1
|
Guan PC, Qi QJ, Wang YQ, Lin JS, Zhang YJ, Li JF. Development of a 3D Hydrogel SERS Chip for Noninvasive, Real-Time pH and Glucose Monitoring in Sweat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48139-48146. [PMID: 39197856 DOI: 10.1021/acsami.4c10817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Traditional diagnostic methods, such as blood tests, are invasive and time-consuming, while sweat biomarkers offer a rapid physiological assessment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention in sweat analysis because of its high sensitivity, label-free nature, and nondestructive properties. However, challenges related to substrate reproducibility and interference from the biological matrix persist with SERS. This study developed a novel ratio-based 3D hydrogel SERS chip, providing a noninvasive solution for real-time monitoring of pH and glucose levels in sweat. Encapsulating the probe molecule (4-MBN) in nanoscale gaps to form gold nanoflower-like nanotags with internal standards and integrating them into an agarose hydrogel to create a 3D flexible SERS substrate significantly enhances the reproducibility and stability of sweat analysis. Gap-Au nanopetals modified with probe molecules are uniformly dispersed throughout the porous hydrogel structure, facilitating the effective detection of the pH and glucose in sweat. The 3D hydrogel SERS chip demonstrates a strong linear relationship in pH and glucose detection, with a pH response range of 5.5-8.0 and a glucose detection range of 0.01-5 mM, with R2 values of 0.9973 and 0.9923, respectively. In actual sweat samples, the maximum error in pH detection accuracy is only 1.13%, with a lower glucose detection limit of 0.25 mM. This study suggests that the ratio-based 3D hydrogel SERS chip provides convenient, reliable, and rapid detection capabilities with substantial application potential for analyzing body fluid pH and glucose.
Collapse
Affiliation(s)
- Peng-Cheng Guan
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian-Jiao Qi
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Qing Wang
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Sheng Lin
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China
| |
Collapse
|
2
|
Ghosh R, Li X, Yates MZ. Nonenzymatic Glucose Sensor Using Bimetallic Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17-29. [PMID: 38118131 PMCID: PMC10788829 DOI: 10.1021/acsami.3c10167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Bimetallic glucose oxidation electrocatalysts were synthesized by two electrochemical reduction reactions carried out in series onto a titanium electrode. Nickel was deposited in the first synthesis stage followed by either silver or copper in the second stage to form Ag@Ni and Cu@Ni bimetallic structures. The chemical composition, crystal structure, and morphology of the resulting metal coating of the titanium electrode were investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. The electrocatalytic performance of the coated titanium electrodes toward glucose oxidation was probed using cyclic voltammetry and amperometry. It was found that the unique high surface area bimetallic structures have superior electrocatalytic activity compared to nickel alone. The resulting catalyst-coated titanium electrode served as a nonenzymatic glucose sensor with high sensitivity and low limit of detection for glucose. The Cu@Ni catalyst enables accurate measurement of glucose over the concentration range of 0.2-12 mM, which includes the full normal human blood glucose range, with the maximum level extending high enough to encompass warning levels for prediabetic and diabetic conditions. The sensors were also found to perform well in the presence of several chemical compounds found in human blood known to interfere with nonenzymatic sensors.
Collapse
Affiliation(s)
- Rashmi Ghosh
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Xiao Li
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Z. Yates
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Mishra PM, Devi AP. Current scenario on biogenic synthesis of metal oxide nanocomposites using plant specimens and their application towards treatment of wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108512-108524. [PMID: 37775638 DOI: 10.1007/s11356-023-29989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Various industries such as textile, leather, and paper mills discharge huge amount of industrial effluents to the environment containing unconsumed dyes and toxic heavy metal ions which are very harmful and carcinogenic in nature. The increase in water pollution is adversely impacting the ecosystems and human health. Now, it has become a great challenge to treat the contaminated water/wastewater. Photocatalysis and adsorption are the two techniques gaining significant attention for the removal of toxic pollutants from wastewater effectively. In this regard, metal oxide-based nanomaterials and their composites have gained profound attention in photocatalytic degradation as well as adsorptive removal of toxic pollutants from water due to their chemical reactivity, higher surface area, regeneration efficiency, ample adsorption sites, intriguing photocatalytic activity, and cost-effectiveness. However, the conventional methods, employed to synthesize these metal oxide nanocomposites, involve the use of toxic chemicals which again produce secondary pollutants. Among all biological materials, the use of plant biomolecules is found to be the most effective way to synthesize stable nanomaterials, as the phytoconstituents of plants act as reducing, capping, and stabilizing agent. It is experimentally proved that bio-based nanocomposites have tremendous potential towards the degradation of environmental pollutants. Thus, there is a great need to work on the synthesis of some novel plant-based metal oxide nanocomposites and their applications in the field of water treatment. This review mainly discusses the metal oxide nanocomposites synthesized using plant specimens and their various applications towards treatment of water/wastewater.
