potent amyloid inhibitors.
Collapse
Affiliation(s)
- Cuiqin Bai
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Zenghui Lao
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Yiming Tang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Department of Physics, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Bobylev AG, Kraevaya OA, Bobyleva LG, Khakina EA, Fadeev RS, Zhilenkov AV, Mishchenko DV, Penkov NV, Teplov IY, Yakupova EI, Vikhlyantsev IM, Troshin PA. Anti-amyloid activities of three different types of water-soluble fullerene derivatives. Colloids Surf B Biointerfaces 2019; 183:110426. [PMID: 31421408 DOI: 10.1016/j.colsurfb.2019.110426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 01/21/2023]
Abstract
Anti-amyloid activity, aggregation behaviour, cytotoxicity and acute toxicity were investigated for three water-soluble fullerene derivatives with different types of solubilizing addends. All investigated compounds showed a strong anti-amyloid effect in vitrocaused by interaction of the water-soluble fullerene derivatives with the Ab(1-42)-peptide and followed by destruction of the amyloid fibrils. Notably, all of the studied fullerene derivatives showed very low cytotoxicity and low acute toxicity in mice (most promising compound 3 was more than four times less toxic than aspirin). Strong anti-amyloid effect of the fullerene derivatives together with low toxicity reveals high potential of these compounds as drug candidates for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander G Bobylev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia; Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Liya G Bobyleva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Ekaterina A Khakina
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Alexander V Zhilenkov
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Denis V Mishchenko
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, Pushchino, Moscow Region, 142290, Russia
| | - Ilia Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, Pushchino, Moscow Region, 142290, Russia
| | - Elmira I Yakupova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia; Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia.
| |
Collapse
|
10
|
Distinct Impacts of Fullerene on Cognitive Functions of Dementia vs. Non-dementia Mice. Neurotox Res 2019; 36:736-745. [PMID: 31222673 DOI: 10.1007/s12640-019-00075-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Fullerene is a family of carbon materials widely applied in modern medicine and ecosystem de-contamination. Its wide application makes human bodies more and more constantly exposed to fullerene particles. Since fullerene particles are able to cross the blood-brain barrier (BBB) (Yamago et al. 1995), if and how fullerene would affect brain functions need to be investigated for human health consideration. For this purpose, we administered fullerene on subcortical ischemic vascular dementia (SIVD) model mice and sham mice, two types of mice with distinct penetration properties of BBB and hence possibly distinct vulnerabilities to fullerene. We studied the spatial learning and memory abilities of mice with Morris water maze (MWM) and the neuroplasticity properties of the hippocampus. Results showed that fullerene administration suppressed outcomes of MWM in sham mice, along with suppressed long-term potentiation (LTP) and dendritic spine densities. Oppositely, recoveries of MWM outcomes and neuroplasticity properties were observed in fullerene-treated SIVD mice. To further clarify the mechanism of the impact of fullerene on neuroplasticity, we measured the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) by western blot assay. Results suggest that the distinct impacts of fullerene on behavior test and neuroplasticity may be conducted through postsynaptic regulations that were mediated by BDNF.
Collapse
|
11
|
Sun Y, Kakinen A, Zhang C, Yang Y, Faridi A, Davis TP, Cao W, Ke PC, Ding F. Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. NANOSCALE 2019; 11:11933-11945. [PMID: 31188372 PMCID: PMC6589440 DOI: 10.1039/c9nr02407g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Featuring small sizes, caged structures, low cytotoxicity and the capability to cross biological barriers, fullerene hydroxy derivatives named fullerenols have been explored as nanomedicinal candidates for amyloid inhibition. Understanding the surface chemistry effect of hydroxylation extents and the corresponding amyloid inhibition mechanisms is necessary for enabling applications of fullerenols and also future designs of nanomedicines in mitigating amyloid aggregation. Here, we investigated effects of C60(OH)n with n = 0-40 on the aggregation of NACore (the amyloidogenic core region of the non-amyloid-β component in α-synuclein), the amyloidogenic core of α-synuclein, by computational simulations, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thioflavin-T (ThT) fluorescence kinetics and viability assays. Computationally, NACore assembled into cross-β aggregates via intermediates including β-barrels, which are postulated as toxic oligomers of amyloid aggregation. Hydrophobic C60 preferred to self-assemble, and NACore bound to the surface of C60 nano-clusters formed β-sheet rich aggregates - i.e., having little inhibition effect. Amphiphilic C60(OH)n with n = 4-20 displayed significant inhibition effects on NACore aggregation, where hydrogen bonding between hydroxyls and peptide backbones interrupted the formation of β-sheets between peptides adsorbed onto the surfaces of fullerenols or fullerenol nano-assemblies due to hydrophobic interactions. Thus, both cross-β aggregates and β-barrel intermediates were significantly suppressed. With hydroxyls increased to 40, fullerenols became highly hydrophilic with reduced peptide binding and thus an inhibition effect on amyloid aggregation. ThT, FTIR and TEM characterization of C60(OH)n with n = 0, 24, & 40 confirmed the computational predictions. Our results and others underscore the importance of amphiphilic surface chemistry and the capability of polar groups in forming hydrogen bonds with peptide backbones to render amyloid inhibition, offering a new insight for de-novo design of anti-amyloid inhibitors.
