1
|
Mgenge L, Saha C, Kumari P, Ghosh SK, Singh H, Mallick K. Electrochemical sensing of dopamine using nanostructured silver chromate: Development of an IoT-integrated sensor. Anal Biochem 2025; 698:115726. [PMID: 39617162 DOI: 10.1016/j.ab.2024.115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Dopamine, one of the most important neurotransmitters, plays a crucial role in the functions of human metabolism, as well as the cardiovascular, central nervous and hormonal systems. This study focuses on the synthesis of nanostructured silver chromate and their application in dopamine sensing. The nanoparticles were synthesized using a complexation-mediated route using aminosalicylic acid as a stabilizer, resulting in uniform particles ranging from 3 to 15 nm in size. The synthesized silver chromate was characterized using X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy techniques. Electrochemical studies revealed that the silver chromate exhibit excellent catalytic activity for the detection of dopamine. The electroanalysis provided the selective recognition of dopamine with the limit of detection of 1.05 μM and sensitivity of 2.68 μA μM-1 cm-2 in a linear range of 5-45 μM. Additionally, a portable, IoT (internet of things)-integrated sensor based on the synthesized silver chromate was developed using Arduino Uno R4 Wi-Fi module, enabling real-time monitoring of dopamine with data transmission to a cloud platform.
Collapse
Affiliation(s)
- Lungelo Mgenge
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Chandan Saha
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| | - Pooja Kumari
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Sarit K Ghosh
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa
| | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
| | - Kaushik Mallick
- Department of Chemical Sciences, University of Johannesburg, P.O. Box: 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
2
|
El-Said WA, Akhdhar A, Al-Bogami AS, Saleh TS. Design and green synthesis of carbon Dots/Gold nanoparticles Composites and their applications for neurotransmitters sensing based on emission Spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125402. [PMID: 39515228 DOI: 10.1016/j.saa.2024.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Changes in the neurotransmitters are indications for several diseases. Several sensors were reported for monitoring dopamine (DA), but the simple and accurate DA detection in biological samples still faces many challenges. The research proposal aims to develop an optical sensor for detecting neurotransmitters based on luminescence emission spectra in different biological samples. Carbon dots (CDs) were fabricated based on a green synthesis route. Then the prepared CDs were decorated with varying concentrations of gold nanoparticles (Au NPs). The synthesis process was optimized, and the obtained CDs/Au NPs nanocomposites were applied as neurotransmitters' optical nanosensors. The optical nanosensor approach provides easy and sensitive multiplex analysis. A wide range of neurotransmitters was monitored. The developed sensor's sensitivity, selectivity, and reproducibility were investigated. Au NPs act as CDs' stabilizers, enhancing the emission effect, and scaffolds for binding DA with CDs' surface. DA moieties bind to CDs through the interaction between the DA-NH2 groups and Au NPS. Due to electron transfer, the bonding of DA molecules leads to fluorescence quenching of AuNPs/CDs. The Au-CDs-based DA fluorescence showed high sensitivity with adetection limit, and limit quantification of 2.04 nM and 6.18 nM, respectively. Furthermore, the selectivity of the sensor was investigated in the presence of glucose, uric acid (UA), and ascorbic acid (AA), which showed no interference effect at 10 times higher concentrations. Moreover, the proposed sensor has been successfully utilized for DA detection in human serum samples with a high recovery efficiency between 98.83 % and 103.5 %.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
4
|
Graphene Oxide Decorated Tin Sulphide Quantum Dots for Electrochemical Detection of Dopamine and Tyrosine. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
6
|
Kaur V, Sharma M, Sen T. DNA Origami-Templated Bimetallic Nanostar Assemblies for Ultra-Sensitive Detection of Dopamine. Front Chem 2021; 9:772267. [PMID: 35004609 PMCID: PMC8733555 DOI: 10.3389/fchem.2021.772267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The abundance of hotspots tuned via precise arrangement of coupled plasmonic nanostructures highly boost the surface-enhanced Raman scattering (SERS) signal enhancements, expanding their potential applicability to a diverse range of applications. Herein, nanoscale assembly of Ag coated Au nanostars in dimer and trimer configurations with tunable nanogap was achieved using programmable DNA origami technique. The resulting assemblies were then utilized for SERS-based ultra-sensitive detection of an important neurotransmitter, dopamine. The trimer assemblies were able to detect dopamine with picomolar sensitivity, and the assembled dimer structures achieved SERS sensitivity as low as 1 fM with a limit of detection of 0.225 fM. Overall, such coupled nanoarchitectures with superior plasmon tunability are promising to explore new avenues in biomedical diagnostic applications.