Collapse
Affiliation(s)
- Pravat Manjari Mishra
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India.
| | - Aparna Prabha Devi
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| |
Collapse
|
4
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Zhang X, Liu Y, Yang J. Multi-dimensional plasmonic coupling system for efficient enrichment and ultrasensitive label-free SERS detection of bilirubin based on graphene oxide-Au nanostars and Au@Ag nanoparticles. J Colloid Interface Sci 2023; 646:872-882. [PMID: 37235933 DOI: 10.1016/j.jcis.2023.05.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Rapid and sensitive detection of free bilirubin (BR) is essential for early diagnosis of jaundice and other hepatobiliary diseases. Inspired by sandwich immunoassay strategy, a multi-dimensional plasmonic coupling SERS platform composed of graphene oxide-Au nanostars nanocomposites (GANS NCs) and Au@Ag nanoparticles (NPs) was designed for label-free detection of BR. Specifically, GANS NCs were first prepared, and their excellent SERS activity was ascribed to synergistic enhancement effect of electromagnetic enhancement and chemical enhancement. Furthermore, SERS spectroscopy was used to monitor the adsorption process of BR. Subsequently, secondary reinforcing Au@Ag NPs were directly added, ultimately resulting in a multi-dimensional plasmonic coupling effect. The SERS enhancing mechanism of coupled system was discussed through electromagnetic field simulations. Interestingly, the high-density hotspots generated by strong plasmonic coupling in GANS-Au@Ag substrate could lead to more extraordinary SERS enhancing behavior compared to GANS NCs. Sensing efficiency of the SERS platform was examined by BR with a detection limit down to 10-11 M. Besides, GANS-Au@Ag NCs performed high uniformity and reproducibility. This work not only opens up a new avenue for construction of multi-dimensional plasmonic coupling system, but also offers a new biosensing technology for label-free diagnosis of BR-related diseases, thereby expecting to be applied in clinical diagnosis.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, PR China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
5
|
Jatav H, Shabaninezhad M, Mičetić M, Chakravorty A, Mishra A, Schwartzkopf M, Chumakov A, Roth SV, Kabiraj D. A Combinatorial Study Investigating the Growth of Ultrasmall Embedded Silver Nanoparticles upon Thermal Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11983-11993. [PMID: 36150131 DOI: 10.1021/acs.langmuir.2c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasmall nanoparticles (NPs) with a high active surface area are essential for optoelectronic and photovoltaic applications. However, the structural stability and sustainability of these ultrasmall NPs at higher temperatures remain a critical problem. Here, we have synthesized the nanocomposites (NCs) of Ag NPs inside the silica matrix using the atom beam co-sputtering technique. The post-deposition growth of the embedded Ag NPs is systematically investigated at a wide range of annealing temperatures (ATs). A novel, fast, and effective procedure, correlating the experimental (UV-vis absorption results) and theoretical (quantum mechanical modeling, QMM) results, is used to estimate the size of NPs. The QMM-based simulation, employed for this work, is found to be more accurate in reproducing the absorption spectra over the classical/modified Drude model, which fails to predict the expected shift in the LSPR for ultrasmall NPs. Unlike the classical Drude model, the QMM incorporates the intraband transition of the conduction band electrons to calculate the effective dielectric function of metallic NCs, which is the major contribution of LSPR shifts for ultrasmall NPs. In this framework, a direct comparison is made between experimentally and theoretically observed LSPR peak positions, and it is observed that the size of NPs grows from 3 to 18 nm as AT increases from room temperature to 900 °C. Further, in situ grazing-incidence small- & wide-angle X-ray scattering and transmission electron microscopy measurements are employed to comprehend the growth of Ag NPs and validate the UV + QMM results. We demonstrate that, unlike chemically grown NPs, the embedded Ag NPs ensure greater stability in size and remain in an ultrasmall regime up to 800 °C, and beyond this temperature, the size of NPs increases exponentially due to dominant Ostwald ripening. Finally, a three-stage mechanism is discussed to understand the process of nucleation and growth of the silica-embedded Ag NPs.
Collapse
Affiliation(s)
- Hemant Jatav
- Materials science department, Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Masoud Shabaninezhad
- Department of Physics, Western Michigan University, Kalamazoo, Michigan, 49008, United States
| | - Maja Mičetić
- Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | - Anusmita Chakravorty
- Materials science department, Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ambuj Mishra
- Materials science department, Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Andrei Chumakov
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Debdulal Kabiraj
- Materials science department, Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Li Z, Soroka IL, Tarakina NV, Sabatino MA, Muscolino E, Walo M, Jonsson M, Dispenza C. Inorganic/organic hybrid nanoparticles synthesized in a two-step radiation-driven process. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Highly Sensitive, Cost‐Effective, and Flexible SERS Substrate Based on Green Synthesized GO/rGO for Pesticide Detection**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. CRYSTALS 2022. [DOI: 10.3390/cryst12030389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, silver nanoparticles decorated on reduced graphene oxide (rGO) wrapped manganese oxide nanorods (Ag-rGO@MnO2) were synthesized for an active electrode material. MnO2 nanorods were synthesized via a hydrothermal route, and their coating with GO and subsequent reduction at a higher temperature resulted in rGO@MnO2. A further addition of Ag on rGO@MnO2 was performed by dispersing rGO@MnO2 in AgNO3 solution and its subsequent reduction by NaBH4. X-ray diffraction (XRD) analysis showed peaks corresponding to MnO2 and Ag, and the absence of a peak at 2θ = 26° confirmed a few layered coatings of rGO and the absence of any graphitic impurities. Morphological analysis showed Ag nanoparticles anchored on rGO coated MnO2 nanorods. Apart from this, all other characterization techniques also confirmed the successful fabrication of Ag-rGO@MnO2. The electrochemical performance examined by cyclic voltammetry and the galvanic charge–discharge technique showed that Ag-rGO@MnO2 has a superior capacitive value (675 Fg−1) as compared to the specific capacitance value of rGO@MnO2 (306.25 Fg−1) and MnO2 (293.75 Fg−1). Furthermore, the electrode based on Ag-rGO@MnO2 nanocomposite showed an excellent capacity retention of 95% after 3000 cycles. The above results showed that Ag-rGO@MnO2 nanocomposites can be considered an active electrode material for future applications in electrochemical devices.