Collapse
Affiliation(s)
- Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Chi Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Corresponding authors
| |
Collapse
|
12
|
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res 2019; 143:186-203. [DOI: 10.1016/j.phrs.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
|
13
|
Influence of crowding and surfaces on protein amyloidogenesis: A thermo-kinetic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:941-953. [PMID: 30928692 DOI: 10.1016/j.bbapap.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 01/24/2023]
Abstract
The last few decades have irreversibly implicated protein self-assembly and aggregation leading to amyloid fibril formation in proteopathies that include several neurodegenerative diseases. Emerging studies recognize the importance of eliciting the pathways leading to protein aggregation in the context of the crowded intracellular environment rather than in conventional in vitro conditions. It is found that crowded environments can have acceleratory as well as inhibitory effects on protein aggregation, depending on the interplay of underlying factors on the crucial rate limiting steps. The aggregation mechanism and transient species formed along the pathway are further altered when they interface with natural and artificial surfaces in the cellular milieu. An increasing number of studies probe the autocatalytic nature of amyloid surfaces as well as membrane bilayer effects on amyloidogenesis. Moreover, exposure to modern nanosurfaces via nanomedicines and other sources potentially invokes beneficial or deleterious biological response that needs rigorous investigation. Mounting evidences indicate that nanoparticles can either promote or impede amyloid aggregation, spurring efforts to tune their interactions for developing effective anti-amyloid strategies. Mechanistic insights into nanoparticle mediated aggregation pathways are therefore crucial for engineering anti-amyloid nanoparticle strategies that are biocompatible and sustainable. This review is a compilation of studies that contribute to the current understanding of the altering effects of molecular crowding as well as natural and artificial surfaces on protein amyloidogenesis.
Collapse
|
14
|
Liu F, Wang W, Sang J, Jia L, Lu F. Hydroxylated Single-Walled Carbon Nanotubes Inhibit Aβ 42 Fibrillogenesis, Disaggregate Mature Fibrils, and Protect against Aβ 42-Induced Cytotoxicity. ACS Chem Neurosci 2019; 10:588-598. [PMID: 30335950 DOI: 10.1021/acschemneuro.8b00441] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fibrillogenesis of amyloid-β protein (Aβ) is considered a crucial factor in the pathogenesis of Alzheimer's disease (AD). Hence, inhibiting Aβ fibrillogenesis is regarded as the primary therapeutic strategy for the prevention and treatment of AD. However, the development of effective inhibitors against Aβ fibrillogenesis has faced significant challenges. Previous studies have shown that pristine single-walled carbon nanotubes (SWNTs) can inhibit fibrillogenesis of some amyloid proteins. However, the poor dispersibility of SWNTs in an aqueous environment greatly hinders their inhibitory efficacy. Here, we examined the inhibitory activity of hydroxylated SWNTs (SWNT-OH) on the aggregation and cytotoxicity of Aβ42 using thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), cellular viability assays, and molecular dynamics (MD) simulations. ThT and AFM results showed that SWNT-OH inhibits Aβ42 fibrillogenesis and disaggregates preformed amyloid fibrils in a dose-dependent manner. Furthermore, the ratio of hydroxyl groups in SWNT-OH is crucial for their effect against Aβ42 aggregation. SWNT-OH exerted cytoprotective effects against Aβ42 fibrillation-induced cytotoxicity. The results of free-energy decomposition studies based on MD simulations revealed that nonpolar interactions, and especially van der Waals forces, contributed most of the free energy of binding in the SWNT-OH-Aβ complex. Two regions of the Aβ pentamer were identified to interact with SWNT-OH, spanning H13-Q15 and V36-G38. The findings presented here will contribute to a comprehensive understanding of the inhibitory effect of hydroxylated nanoparticles against Aβ fibrillogenesis, which is critical for the search for more effective agents that can counteract amyloid-mediated pathologies.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry
