1
|
Ahmadipour M, Bhattacharya A, Sarafbidabad M, Syuhada Sazali E, Krishna Ghoshal S, Satgunam M, Singh R, Rezaei Ardani M, Missaoui N, Kahri H, Pal U, Ling Pang A. CA19-9 and CEA biosensors in pancreatic cancer. Clin Chim Acta 2024; 554:117788. [PMID: 38246211 DOI: 10.1016/j.cca.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a complex pathophysiological condition causing millions of deaths each year. Early diagnosis is essential especially for pancreatic cancer. Existing diagnostic tools rely on circulating biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA). Unfortunately, these markers are nonspecific and may be increased in a variety of disorders. Accordingly, diagnosis of pancreatic cancer generally involves more invasive approaches such as biopsy as well as imaging studies. Recent advances in biosensor technology have allowed the development of precise diagnostic tools having enhanced analytical sensitivity and specificity. Herein we examine these advances in the detection of cancer in general and in pancreatic cancer specifically. Furthermore, we highlight novel technologies in the measurement of CA19-9 and CEA and explore their future application in the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia.
| | - Anish Bhattacharya
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohsen Sarafbidabad
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ezza Syuhada Sazali
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Sib Krishna Ghoshal
- Advanced Optical Materials Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Ibnu Sina Institute of Laser Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Meenaloshini Satgunam
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Department of Mechanical Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia
| | - Ramesh Singh
- Institute of Power Engineering, Universiti Tenaga Nasional, 43650 Serdang, Selangor, Malaysia; Center of Advanced Manufacturing and Materials Processing (AMMP), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Rezaei Ardani
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Ujjwal Pal
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ai Ling Pang
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
2
|
Abrao‐Nemeir I, Bentin J, Meyer N, Janot J, Torrent J, Picaud F, Balme S. Investigation of α-Synuclein and Amyloid-β(42)-E22Δ Oligomers Using SiN Nanopore Functionalized with L-Dopa. Chem Asian J 2022; 17:e202200726. [PMID: 36038502 PMCID: PMC9826174 DOI: 10.1002/asia.202200726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Solid-state nanopores are an emerging technology used as a high-throughput, label-free analytical method for the characterization of protein aggregation in an aqueous solution. In this work, we used Levodopamine to coat a silicon nitride nanopore surface that was fabricated through a dielectric breakdown in order to reduce the unspecific adsorption. The coating of inner nanopore wall by investigation of the translocation of heparin. The functionalized nanopore was used to investigate the aggregation of amyloid-β and α-synuclein, two biomarkers of degenerative diseases. In the first application, we demonstrate that the α-synuclein WT is more prone to form dimers than the variant A53T. In the second one, we show for the Aβ(42)-E22Δ (Osaka mutant) that the addition of Aβ(42)-WT monomers increases the polymorphism of oligomers, while the incubation with Aβ(42)-WT fibrils generates larger aggregates.
Collapse
Affiliation(s)
- Imad Abrao‐Nemeir
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jeremy Bentin
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Nathan Meyer
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France,Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jean‐Marc Janot
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Joan Torrent
- Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Fabien Picaud
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Sebastien Balme
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| |
Collapse
|
3
|
Meng Y, Chen F, Wu C, Krause S, Wang J, Zhang DW. Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications. ACS Sens 2022; 7:1791-1807. [PMID: 35762514 DOI: 10.1021/acssensors.2c00940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.
Collapse
Affiliation(s)
- Yao Meng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
4
|
Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci Rep 2022; 12:7972. [PMID: 35562402 PMCID: PMC9106706 DOI: 10.1038/s41598-022-11982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabric types currently used in wound dressings. These sensors were experimentally evaluated and compared to each other by using albumin protein solution of pH 7. A comprehensive set of cyclic voltammetry measurements was used to determine the optimal sensor design the measurement of protein in solution. As a result, the best sensor design is comprised of silver conductive tracks but a carbon layer as the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL with a sensitivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.0026 \mu $$\end{document}0.0026μA/M. Further testing was performed to assess the sensor’s ability to identify BSA from other interferential substances usually present in wound fluids and the results show that it can be distinguishable.
Collapse
|
5
|
The Light-Addressable Potentiometric Sensor and Its Application in Biomedicine towards Chemical and Biological Sensing. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The light-addressable potential sensor (LAPS) was invented in 1988 and has developed into a multi-functional platform for chemical and biological sensing in recent decades. Its surface can be flexibly divided into multiple regions or pixels through light addressability, and each of them can be sensed independently. By changing sensing materials and optical systems, the LAPS can measure different ions or molecules, and has been applied to the sensing of various chemical and biological molecules and cells. In this review, we firstly describe the basic principle of LAPS and the general configuration of a LAPS measurement system. Then, we outline the most recent applications of LAPS in chemical sensing, biosensing and cell monitoring. Finally, we enumerate and analyze the development trends of LAPS from the aspects of material and optical improvement, hoping to provide a research and application perspective for chemical sensing, biosensing and imaging technology.