Collapse
|
9
|
Mu M, Wen S, Hu S, Zhao B, Song W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: methods, materials and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Šimonová Z, Krbečková V, Vilamová Z, Dobročka E, Klejdus B, Cieslar M, Svoboda L, Bednář J, Dvorský R, Seidlerová J. The Effects of Nature-Inspired Synthesis on Silver Nanoparticle Generation. ACS OMEGA 2022; 7:4850-4858. [PMID: 35187305 PMCID: PMC8851446 DOI: 10.1021/acsomega.1c05308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A wide range of methods can be used for nature-inspired metallic nanoparticle (NP) synthesis. These syntheses, however, are ongoing in the presence of diverse mixtures of different chemical compounds, and all or only a few of these contribute to resultant particle properties. Herein, the linden (Tilia sp.) inflorescence leachate and pure citric and protocatechuic acids were chosen for Ag-AgCl nanoparticle (NP) synthesis, and the resultant particles were then compared. We focused on the following four issues: (1) preparation of Ag-AgCl NPs using the Tilia sp.-based phytosynthetic protocol, (2) analytical determination of the common phenolic, nonphenolic, and inorganic profiles of three Tilia sp. types from different harvesting locations, (3) preparation of Ag-AgCl NPs using a mixture of citric and protocatechuic acids based on chromatographic evaluation, and (4) comparison of Tilia-based and organic acid-based syntheses. Our research confirms that the Tilia organic and inorganic profiles in biomasses are influenced by the harvesting location, and the three sites influenced both the morphology and final NP size. Our processing method was uniform, and this enabled great Ag-AgCl NP reproducibility for each specific biomass. We were then able to prove that the simplified organic acid-based synthesis produced even smaller NPs than Tilia-based synthesis. These findings provide better understanding of the significant influence on NP final properties resulting from other organic acids contained in the linden.
Collapse
Affiliation(s)
- Zuzana Šimonová
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- ENET
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- Department
of Machining, Assembly and Engineering Metrology, Faculty of Mechanical
Engineering, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
| | - Veronika Krbečková
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
ASCR, Šlechtitelů
27, Olomouc 783 71, Czech Republic
| | - Zuzana Vilamová
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
| | - Edmund Dobročka
- Institute
of Electrical Engineering, Slovak Academy
of Sciences, Dúbravská cesta 9, Bratislava 841 04, Slovak Republic
| | - Bořivoj Klejdus
- Department
of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno 613 00, Czech
Republic
| | - Miroslav Cieslar
- Department
of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121 16, Czech Republic
| | - Ladislav Svoboda
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- IT4Innovations, VSB−Technical University
of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| | - Jiří Bednář
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- IT4Innovations, VSB−Technical University
of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| | - Richard Dvorský
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- IT4Innovations, VSB−Technical University
of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| | - Jana Seidlerová
- Nanotechnology
Centre, CEET, VSB−Technical University
of Ostrava, 17. listopadu 15/2172, Ostrava 708 00, Czech Republic
- Department
of Physical Chemistry and Theory of Technological Processes, Faculty
of Materials Science and Technology, VSB−Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava 708 00, Czech Republic
| |
Collapse
|
11
|
Ali HM, Alhagri IA, Ibrahim H. Fabrication of an electrochemical sensor based on gold nanoparticle-functionalized nanocarbon black hybrid nanocomposite for sensitive detection of anti-cancer drug formestane in biological and pharmaceutical samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, Danquah MK, Rodrigues J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:809-831. [PMID: 35070207 PMCID: PMC8760111 DOI: 10.1007/s40097-021-00465-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | | | - Yiik Siang Hii
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Caleb Acquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403 USA
| | - Michael K. Danquah
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an, 710072 China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
13
|
Temesgen NT, Tegegne WA, Shitaw KN, Fenta FW, Nikodimos Y, Taklu BW, Jiang SK, Huang CJ, Wu SH, Su WN, Hwang BJ. Mitigating dendrite formation and electrolyte decomposition via functional double layers coating on copper current collector in anode-free lithium metal battery. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Singh J, Soni R. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Mahouche-Chergui S, Oun A, Haddadou I, Hoyez C, Michely L, Ouellet-Plamondon C, Carbonnier B. Efficient and Recyclable Heterogeneous Catalyst Based on PdNPs Stabilized on a Green-Synthesized Graphene-like Nanomaterial: Effect of Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44673-44685. [PMID: 34506108 DOI: 10.1021/acsami.1c07540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports for the first time a straightforward and efficient approach to covalent surface functionalization of a sustainable graphene-like nanomaterial with abundant carboxylic acid groups. This approach results in an efficient and robust chelatant platform for anchoring highly dispersed ultrasmall palladium particles with excellent catalytic activity in the reduction of both cationic (methylene blue, MB) and anionic (eosin-Y, Eo-Y) toxic organic dyes. The large-specific-surface-area (SBET = 266.94 m2/g) graphene-like nanomaterial (GHN) was prepared through a green and cost-effective pyrolysis process from saccharose using layered bentonite clay as a template. To introduce a high density of carboxylic acid functions, GHN was first doubly functionalized by successive grafting reaction using two different strategies: (i) in the first case, GHN was first grafted by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and then bifunctionalized by chemical grafting of tris(4-hydroxyphenyl)methane triglycidyl ether (TGE). In the second case, the grafting order of the two molecules has been reversed. GHN-GPTMS-TGE provided the highest number of grafted reactive epoxy groups, and it was selected for further functionalization with carboxylic acid functions via a ring-opening reaction through a two-step hydrolysis (H2SO4)/oxidation (KMnO4) approach. The GHN nanomaterial bearing carboxylic acid groups was then treated with sodium hydroxide to produce a deprotonated carboxylic acid-rich platform. Finally, due to a high density of accessible chelatant carboxylic acid groups, GHN-COO- binds strongly a great amount of Pd2+ ions to form stable complexes which after reduction by NaBH4 leads to highly dispersed, densely anchored, and uniformly distributed nanoscale Pd particles (d ∼ 4.5 nm) on the surface of the functionalized GHN. The GHN-COO-@PdNPs nanohybrid proved to be highly efficient for dye reduction by NaBH4 in aqueous solution at room temperature. Moreover, because of the high stability of the as-prepared graphene-like supported PdNPs, it exhibited very good reusability and could be recycled up to eight times without any significant loss in activity.