of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| | - Wenjuan Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Longgang Jia
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry
of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| |
Collapse
|
15
|
Melchor MH, Susana FG, Francisco GS, Hiram I B, Norma RF, Jorge A LR, Perla Y LC, Gustavo BI. Fullerenemalonates inhibit amyloid beta aggregation, in vitro and in silico evaluation. RSC Adv 2018; 8:39667-39677. [PMID: 35558050 PMCID: PMC9090717 DOI: 10.1039/c8ra07643j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022] Open
Abstract
The onset of Alzheimer's disease (AD) is associated with the presence of neurofibrillary pathology such as amyloid β (Aβ) plaques. Different therapeutic strategies have focused on the inhibition of Aβ aggregate formation; these pathological structures lead to neuronal disorder and cognitive impairment. Fullerene C60 has demonstrated the ability to interact and prevent Aβ fibril development; however, its low solubility and toxicity to cells remain significant problems. In this study, we synthesized, characterized and compared diethyl fullerenemalonates and the corresponding sodium salts, adducts of C60 bearing 1 to 3 diethyl malonyl and disodium malonyl substituents to evaluate the potential inhibitory effect on the aggregation of Aβ42 and their biocompatibility. The dose-dependent inhibitory effect of fullerenes on Aβ42 aggregation was studied using a thioflavin T fluorescent assay, and the IC50 value demonstrated a low range of fullerene concentration for inhibition, as confirmed by electron microscopy. The exposure of neuroblastoma to fullerenemalonates showed low toxicity, primarily in the presence of the sodium salt-adducts. An isomeric mixture of bisadducts, trisadducts and a C 3-symetrical trisadduct demonstrated the highest efficacy among the tests. In silico calculations were performed to complement the experimental data, obtaining a deeper understanding of the Aβ inhibitory mechanism; indicating that C 3-symetrical trisadduct interacts mainly with 1D to 16K residues of Aβ42 peptide. These data suggest that fullerenemalonates require specific substituents designed as sodium salt molecules to inhibit Aβ fibrillization and perform with low toxicity. These are promising molecules for developing future therapies involving Aβ aggregates in diseases such as AD and other types of dementia.
Collapse
Affiliation(s)
- Martínez-Herrera Melchor
- CONACYT, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Figueroa-Gerstenmaier Susana
- Department of Chemical, Electronic & Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato Loma del Bosque No.103, Lomas del Campestre León 37150 Guanajuato Mexico
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt D-64287 Darmstadt Germany
| | - García-Sierra Francisco
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Mexico City 07360 Mexico
| | - Beltrán Hiram I
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Rivera-Fernández Norma
- Department of Microbiology and Parasitology, School of Medicine, National Autonomous University of Mexico Ciudad de México 04510 Mexico
| | | | - López-Camacho Perla Y
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Basurto-Islas Gustavo
- Department of Chemical, Electronic & Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato Loma del Bosque No.103, Lomas del Campestre León 37150 Guanajuato Mexico
| |
Collapse
|
16
|
Mo Y, Brahmachari S, Lei J, Gilead S, Tang Y, Gazit E, Wei G. The Inhibitory Effect of Hydroxylated Carbon Nanotubes on the Aggregation of Human Islet Amyloid Polypeptide Revealed by a Combined Computational and Experimental Study. ACS Chem Neurosci 2018; 9:2741-2752. [PMID: 29986579 DOI: 10.1021/acschemneuro.8b00166] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibrillar deposits formed by the aggregation of the human islet amyloid polypeptide (hIAPP) are the major pathological hallmark of type 2 diabetes mellitus (T2DM). Inhibiting the aggregation of hIAPP is considered the primary therapeutic strategy for the treatment of