Collapse
|
6
|
Poghossian A, Welden R, Buniatyan VV, Schöning MJ. An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling. SENSORS 2021; 21:s21186161. [PMID: 34577368 PMCID: PMC8473037 DOI: 10.3390/s21186161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022]
Abstract
The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.
Collapse
Affiliation(s)
- Arshak Poghossian
- MicroNanoBio, Liebigstr. 4, 40479 Düsseldorf, Germany
- Correspondence: (A.P.); (M.J.S.)
| | - Rene Welden
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany;
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Vahe V. Buniatyan
- Department of Microelectronics and Biomedical Devices, National Polytechnic University of Armenia (NPUA), 105 Teryan St., NPUA, Yerevan 0009, Armenia;
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany;
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: (A.P.); (M.J.S.)
| |
Collapse
|
7
|
Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-Nooshabadi M, Asrami PN, Al-Othman A. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 2021; 184:113252. [PMID: 33895688 DOI: 10.1016/j.bios.2021.113252] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Shilpi Agarwal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vinod K Gupta
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775 Arica, Chile
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal.
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | | | | | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| |
Collapse
|
8
|
Li F, Zhang J, Hu S, Jia Y. Possibility of Combining Carbon Dots and Liquid Exfoliated Graphene as a Carbon-Based Light Addressable Potentiometric Sensor. ACS Sens 2021; 6:1218-1227. [PMID: 33544579 DOI: 10.1021/acssensors.0c02515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A light addressable potentiometric sensor (LAPS) is a versatile sensing platform for bioassay. However, the lack of carbon-based LAPS (C-LAPS) is a bottleneck for its sustainable development in a carbon electronic era. Herein, a study of C-LAPS based on the combinations of carbon dots (CDs) and liquid exfoliated graphene (LEG) is presented. Devices of C-LAPS are first fabricated by self-assembling the hydrothermally synthesized CDs and the cosolvent ultrasonic delaminated LEG on poly(diallyldimethylammonium chloride) (PDDA)-modified indium tin oxide (ITO) glasses. According to the stacking orders of CDs and LEG, C-LAPS are named as CDs/LEG@PDDA/ITO and LEG/CDs@PDDA/ITO. Then, their electronic and photoelectronic features are measured and compared with the pure CD- and pure LEG-decorated ITO electrodes. Furthermore, working mechanisms are proposed by means of the classical theories of energy band bending and built-in electric field at the heterojunction of CDs and LEG. The resemblances of CDs/LEG@PDDA/ITO-based C-LAPS with Si-based LAPS (Si-LAPS) are confirmed from the points of view of production and separation of the photogenerated carriers, the formation of photocurrent, and the distinction with LEG/CDs@PDDA/ITO. Finally, its feasibility for biological application is justified by using the immune reaction of 5-methylcytosine (5mC) and its antibody (anti-5mC) as a proof of concept. The improved linear responses are evidenced by the comparisons with Si-LAPS' results. Conclusively, the proposed C-LAPS is believed to be a candidate for traditional semiconductor-based LAPS, with the merit of solution-processable. Meanwhile, the theoretical deductions about C-LAPS' principle can also pave the way for developing similar carbon-based sensors.
Collapse
Affiliation(s)
- Fang Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Jizhao Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shihui Hu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Wang J, Wen J, Yan H. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing. Chem Asian J 2020; 16:114-128. [DOI: 10.1002/asia.202001260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jiameng Wang
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Jia Wen
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
- College of Public Health Hebei University Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Baoding 071002 P. R. China
| |
Collapse
|
10
|
Wang J, Tian Y, Chen F, Chen W, Du L, He Z, Wu C, Zhang DW. Scanning Electrochemical Photometric Sensors for Label-Free Single-Cell Imaging and Quantitative Absorption Analysis. Anal Chem 2020; 92:9739-9744. [PMID: 32437169 DOI: 10.1021/acs.analchem.0c01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new photoelectrochemical imaging method termed scanning electrochemical photometric sensor (SEPS) is proposed in this work. It was derived from light-addressable potentiometric sensor (LAPS) and scanning photoinduced impedance microscopy (SPIM) using a front-side laser illumination at a field-effect structure. When the laser beam scans across the sensor substrate, local photocurrent changes at inversion due to the light absorption of analytes can be recorded. It will be shown that SEPS could be used for label-free living cell imaging with micro-resolution as well as real-time quantitative absorption analysis, which would broaden the applications of traditional LAPS/SPIM from potentiometric/impedance measurements to local optical analysis.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhiyuan He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
11
|
Liang T, Qiu Y, Gan Y, Sun J, Zhou S, Wan H, Wang P. Recent Developments of High-Resolution Chemical Imaging Systems Based on Light-Addressable Potentiometric Sensors (LAPSs). SENSORS 2019; 19:s19194294. [PMID: 31623395 PMCID: PMC6806070 DOI: 10.3390/s19194294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
A light-addressable potentiometric sensor (LAPS) is a semiconductor electrochemical sensor based on the field-effect which detects the variation of the Nernst potential on the sensor surface, and the measurement area is defined by illumination. Thanks to its light-addressability feature, an LAPS-based chemical imaging sensor system can be developed, which can visualize the two-dimensional distribution of chemical species on the sensor surface. This sensor system has been used for the analysis of reactions and diffusions in various biochemical samples. In this review, the LAPS system set-up, including the sensor construction, sensing and substrate materials, modulated light and various measurement modes of the sensor systems are described. The recently developed technologies and the affecting factors, especially regarding the spatial resolution and temporal resolution are discussed and summarized, and the advantages and limitations of these technologies are illustrated. Finally, the further applications of LAPS-based chemical imaging sensors are discussed, where the combination with microfluidic devices is promising.