Collapse
Affiliation(s)
| | - Abdallah Oun
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Imane Haddadou
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Clémentine Hoyez
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Laurent Michely
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | - Claudiane Ouellet-Plamondon
- Construction Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| |
Collapse
|
17
|
Fan X, Zhang H, Zhao X, Lv K, Zhu T, Xia Y, Yang C, Bai C. Three-dimensional SERS sensor based on the sandwiched G@AgNPs@G/PDMS film. Talanta 2021; 233:122481. [PMID: 34215109 DOI: 10.1016/j.talanta.2021.122481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) SERS substrate with the denser "hotspots" is synthesized by the constriction of PDMS film decorated with sandwiched graphene@AgNPs@graphene (G@AgNPs@G) nanostructure. Graphene layers above and below the AgNPs are used to absorb molecules onto the "hotspots", and prevent the oxidation of AgNPs in our design. PDMS films can be easily shrunk for 3D structures, causing advantages in enhancement ability and light-matter interaction. Benefiting from the above advantages, a detection limit of 10-14 M (CV) and enhancement factor (EF) of 3.9 × 109 were obtained in our experiment. Theoretical analyses (FDTD) were also used to study the enhancement mechanism. For practical purposes, in-situ detection of MG molecules on the fish surface and the label-free detection of DNA base of adenine (A) and cytosine (C) were also studied. The high enhancement factor, great sensitivity, reliability, and stability of substrate reasonably proved that it can be used as an excellent SERS substrate for biomolecular detection.
Collapse
Affiliation(s)
- Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Hao Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS) Center for Condensed Matter Physics Department of Physics, Capital Normal University, Beijing, 100048, China
| | - XinRu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Ke Lv
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Tiying Zhu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Yaping Xia
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Chengjie Bai
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
18
|
Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker. Talanta 2021; 225:121963. [DOI: 10.1016/j.talanta.2020.121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
|
19
|
Wang L, Liu Y, Yang R, Li J, Qu L. AgNPs–PDA–GR nanocomposites-based molecularly imprinted electrochemical sensor for highly recognition of 2,4,6-trichlorophenol. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Liu L, Hou S, Zhao X, Liu C, Li Z, Li C, Xu S, Wang G, Yu J, Zhang C, Man B. Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism-Electromagnetic Mechanism Unit. NANOMATERIALS 2020; 10:nano10122371. [PMID: 33260554 PMCID: PMC7760367 DOI: 10.3390/nano10122371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Graphene–metal substrates have received widespread attention due to their superior surface-enhanced Raman scattering (SERS) performance. The strong coupling between graphene and metal particles can greatly improve the SERS performance and thus broaden the application fields. The way in which to make full use of the synergistic effect of the hybrid is still a key issue to improve SERS activity and stability. Here, we used graphene as a chemical mechanism (CM) layer and Ag nanoparticles (AgNPs) as an electromagnetic mechanism (EM) layer, forming a CM–EM unit and constructing a multi-layer hybrid structure as a SERS substrate. The improved SERS performance of the multilayer nanostructure was investigated experimentally and in theory. We demonstrated that the Raman enhancement effect increased as the number of CM–EM units increased, remaining nearly unchanged when the CM–EM unit was more than four. The limit of detection was down to 10−14 M for rhodamine 6G (R6G) and 10−12 M for crystal violet (CV), which confirmed the ultrahigh sensitivity of the multilayer SERS substrate. Furthermore, we investigated the reproducibility and thermal stability of the proposed multilayer SERS substrate. On the basis of these promising results, the development of new materials and novel methods for high performance sensing and biosensing applications will be promoted.
Collapse
Affiliation(s)
- Lu Liu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Shuting Hou
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Xiaofei Zhao
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chundong Liu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Zhen Li
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chonghui Li
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Guilin Wang
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Jing Yu
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
| | - Chao Zhang
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Correspondence: (C.Z.); (B.M.)
| | - Baoyuan Man
- Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China; (L.L.); (S.H.); (X.Z.); (C.L.); (Z.L.); (C.L.); (G.W.); (J.Y.)
- Correspondence: (C.Z.); (B.M.)
| |
Collapse
|
21
|
High-performance SERS detection of pesticides using BiOCl-BiOBr@Pt/Au hybrid nanostructures on styrofoams as 3D functional substrate. Mikrochim Acta 2020; 187:580. [DOI: 10.1007/s00604-020-04558-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
|
22
|
Electrochemical Sodium Ion Sensor Based on Silver Nanoparticles/Graphene Oxide Nanocomposite for Food Application. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High sodium ion (Na+) consumption leads to high blood pressure which causes many health issues. Real-time determination of Na+ content in food is still important to limit Na+ intake and control the taste of food. In this work, we have developed an electrochemical sensor based on agglomeration of silver nanoparticles (AgNPs) and graphene oxide (GO) modified on a screen-printed silver electrode (SPE) for Na+ detection at room temperature by using cyclic voltammetry (CV). The AgNPs were synthesized through a simple green route using Pistia stratiotes extract as a reducing agent under blue light illumination and mixed with the GO to be a Na+ selective sensing nanocomposite. The AgNPs/GO/SPE sensor showed high sensitivity (0.269 mA/mM/cm2), high selectivity, linear relationship (0–100 mM), good stability, and excellent reproducibility to Na+ detection as well as low limit of detection (9.344 mM) for food application. The interfering species such as K+, Zn2+, Na+, Mg2+, glucose, and ascorbic acid did not have any influence on the Na+ determination. The AgNPs/GO/SPE sensor was successfully applied to determine Na+ in real samples such as fish sauce and seasoning powder of instant noodle.