T2DM. Hydroxylated carbon nanoparticles have received great attention in impeding amyloid protein fibrillation owing to their reduced cytotoxicity compared to the pristine ones. In this study, we investigated the influence of hydroxylated single-walled carbon nanotubes (SWCNT-OHs) on the first step of hIAPP aggregation: dimerization by performing explicit solvent replica exchange molecular dynamics (REMD) simulations. Extensive REMD simulations demonstrate that SWCNT-OHs can dramatically inhibit interpeptide β-sheet formation and completely suppress the previously reported β-hairpin amyloidogenic precursor of hIAPP. On the basis of our simulation results, we proposed that SWCNT-OH can hinder hIAPP fibrillation. This was further confirmed by our systematic turbidity measurements, thioflavin T fluorescence, circular dichroism (CD), transmission electron microscope (TEM), and atomic force microscopy (AFM) experiments. Detailed analyses of hIAPP-SWCNT-OH interactions reveal that hydrogen bonding, van der Waals, and π-stacking interactions between hIAPP and SWCNT-OH significantly weaken the inter- and intrapeptide interactions that are crucial for β-sheet formation. Our collective computational and experimental data reveal not only the inhibitory effect but also the inhibitory mechanism of SWCNT-OH against hIAPP aggregation, thus providing new clues for the development of future drug candidates against T2DM.
Collapse
Affiliation(s)
- Yuxiang Mo
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
- College of Physical Science and Technology, Guangxi Normal University, 15 Yucai Road, Guilin 541004, People’s Republic of China
| | - Sayanti Brahmachari
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jiangtao Lei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Sharon Gilead
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yiming Tang
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
17
|
Fullerene quinazolinone conjugates targeting Mycobacterium tuberculosis: a combined molecular docking, QSAR, and ONIOM approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Kraevaya OA, Peregudov AS, Martynenko VM, Troshin PA. Facile synthesis of isomerically pure fullerenols C 60 (OH) 5 Br and 1,4-C 60 (OH) 2 from chlorofullerene C 60 Cl 6. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.10.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Kalhor HR, Ashrafian H. Identification of an aspidospermine derivative from borage extract as an anti-amyloid compound: A possible link between protein aggregation and antimalarial drugs. PHYTOCHEMISTRY 2017; 140:134-140. [PMID: 28499255 DOI: 10.1016/j.phytochem.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
A number of human diseases, including Alzheimer's and Parkinson's have been linked to amyloid formation. To search for an anti-amyloidogenic product, alkaloid enriched extract from borage leaves was examined for anti-amyloidogenic activity using Hen Egg White Lysozyme (HEWL) as a model protein. After isolation of the plant extract using rHPLC, only one fraction indicated a significant bioactivity. TEM analysis confirmed a remarkable reduction of amyloid fibrils in the presence of the bioactive fraction. To identify the effective substance in the fraction, mass spectrometry, FTIR, and NMR were performed. Our analyses determined that the bioactive compound as 1-acetyl-19,21-epoxy-15,16-dimethoxyaspidospermidine-17-ol, a derivative of aspidospermine. To investigate the mechanism of the inhibition, ANS binding, intrinsic fluorescence, and amide I content were performed in the presence of the bioactive compound. All the results confirmed the role of the compound in assisting the proper folding of the protein. In addition, molecular docking indicated the aspidospermine derivative binds the amyloidogenic region of the protein. Our results show that the alkaloid extracted from borage leaves reduces protein aggregation mediating through structural elements of the protein, promoting the correct folding of lysozyme. Since a number of aspidospermine compounds have been shown to possess potent antimalarial activities, the action of compound identified in the present study suggests a possible link between protein aggregation and aspidospermine drugs.