Collapse
Affiliation(s)
| | | | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
7
|
Zhu Y, Tian Q, Li X, Wu L, Yu A, Lai G, Fu L, Wei Q, Dai D, Jiang N, Li H, Ye C, Lin CT. A Double-Deck Structure of Reduced Graphene Oxide Modified Porous Ti 3C 2T x Electrode towards Ultrasensitive and Simultaneous Detection of Dopamine and Uric Acid. BIOSENSORS 2021; 11:bios11110462. [PMID: 34821678 PMCID: PMC8615994 DOI: 10.3390/bios11110462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
Considering the vital physiological functions of dopamine (DA) and uric acid (UA) and their coexistence in the biological matrix, the development of biosensing techniques for their simultaneous and sensitive detection is highly desirable for diagnostic and analytical applications. Therefore, Ti3C2Tx/rGO heterostructure with a double-deck layer was fabricated through electrochemical reduction. The rGO was modified on a porous Ti3C2Tx electrode as the biosensor for the detection of DA and UA simultaneously. Debye length was regulated by the alteration of rGO mass on the surface of the Ti3C2Tx electrode. Debye length decreased with respect to the rGO electrode modified with further rGO mass, indicating that fewer DA molecules were capable of surpassing the equilibrium double layer and reaching the surface of rGO to achieve the voltammetric response of DA. Thus, the proposed Ti3C2Tx/rGO sensor presented an excellent performance in detecting DA and UA with a wide linear range of 0.1-100 μM and 1-1000 μM and a low detection limit of 9.5 nM and 0.3 μM, respectively. Additionally, the proposed Ti3C2Tx/rGO electrode displayed good repeatability, selectivity, and proved to be available for real sample analysis.
Collapse
Affiliation(s)
- Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
| | - Qichen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China;
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Guosong Lai
- Department of Chemistry, Hubei Normal University, Huangshi 435002, China;
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Dan Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| |
Collapse
|
8
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Chen L, Tian X, Li Y, Lu L, Nie Y, Wang Y. Broad-spectrum pesticide screening by multiple cholinesterases and thiocholine sensors assembled high-throughput optical array system. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123830. [PMID: 33254811 DOI: 10.1016/j.jhazmat.2020.123830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
Accurate screening of organophosphorus and carbamates pesticides from the complex real sample is crucial for water quality analysis and food safety control. Herein, a simple, low-cost and accurate pesticides screening method based on a high-throughput optical array system assembled by multiple cholinesterases (ChE) and thiocholine (TCh) sensors is described. The detection mechanism is that the inhibition of ChE activity by pesticides reduces the TCh produced by the hydrolysis of butyryl/acetylthiocholine iodide, thus changing the fluorescence intensity of TCh sensor. The diverse response of ChEs to pesticides and different affinity of sensors to TCh ensure the high-throughput and distinguishable signal output, which allow the establishment of high discrete pesticide database with intra-cluster agglomeration and inter-cluster dispersion. By using the database, the screening of unknown real contaminated samples were successfully operated, and the screened pesticide species and concentrations were consistent with high-performance liquid chromatography. This screening strategy demonstrates the feasibility of replacing existing complex mass spectrometry-based screening strategy with simple optical analysis, providing a new idea for the development of simple accurate screening technologies for widespread organic pollutants including pesticides.