Collapse
|
23
|
A Highly Sensitive and Selective Electrochemical Sensor for Pentachlorophenol Based on Reduced Graphite Oxide-Silver Nanocomposites. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01823-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Gul U, Kanwal S, Tabassum S, Gilani MA, Rahim A. Microwave-assisted synthesis of carbon dots as reductant and stabilizer for silver nanoparticles with enhanced-peroxidase like activity for colorimetric determination of hydrogen peroxide and glucose. Mikrochim Acta 2020; 187:135. [DOI: 10.1007/s00604-019-4098-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/26/2019] [Indexed: 11/30/2022]
|
25
|
Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun (Camb) 2020; 56:14553-14569. [DOI: 10.1039/d0cc05650b] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the development of electrocatalysts for non-enzymatic glucose detection. The sensing mechanism and influencing factors are discussed, and the perspectives and challenges are also addressed.
Collapse
Affiliation(s)
- Ming Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haitao Zhao
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
26
|
Che S, Behura SK, Berry V. Photo-organometallic, Nanoparticle Nucleation on Graphene for Cascaded Doping. ACS NANO 2019; 13:12929-12938. [PMID: 31609585 DOI: 10.1021/acsnano.9b05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the doping levels in graphene by modifying the electric potential of interfaced nanostructures is important to understand "cascaded-doping"-based applications of graphene. However, graphene does not have active sites for nanoparticle attachment, and covalently adding functional groups on graphene disrupts its planar sp2-hybridization, affecting its cascaded doping. Here we show a hexahepto (η6) photo-organometallic chemistry to interface nanoparticles on graphene while retaining the sp2-hybridized state of carbon atoms. For testing cascaded doping with ethanol interaction, transition metal oxide nanoparticles (TMONs) (Cr2O3/CrO3, MoO3, and WO3) are attached on graphene. Here, the transition metal forms six σ-bonds and π-back-bonds with the benzenoid rings of graphene, while its opposite face binds to three carbonyl groups, which enable nucleation and growth of TMONs. With a radius size ranging from 50 to 100 nm, the TMONs downshift the Fermi level of graphene (-250 mV; p-doping) via interfacial charge transfer. This is consistent with the blue shift of graphene's G and 2D Raman modes with a hole density of 3.78 × 1012 cm-2. With susceptibility to ethanol, CrxO3 nanoparticles on graphene enable cascaded doping from ethanol that adsorbs on CrxO3, leading to doping of graphene to increase the electrical resistance of the TMONs-graphene hybrid. This nanoparticle-on-graphene construct can have several applications in gas/vapor sensing, electrochemical catalysis, and high-energy-density supercapacitors.
Collapse
Affiliation(s)
- Songwei Che
- Department of Chemical Engineering , University of Illinois at Chicago , 945 W. Taylor Street , Chicago , Illinois 60607 , United States
| | - Sanjay K Behura
- Department of Chemical Engineering , University of Illinois at Chicago , 945 W. Taylor Street , Chicago , Illinois 60607 , United States
| | - Vikas Berry
- Department of Chemical Engineering , University of Illinois at Chicago , 945 W. Taylor Street , Chicago , Illinois 60607 , United States
| |
Collapse
|
27
|
Zhong Y, Yu X, Fu W, Chen Y, Shan G, Liu Y. Colorimetric and Raman spectroscopic array for detection of hydrogen peroxide and glucose based on etching the silver shell of Au@Ag core-shell nanoparticles. Mikrochim Acta 2019; 186:802. [DOI: 10.1007/s00604-019-3991-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/28/2019] [Indexed: 01/25/2023]
|
28
|
Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019; 271:101991. [PMID: 31376639 DOI: 10.1016/j.cis.2019.101991] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
The exceptional electrical, thermal, optical and mechanical properties have made two dimensional sp2 hybridized graphene a material of choice in both academic as well as industrial research. In the last few years, researchers have devoted their efforts towards the development of graphene/polymer, graphene/metal nanoparticle and graphene/ceramic nanocomposites. These materials display excellent mechanical, electrical, thermal, catalytic, magnetic and optical properties which cannot be obtained separately from the individual components. Fascinating physical and chemical properties are displayed by noble metal nanomaterials and thus they represent model building blocks for modifying nanoscale structures for diverse applications extending from catalysis, optics to nanomedicine. Insertion of noble metal (Au, Ag) nanoparticles (NPs) into chemically derived graphene is thus of primary importance to open new avenues for both materials in various fields where the specific properties of each material act synergistically to provide hybrid materials with exceptional performances. This review attempts to summarize the different synthetic procedures for the preparation of Ag and Au NPs/reduced graphene oxide (rGO) composites. The synthesis processes of metal NPs/rGO composites are categorised into in-situ and ex-situ techniques. The in-situ approach consists of simultaneous reduction of metal salts and GO to obtain metal NPs/rGO nanocomposite materials, while in the ex-situ process, the metal NPs of desired size and shape are first synthesized and then transferred onto the GO or rGO matrix. The application of the Ag NPs and Au NPs/rGO composite materials in the area of biomedical (drug delivery and photothermal therapy) and biosensing are the focus of this review article.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India.