Collapse
Affiliation(s)
- Hamid R Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Hossein Ashrafian
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Gordon R, Podolski I, Makarova E, Deev A, Mugantseva E, Khutsyan S, Sengpiel F, Murashev A, Vorobyov V. Intrahippocampal Pathways Involved in Learning/Memory Mechanisms are Affected by Intracerebral Infusions of Amyloid-β25-35 Peptide and Hydrated Fullerene C60 in Rats. J Alzheimers Dis 2017; 58:711-724. [DOI: 10.3233/jad-161182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rita Gordon
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Igor Podolski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ekaterina Makarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ekaterina Mugantseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Sergey Khutsyan
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Frank Sengpiel
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Museum Avenue, Cardiff, UK
| | - Arkady Murashev
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
21
|
Lei J, Qi R, Xie L, Xi W, Wei G. Inhibitory effect of hydrophobic fullerenes on the β-sheet-rich oligomers of a hydrophilic GNNQQNY peptide revealed by atomistic simulations. RSC Adv 2017. [DOI: 10.1039/c6ra27608c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fullerenes suppress fibril-like β-sheet oligomers by interacting strongly with the nonpolar aliphatic groups of polar residues of GNNQQNY peptide, thus inhibit peptide aggregation.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Luogang Xie
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Wenhui Xi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Department of Physics
- Fudan University
- Shanghai
| |
Collapse
|
22
|
Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E. Nanobiomaterials' applications in neurodegenerative diseases. J Biomater Appl 2016; 31:953-984. [PMID: 28178902 DOI: 10.1177/0885328216659032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier is the interface between the blood and brain, impeding the passage of most circulating cells and molecules, protecting the latter from foreign substances, and maintaining central nervous system homeostasis. However, its restrictive nature constitutes an obstacle, preventing therapeutic drugs from entering the brain. Usually, a large systemic dose is required to achieve pharmacological therapeutic levels in the brain, leading to adverse effects in the body. As a consequence, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. One such tool is nanotechnology, in which nanostructures that are 1-100 nm are designed to deliver drugs to the brain. In this review, we examine many nanotechnology-based approaches to the treatment of neurodegenerative diseases. The review begins with a brief history of nanotechnology, followed by a discussion of its definition, the properties of most reported nanomaterials, their biocompatibility, the mechanisms of cell-material interactions, and the current status of nanotechnology in treating Alzheimer's, Parkinson's diseases, and amyotrophic lateral sclerosis. Of all strategies to deliver drug to the brain that are used in nanotechnology, drug release systems are the most frequently reported.
Collapse
Affiliation(s)
- Daniela Silva Adaya
- 1 Experimental Laboratory for Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, México City, Mexico
| | - Lucinda Aguirre-Cruz
- 2 Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, México City, Mexico
| | - Jorge Guevara
- 3 Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mèxico City, Mexico
| | - Emma Ortiz-Islas
- 4 Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery, México City, Manuel Velasco Suárez, Mexico
| |
Collapse
|
23
|
Bednarikova Z, Huy PDQ, Mocanu MM, Fedunova D, Li MS, Gazova Z. Fullerenol C60(OH)16 prevents amyloid fibrillization of Aβ40-in vitro and in silico approach. Phys Chem Chem Phys 2016; 18:18855-67. [PMID: 27350395 DOI: 10.1039/c6cp00901h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of Aβ amyloid aggregates in the form of senile plaques in the brain is one of the pathological hallmarks of Alzheimer's disease (AD). There is no cure for AD and one of the recent treatment strategies is focused on the inhibition of amyloid fibrillization of Aβ peptide. Fullerene C60 has been proposed as a candidate for destroying Aβ aggregates but it is not soluble in water and its toxicity to cells remains largely ambiguous. To overcome these drawbacks, we synthesized and studied the effect of water-soluble fullerenol C60(OH)16 (fullerene C60 carrying 16 hydroxyl groups) on the amyloid fibrillization of Aβ40 peptide in vitro. Using a Thioflavin T fluorescent assay and atomic force microscopy it was found that C60(OH)16 effectively reduces the formation of amyloid fibrils. The IC50 value is in the low range (μg ml(-1)) suggesting that fullerenol interferes with Aβ40 aggregation at stoichiometric concentrations. The in silico calculations supported the experimental data. It was revealed that fullerenol tightly binds to monomer Aβ40 and polar, negatively charged amino acids play a key role. Electrostatic interactions dominantly contribute to the binding propensity via interaction of the oxygen atoms from the COO(-) groups of side chains of polar, negatively charged amino acids with the OH groups of fullerenol. This stabilizes contact with either the D23 or K28 of the salt bridge. Due to the lack of a well-defined binding pocket fullerenol is also inclined to locate near the central hydrophobic region of Aβ40 and can bind to the hydrophobic C-terminal of the peptide. Upon fullerenol binding the salt bridge becomes flexible, inhibiting Aβ aggregation. In order to assess the toxicity of fullerenol, we found that exposure of neuroblastoma SH-SY5Y cells to fullerenol caused no significant changes in viability after 24 h of treatment. These results suggest that fullerenol C60(OH)16 represents a promising candidate as a therapeutic for Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia.