Collapse
Affiliation(s)
- Linfeng Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Huang H, Bai J, Li J, Lei L, Zhang W, Yan S, Li Y. Fluorescence detection of dopamine based on the polyphenol oxidase–mimicking enzyme. Anal Bioanal Chem 2020; 412:5291-5297. [DOI: 10.1007/s00216-020-02742-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
|
11
|
Tai Z, Zhu Y, Yuan Y, Liu J, Li Z, Liu Z, Wang K. Colorimetric Probe Coupled to Dispersive Liquid–Liquid Microextraction for Determination of Dopamine in Serum. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhi‐gang Tai
- Faculty of Science and Life TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Yi‐ren Zhu
- Faculty of Science and Life TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Yi‐bo Yuan
- Faculty of Science and Life TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Jin Liu
- Faculty of Science and Life TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Zhen‐jie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Zhi‐hua Liu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Kun‐miao Wang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| |
Collapse
|
12
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
13
|
Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Mikrochim Acta 2020; 187:107. [DOI: 10.1007/s00604-019-4071-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023]
|
14
|
Xu Y, Wang J, Lu Y, Dai X, Yan Y. Preparation of functionalized double ratio fluorescent imprinted sensors for visual determination and recognition of dopamine in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:225-231. [PMID: 31048251 DOI: 10.1016/j.saa.2019.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Ratiometric fluorescent sensors have shown great prospect in chemical monitoring and recognition due to its high intuitiveness, accurateness, and visualization. In this work, the ratiometric fluorescent sensors, which includes a blue fluorescent Carbon quantum dots (CQDs) as internal standard material, and a red fluorescent boric acid-modified CdTe QDs as response signal. Then we choose dopamine (DA) as template, 3-phenylboronic acid (APBA) for functional monomers, tetraethyl orthosilicate (TEOS) for cross-linker to synthesize double ratio molecularly imprinted polymers (DR-MIPs) that can identify dopamine selectively and sensitively. The DR-MIPs has better capability of selective recognition, obvious anti-ion interference, rapid detection and good visualization. Furthermore, the unique DR-MIPs was proved as efficient visual sensors for determination of DA in human serum rapidly and efficiently. The DR-MIPs still displayed well accuracy, and the potential prospects of this smart sensor is clearly demonstrated in the context of modern clinical medicine.
Collapse
Affiliation(s)
- Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jixiang Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yang Lu
- School of Chemistry, Jilin normal University, Siping, 136000, PR China; Yangzhong Tiande Electrical Equipment Co.LTD, Zhengjiang 212013, PR China
| | - Xiaohui Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
15
|
Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles. J Pharm Biomed Anal 2019; 172:223-229. [DOI: 10.1016/j.jpba.2019.04.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/20/2022]
|
16
|
Rapid response of dopamine towards insitu synthesised copper nanocluster in presence of H2O2. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Sheth S, Li M, Song Q. New luminescent probe for the selective detection of dopamine based on in situ prepared Ru(II) complex-sodium dodecyl benzyl sulfonate assembly. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Nandi R, Loitongbam L, De J, Jain V, Pal SK. Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine. Analyst 2019; 144:1110-1114. [DOI: 10.1039/c8an02171f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new design was developed for detection of dopamine using a boronic acid based amphiphile at aqueous–liquid crystal interface. The detection was highly enhanced in presence of gold nanoparticles.
Collapse
Affiliation(s)
- Rajib Nandi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli-140306
- India
| | - Lisha Loitongbam
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli-140306
- India
| | - Joydip De
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli-140306
- India
| | - Varsha Jain
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli-140306
- India
| | - Santanu Kumar Pal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli-140306
- India
| |
Collapse
|
20
|
Rahmani H, Sajedi RH. Aequorin as a sensitive and selective reporter for detection of dopamine: A photoprotein inhibition assay approach. Int J Biol Macromol 2018; 122:677-683. [PMID: 30391428 DOI: 10.1016/j.ijbiomac.2018.10.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 01/03/2023]
Abstract
Dopamine is a metabolite that plays a key role in the human body and in biomedical and diagnostic applications. Thus, the concentration of this analyte has been considered in various diseases in therapeutic drug monitoring (TDM). In the present study, for the first time, a photoprotein inhibition assay strategy was developed by utilizing aequorin for the direct detection of dopamine as a receptor and reporter simultaneously. The results showed that bioluminescence emission of aequorin was effectively quenched by increasing concentration of dopamine at the range of 1 nM to 100 μM with a detection limit of 53 nM. The viability of this method for the monitoring of dopamine in spiked biological fluids was also established and it was successfully applied for the direct determination of dopamine in a blood serum and urine without preliminary treatment with satisfactory quantitative recovery 90-95% and 82-93%, respectively. The structural investigation using circular dichroism, fluorescence spectroscopy, and docking simulation indicated that, changes in the microenvironment of aromatic residues were significant, while minor conformational alterations of the protein were observed. It seems dopamine inhibits bioluminescence activity with specific binding to the residues involved in the light production.