| | - Surya P Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aravind K Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
29
|
Synthesis of Graphene-based Materials for Surface-Enhanced Raman Scattering Applications. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2019. [DOI: 10.1380/ejssnt.2019.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Amperometric H2O2 sensor based on gold nanoparticles/poly (celestine blue) nanohybrid film. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0651-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Lee YC, Chiu CW. Immobilization and 3D Hot-Junction Formation of Gold Nanoparticles on Two-Dimensional Silicate Nanoplatelets as Substrates for High-Efficiency Surface-Enhanced Raman Scattering Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E324. [PMID: 30823691 PMCID: PMC6473534 DOI: 10.3390/nano9030324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/23/2022]
Abstract
We synthesize a high-efficiency substrate for surface-enhanced Raman scattering (SERS) measurements, which is composed of gold nanoparticles (AuNPs) on two-dimensional silicate nanoplatelets acting as an inorganic stabilizer, via the in-situ reduction of hydrogen tetrachloroaurate (III) by sodium citrate in an aqueous solution. Silicate platelets of ~1-nm thickness and various sizes, viz. laponite (50 nm), sodium montmorillonite (Na⁺⁻MMT, 100 nm), and mica (500 nm), are used to stabilize the AuNPs (Au@silicate), which are formed with uniform diameters ranging between 25 and 30 nm as confirmed by transmission electron microscopy (TEM). In particular, the laponite SERS substrate can be used in biological, environmental, and food safety applications to measure small molecules such as DNA (adenine molecule), dye (Direct Blue), and herbicide (paraquat) as it shows high detection sensitivity with a detection limit of 10-9 M for adenine detection. These highly sensitive SERS substrates, with their three-dimensional hot-junctions formed with AuNPs and two-dimensional silicate nanoplatelets, allow the highly efficient detection of organic molecules. Therefore, these Au@silicate nanohybrid substrates have great potential in biosensor technology because of their environmentally-friendly and simple fabrication process, high efficiency, and the possibility of rapid detection.
Collapse
Affiliation(s)
- Yen-Chen Lee
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
32
|
Badillo-Ramírez I, Landeros-Rivera B, de la O-Cuevas E, Vargas R, Garza J, Saniger JM. Interaction of 5-S-cysteinyl-dopamine with graphene oxide: an experimental and theoretical study for the detection of a Parkinson's disease biomarker. NEW J CHEM 2019. [DOI: 10.1039/c9nj03781k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic and theoretical analysis in the adsorption of 5-S-Cys-DA over GO for the development of platform biosensors with Raman spectroscopy.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología
- Universidad Nacional Autónoma de México
- Circuito Exterior S/N
- Ciudad Universitaria
- Ciudad de México
| | - Bruno Landeros-Rivera
- División de Ciencias Básicas e Ingeniería
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Ciudad de México
- Mexico
| | | | - Rubicelia Vargas
- División de Ciencias Básicas e Ingeniería
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Ciudad de México
- Mexico
| | - Jorge Garza
- División de Ciencias Básicas e Ingeniería
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Ciudad de México
- Mexico
| | - José M. Saniger
- Instituto de Ciencias Aplicadas y Tecnología
- Universidad Nacional Autónoma de México
- Circuito Exterior S/N
- Ciudad Universitaria
- Ciudad de México
| |
Collapse
|
33
|
Maruthupandy M, Rajivgandhi G, Muneeswaran T, Vennila T, Quero F, Song JM. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int J Biol Macromol 2019; 121:822-828. [DOI: 10.1016/j.ijbiomac.2018.10.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
|
34
|
Wang Z, Wu S, Colombi Ciacchi L, Wei G. Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst 2018; 143:5074-5089. [PMID: 30280724 DOI: 10.1039/c8an01266k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is one of the important techniques for sensing applications in biological analysis, disease diagnosis, environmental science, and food safety. Graphene provides an excellent nanoplatform for SERS sensing due to its two-dimensional flat structure, uniform electronic and photonic properties, excellent mechanical stability, atomic uniformity, and high biocompatibility. In this review, we summarize recent advances in the fabrication of various graphene-based nanoplatforms for SERS sensing. We present the strategies, such as self-assembly, in situ synthesis, one-pot synthesis, liquid phase reduction, and biomimetic synthesis, for the fabrication of graphene-based hybrid metallic and alloy nanoplatforms, and then demonstrate the potential applications of graphene-based nanoplatforms for the SERS sensing of ions, organic dyes, pesticides, bacteria, DNA, proteins, cells, and other chemicals in great detail. In addition, we also discuss the future development of this interesting research field and provide several perspectives. This work will be helpful for readers to understand the fabrication and sensing mechanisms of graphene-based SERS sensing nanoplatforms; meanwhile, it will promote the development of new materials and novel methods for high performance sensing and biosensing applications.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, 246011 Anqing, China
| | | | | | | |
Collapse
|
35
|
Electrical and Mechanical Properties of Ink Printed Composite Electrodes on Plastic Substrates. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Printed flexible electrodes with conductive inks have attracted much attention in wearable electronics, flexible displays, radio-frequency identification, etc. Conventional conductive inks contain large amount of polymer which would increase the electrical resistivity of as-printed electrodes and require high sintering temperature. Here, composite electrodes without cracks were printed on polyimide substrate using binder-free silver nanoparticle based inks with zero-dimensional (activated carbon), one-dimensional (silver nanowire and carbon nanotube) or two-dimensional (graphene) fillers. The effect of fillers on resistivity and flexibility of printed composite electrodes were evaluated. The graphene filler could reduce the resistivity of electrodes, reaching 1.7 × 10−7 Ω·m after low power laser sintering, while the silver nanowire filler improved their flexibility largely during bending tests. The microstructural changes were examined to understand the nanojoining process and their properties.