| | | | | | | | | | | |
Collapse
|
24
|
Influence of water-soluble derivatives of [60]fullerene on catalytic activity of monoaminе oxidase B and their membranotropic properties. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach. PLoS One 2016; 11:e0147761. [PMID: 26829126 PMCID: PMC4735121 DOI: 10.1371/journal.pone.0147761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery.
Collapse
|
26
|
Liu Y, Xu LP, Dai W, Dong H, Wen Y, Zhang X. Graphene quantum dots for the inhibition of β amyloid aggregation. NANOSCALE 2015; 7:19060-5. [PMID: 26515666 DOI: 10.1039/c5nr06282a] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggregation of Aβ peptides is a crucial factor leading to Alzheimer's disease (AD). Inhibiting the Aβ peptide aggregation has become one of the most essential strategies to treat AD. In this work, efficient and low-cytotoxicity inhibitors, graphene quantum dots (GQDs) are reported for their application in inhibiting the aggregation of Aβ peptides. Compared to other carbon materials, the low cytotoxicity and great biocompatibility of GQDs give an advantage to the clinical research for AD. In addition, the GQDs may cross the blood-brain barrier (BBB) because of the small size. It is believed that GQDs may be therapeutic agents against AD. This work provides a novel insight into the development of Alzheimer's drugs.
Collapse
Affiliation(s)
- Yibiao Liu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P.R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Leonis G, Avramopoulos A, Papavasileiou KD, Reis H, Steinbrecher T, Papadopoulos MG. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes. J Phys Chem B 2015; 119:14971-85. [PMID: 26523956 DOI: 10.1021/acs.jpcb.5b05998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human serum albumin (HSA) is the most abundant blood plasma protein, which transports fatty acids, hormones, and drugs. We consider nanoparticle-HSA interactions by investigating the binding of HSA with three fullerene analogs. Long MD simulations, quantum mechanical (fragment molecular orbital, energy decomposition analysis, atoms-in-molecules), and free energy methods elucidated the binding mechanism in these complexes. Such a systematic study is valuable due to the lack of comprehensive theoretical approaches to date. The main elements of the mechanism include the following: binding to IIA site results in allosteric modulation of the IIIA and heme binding sites with an increase in α-helical structure of IIIA. Fullerenes displayed high binding affinities for HSA; therefore, HSA can be used as a fullerene carrier, facilitating any toxic function the fullerene may exert. Complex formation is driven by hydrogen bonding, van der Waals, nonpolar, charge transfer, and dispersion energy contributions. Proper functionalization of C60 has enhanced its binding to HSA by more than an order of magnitude. This feature may be important for biological applications (e.g., photodynamic therapy of cancer). Satisfactory agreement with relevant experimental and theoretical data has been obtained.
Collapse
Affiliation(s)
- Georgios Leonis
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Aggelos Avramopoulos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Konstantinos D Papavasileiou
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Heribert Reis
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Thomas Steinbrecher
- Institut für Physikalische Chemie, KIT , Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Manthos G Papadopoulos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Ave., Athens 11635, Greece
| |
Collapse
|
28
|
Bobylev AG, Shatalin YV, Vikhlyantsev IM, Bobyleva LG, Gudkov SV, Podlubnaya ZA. Interaction of C60 fullerene-polyvinylpyrrolidone complex and brain Aβ(1–42)-peptide in vitro. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment. NANOSCALE 2014; 6:9752-62. [PMID: 25004796 DOI: 10.1039/c4nr01005a] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease.