Collapse
Affiliation(s)
- Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran.
| |
Collapse
|
21
|
Li L, Wang C, Yang L, Su M, Yu F, Tian L, Liu H. Conformational sensitivity of surface selection rules for quantitative Raman identification of small molecules in biofluids. NANOSCALE 2018; 10:14342-14351. [PMID: 30020300 DOI: 10.1039/c8nr04710c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofluid analysis by surface-enhanced Raman scattering (SERS) is usually hindered by nonspecific interferences. It is challenging to drive targeted molecules towards sensitive areas with specific capture and quantitative recognition in complex biofluids. Herein, a highly specific and quantitative SERS analyzer for small molecule dopamine (DA) in serum is demonstrated on a portable Raman device by virtue of a transducer of mercaptophenylboronic acid (MPBA) and a site-directed decoration of plasmonic Ag dendrites on a superhydrophobic surface. Theoretical simulations of molecular vibrations and charge distributions demonstrate the predomination of Raman surface selection rules in molecular reorientation upon the binding of DA. This recognition event is translated into ratiometric changes in the spectral profile which evidences excellent capability on SERS quantitation. The rules can well distinguish DA from its common interferents including fructose, glucose, sucrose and ascorbic acid which all generate weak but completely opposite spectral changes. Moreover, benefitting from the wettability difference, the target DA in diluted serum can be specifically enriched on a transducer-capped Ag surface, and the adsorption of other interferences is resisted by superhydrophobic features. It paves a new way for labelling a single SERS tag to simultaneously realize the identification and quantification of small molecules in complex biological media.
Collapse
Affiliation(s)
- Lei Li
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Chao Wang
- Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Lina Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Mengke Su
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Fanfan Yu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Li Tian
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Honglin Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China. and Engineering Research Centre of Bio-process, Ministry of Education, Hefei, Anhui 230009, China and Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
22
|
Zanganeh N, Guda VK, Toghiani H, Keith JM. Sinter-Resistant and Highly Active Sub-5 nm Bimetallic Au-Cu Nanoparticle Catalysts Encapsulated in Silica for High-Temperature Carbon Monoxide Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4776-4785. [PMID: 29328617 DOI: 10.1021/acsami.7b19299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel gold-copper-based silica-encapsulated mixed metal oxide (MMO) core-shell catalyst-with sub-5 nm MMO particles-was successfully synthesized via a reverse micelle process. The SiO2-encapsulated MMO catalyst was reduced under hydrogen flow to produce an Au-Cu@SiO2 catalyst. X-ray diffraction and X-ray photoelectron spectroscopy characterization confirmed the presence of Au-Cu nanocomposites in the catalyst, while transmission electron microscopy characterization revealed the core-shell structure of the catalyst with the presence of sub-5 nm Au-Cu nanoparticle cores inside SiO2 shells. Brunauer-Emmett-Teller surface characterization identified that the catalyst is porous and bimodal in nature. The effects of promoter metal ion, catalyst pretreatment (calcination), and the presence of CO2 in the feed stream on carbon monoxide (CO) oxidation over the Au-Cu@SiO2 catalyst were examined in the temperature range of 50-400 °C. A catalyst stability test was performed at 300 °C by conducting a CO oxidation reaction for 116 h on stream. The catalyst exhibited excellent efficacy for CO oxidation, with ∼100% conversion to CO2 achieved at 400 °C. While the presence of Cu enhanced the CO conversion at low to intermediate temperatures (50-300 °C), silica encapsulation of the Au-Cu nanocomposites facilitated remarkable stability of the catalyst. The activity of the Au-Cu@SiO2 catalyst is suitable for its application in automotive after-treatment devices, especially in low-temperature combustion engine exhausts.