Collapse
|
36
|
Sekhar SC, Nagaraju G, Ramulu B, Yu JS. Hierarchically Designed Ag@Ce 6Mo 10O 39 Marigold Flower-Like Architectures: An Efficient Electrode Material for Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36976-36987. [PMID: 30296058 DOI: 10.1021/acsami.8b12527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We facilely prepared silver nanoparticle-decorated Ce6Mo10O39 marigold flower-like structures (Ag NPs@CM MFs) for use as an effective positive material in hybrid supercapacitors (HSCs). With the aid of ethylenediaminetetraacetic acid (EDTA) as a chelating agent, self-assembled CM MFs were synthesized by a single-step hydrothermal method. When the electrochemical properties were tested in an aqueous alkaline electrolyte, the synthesized CM MFs with 0.15 g of EDTA exhibited a relatively high charge storage property (55.3 μA h/cm2 at 2 mA/cm2) with a battery-type redox behavior. The high capacity performance is mainly because of the large surface area of the CM MFs, and the hierarchically connected nanoflakes provide wide open wells for rapid accessibility of electrolyte ions and enable fast transportation of electrons. A further improvement in electrochemical performance was achieved (62 μA h/cm2 at 2 mA/cm2) by decorating Ag NPs on the surface of the CM MFs (i.e., Ag NPs@CM MFs), which is attributed to the increased electric conductivity. Considering the synergistic effect and the high electrochemical activity, Ag NPs@CM MFs were further employed as an effective positive electrode for the fabrication of pouch-type HSC with porous carbon (negative electrode) in an alkaline electrolyte. The HSC exhibited a high cell potential (1.5 V) with maximum energy and power densities of 0.0183 mW h/cm2 and 10.237 mW/cm2, respectively. The potency of HSC in practical applications was also demonstrated by energizing red and yellow light-emitting diodes as well as a three-point pattern torch light.
Collapse
|
37
|
Liu Z, Tan H, Zhang X, Chen F, Zhou Z, Hu X, Chang S, Liu P, Zhang H. Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S922-S930. [DOI: 10.1080/21691401.2018.1518912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhujun Liu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
| | - Hongye Tan
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
| | - Xiaohong Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, P.R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou University, Suzhou, P.R. China
| | - Feng Chen
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
| | - Zhuo Zhou
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
| | - Xiaodan Hu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
| | - Shuquan Chang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
| | - Peidang Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, P.R. China
| | - Haiqian Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing P.R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, P.R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou University, Suzhou, P.R. China
| |
Collapse
|
38
|
|
39
|
Rai PK, Kumar V, Lee S, Raza N, Kim KH, Ok YS, Tsang DCW. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. ENVIRONMENT INTERNATIONAL 2018; 119:1-19. [PMID: 29909166 DOI: 10.1016/j.envint.2018.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/24/2018] [Accepted: 06/09/2018] [Indexed: 05/25/2023]
Abstract
In the recent techno-scientific revolution, nanotechnology has gained popularity at a rapid pace in different sectors and disciplines, specifically environmental, sensing, bioenergy, and agricultural systems. Controlled, easy, economical, and safe synthesis of nanomaterials is desired for the development of new-age nanotechnology. In general, nanomaterial synthesis techniques, such as chemical synthesis, are not completely safe or environmentally friendly due to harmful chemicals used or to toxic by-products produced. Moreover, a few nanomaterials are present as by-product during washing process, which may accumulate in water, air, and soil system to pose serious threats to plants, animals, and microbes. In contrast, using plants for nanomaterial (especially nanoparticle) synthesis has proven to be environmentally safe and economical. The role of plants as a source of nanoparticles is also likely to expand the number of options for sustainable green renewable energy, especially in biorefineries. Despite several advantages of nanotechnology, the nano-revolution has aroused concerns in terms of the fate of nanoparticles in the environment because of the potential health impacts caused by nanotoxicity upon their release. In the present panoramic review, we discuss the possibility that a multitudinous array of nanoparticles may find applications convergent with human welfare based on the synthesis of diverse nanoparticles from plants and their extracts. The significance of plant-nanoparticle interactions has been elucidated further for nanoparticle synthesis, applications of nanoparticles, and the disadvantages of using plants for synthesizing nanoparticles. Finally, we discuss future prospects of plant-nanoparticle interactions in relation to the environment, energy, and agriculture with implications in nanotechnology.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - SangSoo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Nadeem Raza
- Govt. Emerson College, affiliated with Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
40
|
Xu X, Mao X, Wang Y, Li D, Du Z, Wu W, Jiang L, Yang J, Li J. Study on the interaction of graphene oxide‑silver nanocomposites with bovine serum albumin and the formation of nanoparticle-protein corona. Int J Biol Macromol 2018; 116:492-501. [DOI: 10.1016/j.ijbiomac.2018.05.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
|
41
|
He K, Zeng Z, Chen A, Zeng G, Xiao R, Xu P, Huang Z, Shi J, Hu L, Chen G. Advancement of Ag-Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800871. [PMID: 29952105 DOI: 10.1002/smll.201800871] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.