Collapse
Affiliation(s)
- Luogang Xie
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education) and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | | | | | | | | | | |
Collapse
|
30
|
Huy PDQ, Li MS. Binding of fullerenes to amyloid beta fibrils: size matters. Phys Chem Chem Phys 2014; 16:20030-40. [DOI: 10.1039/c4cp02348j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Luo J, Wärmländer SKTS, Yu CH, Muhammad K, Gräslund A, Pieter Abrahams J. The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes. NANOSCALE 2014; 6:6720-6726. [PMID: 24820873 DOI: 10.1039/c4nr00291a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Carbon nanotubes have specific properties that make them potentially useful in biomedicine and biotechnology. However, carbon nanotubes may themselves be toxic, making it imperative to understand how carbon nanotubes interact with biomolecules such as proteins. Here, we used NMR, CD, and ThT/fluorescence spectroscopy together with AFM imaging to study pH-dependent molecular interactions between single walled carbon nanotubes (SWNTs) and the amyloid-beta (Aβ) peptide. The aggregation of the Aβ peptide, first into oligomers and later into amyloid fibrils, is considered to be the toxic mechanism behind Alzheimer's disease. We found that SWNTs direct the Aβ peptides to form a new class of β-sheet-rich yet non-amyloid fibrils.
Collapse
Affiliation(s)
- Jinghui Luo
- Gorlaeus Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Antimisiaris S, Mourtas S, Markoutsa E, Skouras A, Papadia K. Nanoparticles for Diagnosis and/or Treatment of Alzheimer's Disease. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Bobylev AG, Bobyleva LG, Vikhlyantsev IM, Ulanova AD, Salmov NN, Podlubnaya ZA. Comparative studies of amyloid properties of muscles proteins and brain Aβ-peptides and identification of approaches to destruction of their amyloids in vitro. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350913060055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
35
|
Kotelnikova RA, Smolina AV, Grigoryev VV, Faingold II, Mischenko DV, Rybkin AY, Poletayeva DA, Vankin GI, Zamoyskiy VL, Voronov II, Troshin PA, Kotelnikov AI, Bachurin SO. Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00194j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water soluble fullerene derivatives I and II were shown to behave as promising neuroprotective agents that improve cognitive functioning in animals.
Collapse
Affiliation(s)
| | | | - V. V. Grigoryev
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| | | | | | | | | | - G. I. Vankin
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| | - V. L. Zamoyskiy
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| | | | | | | | - S. O. Bachurin
- Institute of Physiologically Active Compounds of Russian Academy of Sciences
- Chernogolovka
- Russia
| |
Collapse
|
36
|
Effects of Water-Soluble Polysubstituted Fullerene Derivatives on Sarcoplasmic Reticulum Ca2+-ATPase and Cyclic Guanosine Monophosphate Phosphodiesterase Activities. Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0969-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Rybachuk O, Levin R, Кyryk V, Susarova D, Tsupykov O, Smozhanik E, Butenko G, Skibo G, Troshin P, Pivneva T. Effect of a water soluble derivative of fullerene C60 on the features neural progenitor cells in vitro. ACTA ACUST UNITED AC 2013. [DOI: 10.22494/cot.v1i1.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We studied the effect of a water soluble derivative of fullerene C60 on the behavior of cultured neural stem/progenitor cells. Addition of 20 nM of metal fullerenolate C60 (NaFL) into the cell culture increased the population of the cells almost twice in comparison with the control and also suppressed the formation of neurospheres. The obtained data allow us to suggest that NaFL has a positive effect on the proliferative activity of neural progenitors. The water-soluble fullerene nanostructures such as NaFL promoting the proliferation of neural stem cells might have numerous beneficent applications in cell biology and biotechnology.
Collapse
|
38
|
Zhang M, Mao X, Yu Y, Wang CX, Yang YL, Wang C. Nanomaterials for reducing amyloid cytotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3780-801. [PMID: 23722464 DOI: 10.1002/adma.201301210] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 05/20/2023]
Abstract
This review is intended to reflect the recent progress on therapeutic applications of nanomaterials in amyloid diseases. The progress on anti-amyloid functions of various nanomaterials including inorganic nanoparticles, polymeric nanoparticles, carbon nanomaterials and biomolecular aggregates, is reviewed and discussed. The main functionalization strategies for general nanoparticle modifications are reviewed for potential applications of targeted therapeutics. The interaction mechanisms between amyloid peptides and nanomaterials are discussed from the perspectives of dominant interactions and kinetics. The encapsulation of anti-amyloid drugs, targeted drug delivery, controlled drug release and drug delivery crossing blood brain barrier by application of nanomaterials would also improve the therapeutics of amyloid diseases.