Collapse
Affiliation(s)
- Navid Zanganeh
- Dave C. Swalm School of Chemical Engineering and ‡Bagley College of Engineering, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Vamshi Krishna Guda
- Dave C. Swalm School of Chemical Engineering and ‡Bagley College of Engineering, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Hossein Toghiani
- Dave C. Swalm School of Chemical Engineering and ‡Bagley College of Engineering, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Jason M Keith
- Dave C. Swalm School of Chemical Engineering and ‡Bagley College of Engineering, Mississippi State University , Mississippi State, Mississippi 39762, United States
| |
Collapse
|
23
|
Li DE, Lin CH. Microfluidic chip for droplet-based AuNP synthesis with dielectric barrier discharge plasma and on-chip mercury ion detection. RSC Adv 2018; 8:16139-16145. [PMID: 35542220 PMCID: PMC9080253 DOI: 10.1039/c8ra02468e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
This study presents a novel microfluidic chip that can achieve on-demand gold nanoparticle (AuNP) synthesis using atmospheric pressure helium plasma and on-site mercury ion detection. Instead of using conventional chemical reaction methods, this chip uses helium plasma as the reducing agent to reduce gold ions and to synthesize AuNP, such that there is no residual reducing agent in the solution after removing the external electric field for plasma generation. The plasma discharge, gas–liquid separation, liquid collection and mercury ion detection can be achieved by this proposed microfluidic chip. The synthesized gold nanoparticles are further functionalized by 3-mercaptopropionic acid (3-MPA) for mercury ion detection. The 3-MPA-capped gold nanoparticles aggregate and result in a colour change of the solution due to the existence of Hg2+. The absorption spectra of the solution shifts from red to blue due to the cluster aggregation. The concentration of Hg2+ can be quantitatively determined by UV-Vis spectrometry, and the limit of detection was found to be 10−6 M (0.2 ppm). This developed integrated microfluidic device provides a simple and on-demand method for synthesis of AuNPs and Hg2+ detection in a single chip. This study presents a novel microfluidic chip that can achieve on-demand gold nanoparticle (AuNP) synthesis using atmospheric pressure helium plasma and on-site mercury ion detection.![]()
Collapse
Affiliation(s)
- Dai-En Li
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Taiwan
| | - Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Taiwan
| |
Collapse
|
24
|
Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites. SENSORS 2017; 17:s17040861. [PMID: 28420085 PMCID: PMC5424738 DOI: 10.3390/s17040861] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/01/2022]
Abstract
The detection of dopamine in a highly sensitive and selective manner is crucial for the early diagnosis of a number of neurological diseases/disorders. Here, a report on a new platform for the electrochemical detection of dopamine with a considerable accuracy that comprises a 3D porous graphene oxide (pGO)/gold nanoparticle (GNP)/pGO composite-modified indium tin oxide (ITO) is presented. The pGO was first synthesized and purified by ultrasonication and centrifugation, and it was then further functionalized on the surface of a GNP-immobilized ITO electrode. Remarkably, owing to the synergistic effects of the pGO and GNPs, the 3D pGO-GNP-pGO-modified ITO electrode showed a superior dopamine-detection performance compared with the other pGO- or GNP-modified ITO electrodes. The linear range of the newly developed sensing platform is from 0.1 μM to 30 μM with a limit of detection (LOD) of 1.28 μM, which is more precise than the other previously reported GO-functionalized electrodes. Moreover, the 3D pGO-GNP-pGO-modified ITO electrodes maintained their detection capability even in the presence of several interfering molecules (e.g., ascorbic acid, glucose). The proposed platform of the 3D pGO-GNP-pGO-modified ITO electrode could therefore serve as a competent candidate for the development of a dopamine-sensing platform that is potentially applicable for the early diagnosis of various neurological diseases/disorders.
Collapse
|
25
|
Shen J, Sun C, Wu X. Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Talanta 2017; 165:369-376. [DOI: 10.1016/j.talanta.2016.12.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
|
26
|
|
27
|
Khandelwal P, Poddar P. Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. J Mater Chem B 2017; 5:9055-9084. [DOI: 10.1039/c7tb02320k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A brief history of metal quantum clusters, their synthesis methods, physical properties, and an updated overview of their applications is provided.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - Pankaj Poddar
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| |
Collapse
|
28
|
Li H, Shen J, Cui R, Sun C, Zhao Y, Wu X, Li N, Tang B. A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb(iii) complex and silver nanoparticles. Analyst 2017; 142:4240-4246. [DOI: 10.1039/c7an00961e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed fluorescent nanosensor can distinguish DA from EP.