Collapse
Affiliation(s)
- Tao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- State Key Laboratory of Transducer Technology, Shanghai 200050, China.
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jiadi Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- State Key Laboratory of Transducer Technology, Shanghai 200050, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- State Key Laboratory of Transducer Technology, Shanghai 200050, China.
| |
Collapse
|
12
|
Wu F, Campos I, Zhang DW, Krause S. Biological imaging using light-addressable potentiometric sensors and scanning photo-induced impedance microscopy. Proc Math Phys Eng Sci 2017; 473:20170130. [PMID: 28588418 DOI: 10.1098/rspa.2017.0130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
Abstract
Light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) use photocurrent measurements at electrolyte-insulator-semiconductor substrates for spatio-temporal imaging of electrical potentials and impedance. The techniques have been used for the interrogation of sensor arrays and the imaging of biological systems. Sensor applications range from the detection of different types of ions and the label-free detection of charged molecules such as DNA and proteins to enzyme-based biosensors. Imaging applications include the temporal imaging of extracellular potentials and dynamic concentration changes in microfluidic channels and the lateral imaging of cell surface charges and cell metabolism. This paper will investigate the current state of the art of the measurement technology with a focus on spatial and temporal resolution and review the biological applications, these techniques have been used for. An outlook on future developments in the field will be given.
Collapse
Affiliation(s)
- Fan Wu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Inmaculada Campos
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - De-Wen Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, Sichuan, People's Republic of China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
13
|
Wang J, Long J, Liu Z, Wu W, Hu C. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens Bioelectron 2017; 91:53-59. [DOI: 10.1016/j.bios.2016.12.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 11/17/2022]
|
14
|
Influences of Probe's Morphology for Metal Ion Detection Based on Light-Addressable Potentiometric Sensors. SENSORS 2016; 16:s16050701. [PMID: 27187412 PMCID: PMC4883392 DOI: 10.3390/s16050701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 01/15/2023]
Abstract
The sensing mechanism of binding Hg2+ into thymine-thymine (T-T) mismatched base pairs was introduced into a light-addressable potentiometric sensor (LAPS) with anti-Hg2+ aptamer as the sensing units. Three kinds of T-rich single-strand DNA (ssDNA) chains with different spacer lengths, from 0 to 12 –CH2 groups, were designed to investigate surface charge and morphological effects on the LAPS’ output. First, by comparing the responding of LAPS modified with three kinds of ssDNA, it was found that the best performance for Hg2+ sensing was exhibited by the probe without –CH2 groups. The detection limit of Hg2+ ion was 1 ppt under the optimal condition. Second, the cooperative effects of surface charge and morphology on the output were observed by the controlled experiments. The two effects were the negative charge balanced by metal cations and the morphological changing caused by the formation of T-Hg2+-T structure. In conclusion, not only the influences of the aptamer probe’s morphology and surface charge was investigated on the platform of LAPS, but also sensing Hg2+ ions was achieved for the first time by the presented aptamer LAPS.
Collapse
|
15
|
Gu Y, Ju C, Li Y, Shang Z, Wu Y, Jia Y, Niu Y. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens Bioelectron 2015; 66:24-31. [DOI: 10.1016/j.bios.2014.10.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023]
|
16
|
Poghossian A, Schöning MJ. Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. ELECTROANAL 2014. [DOI: 10.1002/elan.201400073] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens Bioelectron 2013; 53:305-9. [PMID: 24161565 DOI: 10.1016/j.bios.2013.10.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 01/16/2023]
Abstract
In this paper, Pd nanoplates were used as a kind of electrode materials for fabrication of an electrochemical immunosensor, which was applied for detection of cancer biomarker alpha-fetoprotein (AFP). Thanks to the unique structure and properties of Pd nanoplates, the antibody of AFP (Ab) was effectively immobilized onto the surface of the Pd nanoplates modified glassy carbon electrode (GCE). Moreover, the good electrochemical properties of Pd nanoplates greatly improved the electronic transmission rate and enhanced the electrochemical signal, which led to an increase of the detection sensitivity. Based on the specific antibody-antigen interaction, a label-free immunosensor based on Pd nanoplates was developed for sensing of AFP. The current method allows us to detect AFP over a wide concentration range from 0.01 to 75.0 ng/mL with a detection limit of 4 pg/mL. The proposed immunosensor has been used to determine AFP in human serum with satisfactory results.
Collapse
|
18
|
Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 2013; 42:5944-62. [DOI: 10.1039/c3cs60077g] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
|