Collapse
Affiliation(s)
- Min Zhang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
39
|
Li C, Mezzenga R. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. NANOSCALE 2013; 5:6207-6218. [PMID: 23744243 DOI: 10.1039/c3nr01644g] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent advances in bio-nanotechnology have not only rapidly broadened the applications and scope of hybrid nanomaterials in biological fields, but also greatly enriched the examples of ordered materials based on supramolecular self-assembly. Among eminent examples of functional nanostructured materials of undisputed impact in nanotechnology and biological environments, carbon nanomaterials (such as fullerenes, carbon nanotubes and graphene) and amyloid fibrils have attracted great attention because of their unique architectures and exceptional physical properties. Nonetheless, combination of these two classes of nanomaterials into functional hybrids is far from trivial. For example, the presence of carbon nanomaterials can offer either an inhibitory effect or promotion of amyloid fibrillation, depending on the structural architectures of carbon nanomaterials and the starting amyloid proteins/peptides considered. To date, numerous studies have been devoted to evaluating both the biological toxicity of carbon nanomaterials and their use in developing therapies for amyloidosis. At the same time, hybridization of these two classes of nanomaterials offers new possibilities for combining some of their desirable properties into nanocomposites of possible use in electronics, actuators, sensing, biomedicine and structural materials. This review describes recent developments in the hybridization of carbon nanomaterials and amyloid fibrils and discusses the current state of the art on the application of carbon nanomaterial-amyloid fibril hybrids in bio-nanotechnology.
Collapse
Affiliation(s)
- Chaoxu Li
- ETH Zurich, Food & Soft Materials, Department of Health Science & Technology, Zurich, Switzerland
| | | |
Collapse
|
40
|
Silion M, Dascalu A, Pinteala M, Simionescu BC, Ungurenasu C. A study on electrospray mass spectrometry of fullerenol C60(OH)24. Beilstein J Org Chem 2013; 9:1285-95. [PMID: 23843924 PMCID: PMC3701416 DOI: 10.3762/bjoc.9.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/31/2013] [Indexed: 11/23/2022] Open
Abstract
Full characterization of fullerenol C60(OH)24 by HPLC ESI-MS in negative and positive ionization modes was achieved. Fragmentor voltage and capillary voltage were optimized in order to obtain a good signal stability and the best peak intensity distribution for the fullerenol C60(OH)24 in both negative and positive modes. While the predominant base peak observed for C60(OH)24 in the negative ionization mode was [M − H]− at m/z 1127, those observed in the positive mode were multiply charged [M − H2O + 4H]4+ at m/z 279 and [M − 12H2O + 2NH3 + 6H]6+ at m/z 158.
Collapse
Affiliation(s)
- Mihaela Silion
- Petru Poni Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania
| | | | | | | | | |
Collapse
|
41
|
Patel MB, Harikrishnan U, Valand NN, Modi NR, Menon SK. Novel Cationic Quinazolin-4(3H)-one Conjugated Fullerene Nanoparticles as Antimycobacterial and Antimicrobial Agents. Arch Pharm (Weinheim) 2013; 346:210-20. [DOI: 10.1002/ardp.201200371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/06/2022]
|
42
|
Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH. Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 2013; 1:401-428. [DOI: 10.1039/c2tb00085g] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Bobylev AG, Okuneva AD, Bobyleva LG, Fadeeva IS, Fadeev RS, Salmov NN, Podlubnaya ZA. Study of cytotoxicity of fullerene C60 derivatives. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912050041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Bobylev AG, Shpagina MD, Bobyleva LG, Okuneva AD, Piotrovsky LB, Podlubnaya ZA. Antiamyloid properties of fullerene C60 derivatives. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912030050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials 2012; 33:4936-46. [DOI: 10.1016/j.biomaterials.2012.03.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/10/2012] [Indexed: 01/18/2023]
|
46
|
|