Collapse
Affiliation(s)
- Huihui Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Jin Shen
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Rongwei Cui
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Chongmei Sun
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Yanyan Zhao
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Xia Wu
- School of Chemistry and Chemical Engineering
- Shandong University
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan 250100
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
29
|
Matsui H, Oaki Y, Imai H. Surface-functionalized hydrophilic monolayer of titanate and its application for dopamine detection. Chem Commun (Camb) 2016; 52:9466-9. [PMID: 27381420 DOI: 10.1039/c6cc02940j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A surface-functionalized hydrophilic charge-neutral monolayer of titanate was exfoliated from the precursor layered composite in aqueous media without addition of a delamination agent. The hydrophilic monolayer was applied for the detection of dopamine based on visible-light absorption originating from charge-transfer excitation from adsorbed dopamine to titanate.
Collapse
Affiliation(s)
- Hiroshi Matsui
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | |
Collapse
|
30
|
Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2439-2442. [PMID: 27151829 DOI: 10.1002/smll.201503874] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/11/2016] [Indexed: 06/05/2023]
Abstract
A controlled assembly of natural beta-cyclodextrin modified Au NPs mediated by dopamine is demonstrated. Furthermore, a simple and sensitive colorimetric detection for dopamine is established by the concentration-dependent assembly.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Wei Liu
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | | | - Danny Haubold
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Matthias Holzschuh
- Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | - Frank Simon
- Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | | |
Collapse
|
31
|
Wen D, Liu W, Haubold D, Zhu C, Oschatz M, Holzschuh M, Wolf A, Simon F, Kaskel S, Eychmüller A. Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces. ACS NANO 2016; 10:2559-67. [PMID: 26751502 PMCID: PMC4768295 DOI: 10.1021/acsnano.5b07505] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/11/2016] [Indexed: 05/19/2023]
Abstract
Three-dimensional (3D) porous metal nanostructures have been a long sought-after class of materials due to their collective properties and widespread applications. In this study, we report on a facile and versatile strategy for the formation of Au hydrogel networks involving the dopamine-induced 3D assembly of Au nanoparticles. Following supercritical drying, the resulting Au aerogels exhibit high surface areas and porosity. They are all composed of porous nanowire networks reflecting in their diameters those of the original particles (5-6 nm) via electron microscopy. Furthermore, electrocatalytic tests were carried out in the oxidation of some small molecules with Au aerogels tailored by different functional groups. The beta-cyclodextrin-modified Au aerogel, with a host-guest effect, represents a unique class of porous metal materials of considerable interest and promising applications for electrocatalysis.
Collapse
Affiliation(s)
- Dan Wen
- Physical
Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Wei Liu
- Physical
Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Danny Haubold
- Physical
Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Chengzhou Zhu
- Physical
Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Martin Oschatz
- Inorganic
Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Matthias Holzschuh
- Leibniz
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - André Wolf
- Physical
Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Frank Simon
- Leibniz
Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Stefan Kaskel
- Inorganic
Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | | |
Collapse
|
32
|
|
33
|
|
34
|
Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)-Y(III)-dopamine system. Talanta 2015; 138:203-208. [PMID: 25863392 DOI: 10.1016/j.talanta.2015.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/24/2022]
Abstract
It was found that silver nanoparticles (AgNPs) could enhance co-luminescence effect of rare earths ions Tb(3+) and Y(3+). Based on this, a sensitive fluorescence detection method for the determination of dopamine (DA) was proposed. Moreover, the detection limit for DA was very low (down to nM). This is because DA can remarkably enhance the luminescence intensity of the Tb(3+) ion by Y(3+) in the colloidal solution of AgNPs, forming a new co-luminescence system. Furthermore, based on the metal enhanced fluorescence (MEF), AgNPs can sensitize the co-luminescence effect of the complex of Tb(3+)-Y(3+)-DA. In a neutral buffer solution (pH 7.50), the luminescence intensity of the system was linearly related to the concentration of DA in the range of 2.0-100 nM, with a limit of detection as low as 0.57 nM. The proposed method was applied for the determination of DA in dopamine hydrochloride injections and human serum samples with good accuracy and satisfactory recovery.
Collapse
|
35
|
Zhang X, Chen X, Kai S, Wang HY, Yang J, Wu FG, Chen Z. Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles. Anal Chem 2015; 87:3360-5. [DOI: 10.1021/ac504520g] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaokai Chen
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Siqi Kai
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong-Yin Wang
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jingjing Yang
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Chemistry
and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fu-Gen Wu
- State Key Laboratory
of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Ahmadov TO, Joshi P, Zhang J, Nahan K, Caruso JA, Zhang P. Paramagnetic relaxation based biosensor for selective dopamine detection. Chem Commun (Camb) 2015; 51:11425-8. [DOI: 10.1039/c5cc02732b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report a new NMR relaxation time-based method for sensitive and selective dopamine detection using paramagnetic nanoparticles.