Collapse
Affiliation(s)
- Kai He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, P. R. China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, P. R. China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Jiangbo Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
42
|
Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:191-205. [PMID: 30274051 DOI: 10.1016/j.msec.2018.07.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
The development of novel functionalized reduced graphene oxide nanocomposite materials keeping in mind environmental and health perspectives via green approaches is currently gaining enormous research interest in the field of nanoscience and nanotechnology. Herein, we report a bio-inspired green synthesis approach for gold nanoparticles decorated reduced graphene oxide nanocomposite in which Syzygium cumini seed extract (SCSE) is applied as natural reducing and stabilizing agent for the simultaneous reduction of chloroauric acid and graphene oxide (GO). The obtained nanocomposite was thoroughly investigated using UV-visible and FT-IR spectroscopy, XRD, SEM-EDX, TEM-SAED, Raman spectroscopy and XPS analysis. These characterization techniques clearly confirmed the successful synthesis of gold nanoparticles decorated reduced graphene oxide nanocomposite. In addition, this study evaluated the systematic and detailed analysis of AuNPs-rGO-NC and its efficacy towards cellular and antibacterial toxicological behavior. A detailed in-vitro cytotoxicity study was performed by analysing the percentage inhibition of cell viability, generation of reactive oxygen species (ROS) in cell lines using 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay on human colorectal (HCT116) and lung (A549) cancer cell lines. Further, antibacterial toxicological evaluation was performed by analysing diameter of inhibition Zone (DIZ), activity index (AI), minimum bactericidal concentration (MBC), minimum inhibitory concentration (MIC), growth kinetics (GrK) and death kinetics (DeK) against Gram-negative bacterial strain Escherichia coli and Gram-positive bacterial strains Staphylococcus aureus and Bacillus subtilis. The cytotoxicity and antibacterial toxicological assays revealed that the synthesized nanocomposite showed significant anti-cancer activity towards A549 cell line and Gram-negative bacterial strain Escherichia coli compared to the rest.
Collapse
|
43
|
Yang L, Zhen SJ, Li YF, Huang CZ. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. NANOSCALE 2018; 10:11942-11947. [PMID: 29901677 DOI: 10.1039/c8nr02820f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Graphene oxide (GO) exhibits distinctive Raman scattering features for its high frequency D (disordered) and tangential modes (G-band), which are characteristically sharp at 1580 cm-1 and 1350 cm-1, respectively, but are too weak for sensitive quantitation purposes. By depositing silver nanoparticles on the surface of GO in this contribution, both D and G bands of GO become enhanced. The enzyme label of this method controls the dissolution of silver nanoparticles on the surface of GO through hydrogen peroxide which is produced by the oxidation of the enzyme substrate. With the dissolution of the silver nanoparticles a greatly decreased SERS signal of GO was obtained. This strategy involves dual signal amplification of the enzyme and nanocomposites to improve the detection sensitivity. As a proof of concept, prostate specific antigen (PSA), a biomarker for prostate cancer, is successfully detected as a target by forming a sandwich structure in immunoassay. The SERS immunoassay possesses excellent analytical performance in the range 0.5 pg mL-1 to 500 pg mL-1 with a limit of detection of 0.23 pg mL-1, making the detection of PSA serum samples from prostate cancer patients satisfactory, demonstrating that the sensitive enzyme-assisted dissolved AgNPs SERS immunoassay of PSA has potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
44
|
Atacan K, Özacar M, Özacar M. Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles. Int J Biol Macromol 2018; 109:720-731. [DOI: 10.1016/j.ijbiomac.2017.12.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
45
|
Kathiravan V. Green synthesis of silver nanoparticles using different volumes of Trichodesma indicum leaf extract and their antibacterial and photocatalytic activities. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3405-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
An effective approach to study the biocompatibility of Fe3O4 nanoparticles, graphene and their nanohybrid composite. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
A Review on Applications of Two-Dimensional Materials in Surface-Enhanced Raman Spectroscopy. ACTA ACUST UNITED AC 2018. [DOI: 10.1155/2018/4861472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two-dimensional (2D) materials, such as graphene and MoS2, have been attracting wide interest in surface enhancement Raman spectroscopy. This perspective gives an overview of recent developments in 2D materials’ application in surface-enhanced Raman spectroscopy. This review paper focuses on the applications of using bare 2D materials and metal/2D material hybrid substrate for Raman enhancement. The Raman enhancing mechanism of 2D materials will also be discussed. The progress covered herein shows great promise for widespread adoption of 2D materials in SERS application.
Collapse
|
48
|
Singh AN, Devnani H, Jha S, Ingole PP. Fermi level equilibration of Ag and Au plasmonic metal nanoparticles supported on graphene oxide. Phys Chem Chem Phys 2018; 20:26719-26733. [DOI: 10.1039/c8cp05170d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For the first time, the process of Fermi level equilibration has been studied and compared for plasmonic metal nanoparticles (PMNPs) supported on conducting substrates i.e. graphene oxide (GO) sheets.
Collapse
Affiliation(s)
- Abhay N. Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Harsha Devnani
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Shwetambara Jha
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| | - Pravin P. Ingole
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- New Delhi 110016
- India
| |
Collapse
|
49
|
Jia MY, Xu LS, Li Y, Yao CL, Jin XJ. Synthesis and characterization of graphene/carbonized paper/tannic acid for flexible composite electrodes. NEW J CHEM 2018. [DOI: 10.1039/c8nj02898b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and low-cost approach toward flexible and free-standing electrodes is developed.
Collapse
Affiliation(s)
- Meng-Ying Jia
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University
- Beijing
- China
| | - Lan-Shu Xu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University
- Beijing
- China
| | - Yue Li
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University
- Beijing
- China
| | - Chun-Li Yao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University
- Beijing
- China
| | - Xiao-Juan Jin
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University
- Beijing
- China
| |
Collapse
|
50
|
Rational design of Ag nanocubes-reduced graphene oxide nanocomposites for high-performance non-enzymatic H2O2 sensing. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|