Collapse
Affiliation(s)
| | - Padmanabh Joshi
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - Jinnan Zhang
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - Keaton Nahan
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | | | - Peng Zhang
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
37
|
Palanisamy S, Zhang X, He T. Fast, sensitive and selective colorimetric gold bioassay for dopamine detection. J Mater Chem B 2015; 3:6019-6025. [DOI: 10.1039/c5tb00495k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive and selective colorimetric biosensor for dopamine has been developed by using double molecular recognition modified Au nanoparticles.
Collapse
Affiliation(s)
- Sivakumar Palanisamy
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Xuehua Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Tao He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
38
|
Chen Z, Zhang C, Zhou T, Ma H. Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1417-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Raj V, Johnson T, Joseph K. Cholesterol aided etching of tomatine gold nanoparticles: A non-enzymatic blood cholesterol monitor. Biosens Bioelectron 2014; 60:191-4. [DOI: 10.1016/j.bios.2014.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 11/17/2022]
|
40
|
Qian T, Yu C, Zhou X, Ma P, Wu S, Xu L, Shen J. Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens Bioelectron 2014; 58:237-41. [PMID: 24657643 DOI: 10.1016/j.bios.2014.02.081] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
Abstract
A novel electrochemical sensor using the molecularly imprinted (MIP) oxygen-containing polypyrrole (PPy) decorated carbon nanotubes (CNTs) composite was proposed for in vivo detection of dopamine (DA). The prepared sensor exhibits a remarkable sensitivity of (16.18μA/μM) with a linear range of 5.0×10(-11)-5.0×10(-6)M and limit of detection as low as 1.0×10(-11)M in the detection of DA, which might be due to the plenty cavities for binding DA through π-π stacking between aromatic rings and hydrogen bonds between amino groups of DA and oxygen-containing groups of the novel PPy.
Collapse
Affiliation(s)
- Tao Qian
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chenfei Yu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Peipei Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210046, China.
| |
Collapse
|
41
|
Mu Q, Xu H, Li Y, Ma S, Zhong X. Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst 2013; 139:93-8. [PMID: 24153190 DOI: 10.1039/c3an01592k] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile detection of dopamine (DA) in biological samples for diagnostics remains a challenge. This paper reported an effective fluorescent sensor based on adenosine capped CdSe/ZnS quantum dots (A-QDs) for highly sensitive detection of DA in human urine samples. In this assay, adenosine serves as a capping ligand or stabilizer for QDs to render high-quality QDs dispersed in water, and as a receptor for DA to attach DA onto the surface of A-QDs. DA molecules can bind to A-QDs via non-covalent bonding, leading to the fluorescence quenching of A-QDs due to electron transfer. The A-QDs based fluorescence probe showed a limit of detection (LOD) of ca. 29.3 nM for DA detection. This facile method exhibited high selectivity and anti-interference in the presence of amino acid, ascorbic acid (AA), uric acid (UA) and glucide with 100-fold higher concentration in PBS solution. Furthermore, it was also successfully used in the detection of DA in the human urine samples with quantitative recoveries (94.80-103.40%).
Collapse
Affiliation(s)
- Qin Mu
- Institute of Applied Chemistry, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| | | | | | | | | |
Collapse
|
42
|
Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ. Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1226-31. [PMID: 23387928 DOI: 10.1021/am400402c] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we developed a low-cost, facile, sensitive, and selective colorimetric method for the quantitative determination of dopamine, based on 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol (AHMT) functionalized gold nanoparticles (AHMP-AuNPs) as a model probe. Dopamine could induce the aggregation of the AHMT-AuNPs through hydrogen-bonding interactions, which caused the colloidal solution changed from red to blue. And the color change was in situ monitored for the quantitative determination of dopamine in human serum and urine samples. The developed approach is simple, without using complex financial instruments and adding other metal salts or ions for improving sensitivity.
Collapse
Affiliation(s)
- Jiu-Ju Feng
- College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | | | | | | | | | | |
Collapse
|