1
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
2
|
Georges T, Chèvre R, Cousin SF, Gervais C, Thureau P, Mollica G, Azaïs T. 43Ca MAS-DNP NMR of Frozen Solutions for the Investigation of Calcium Ion Complexation. ACS OMEGA 2024; 9:4881-4891. [PMID: 38313477 PMCID: PMC10831850 DOI: 10.1021/acsomega.3c08292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
Calcium ion complexation in aqueous solutions is of paramount importance in biology as it is related to cell signaling, muscle contraction, or biomineralization. However, Ca2+-complexes are dynamic soluble entities challenging to describe at the molecular level. Nuclear magnetic resonance appears as a method of choice to probe Ca2+-complexes. However, 43Ca NMR exhibits severe limitations arising from the low natural abundance coupled to the low gyromagnetic ratio and the quadrupolar nature of 43Ca, which overall make it a very unreceptive nucleus. Here, we show that 43Ca dynamic nuclear polarization (DNP) NMR of 43Ca-labeled frozen solutions is an efficient approach to enhance the NMR receptivity of 43Ca and to obtain structural insights about calcium ions complexed with representative ligands including water molecules, ethylenediaminetetraacetic acid (EDTA), and l-aspartic acid (l-Asp). In these conditions and in combination with numerical simulations and calculations, we show that 43Ca nuclei belonging to Ca2+ complexed to the investigated ligands exhibit rather low quadrupolar couplings (with CQ typically ranging from 0.6 to 1 MHz) due to high symmetrical environments and potential residual dynamics in vitrified solutions at a temperature of 100 K. As a consequence, when 1H→43Ca cross-polarization (CP) is used to observe 43Ca central transition, "high-power" νRF(43Ca) conditions, typically used to detect spin 1/2 nuclei, provide ∼120 times larger sensitivity than "low-power" conditions usually employed for detection of quadrupolar nuclei. These "high-power" CPMAS conditions allow two-dimensional (2D) 1H-43Ca HetCor spectra to be readily recorded, highlighting various Ca2+-ligand interactions in solution. This significant increase in 43Ca NMR sensitivity results from the combination of distinct advantages: (i) an efficient 1H-mediated polarization transfer from DNP, resembling the case of low-natural-abundance spin 1/2 nuclei, (ii) a reduced dynamics, allowing the use of CP as a sensitivity enhancement technique, and (iii) the presence of a relatively highly symmetrical Ca environment, which, combined to residual dynamics, leads to the averaging of the quadrupolar interaction and hence to efficient high-power CP conditions. Interestingly, these results indicate that the use of high-power CP conditions is an effective way of selecting symmetrical and/or dynamic 43Ca environments of calcium-containing frozen solution, capable of filtering out more rigid and/or anisotropic 43Ca sites characterized by larger quadrupolar constants. This approach could open the way to the atomic-level investigation of calcium environments in more complex, heterogeneous frozen solutions, such as those encountered at the early stages of calcium phosphate or calcium carbonate biomineralization events.
Collapse
Affiliation(s)
- Tristan Georges
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | - Romain Chèvre
- Aix
Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Christel Gervais
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | | | | | - Thierry Azaïs
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
3
|
Dai D, Denysenkov V, Bagryanskaya EG, Tormyshev VM, Prisner TF, Kuzhelev AA. 13C Hyperpolarization of Viscous Liquids by Transfer of Solid-Effect 1H Dynamic Nuclear Polarization at High Magnetic Field. J Phys Chem Lett 2023; 14:7059-7064. [PMID: 37526333 DOI: 10.1021/acs.jpclett.3c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dynamic nuclear polarization (DNP) is routinely used as a method for increasing the sensitivity to nuclear magnetic resonance (NMR). Recently, high-field solid-effect DNP in viscous liquids on 1H nuclei was demonstrated using narrow-line polarizing agents. Here we expand the applicability of DNP in viscous media to 13C nuclei. To hyperpolarize 13C nuclei, we combined solid-effect 1H DNP with a subsequent transfer of the 1H polarization to 13C via insensitive nuclei enhanced by polarization transfer (INEPT). We demonstrate this approach using a triarylmethyl radical as a polarizing agent and glycerol-13C3 as an analyte. We achieved 13C enhancement factors of up to 45 at a magnetic field of 9.4 T and room temperature.
Collapse
Affiliation(s)
- Danhua Dai
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Vasyl Denysenkov
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, Novosibirsk 630090, Russia
| | - Thomas F Prisner
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Andrei A Kuzhelev
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| |
Collapse
|
4
|
Mishra A, Hope MA, Stevanato G, Kubicki DJ, Emsley L. Dynamic Nuclear Polarization of Inorganic Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11094-11102. [PMID: 37342202 PMCID: PMC10278140 DOI: 10.1021/acs.jpcc.3c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The intrinsic low sensitivity of nuclear magnetic resonance (NMR) experiments limits their utility for structure determination of materials. Dynamic nuclear polarization (DNP) under magic angle spinning (MAS) has shown tremendous potential to overcome this key limitation, enabling the acquisition of highly selective and sensitive NMR spectra. However, so far, DNP methods have not been explored in the context of inorganic lead halide perovskites, which are a leading class of semiconductor materials for optoelectronic applications. In this work, we study cesium lead chloride and quantitatively compare DNP methods based on impregnation with a solution of organic biradicals with doping of high-spin metal ions (Mn2+) into the perovskite structure. We find that metal-ion DNP provides the highest bulk sensitivity in this case, while highly surface-selective NMR spectra can be acquired using impregnation DNP. The performance of both methods is explained in terms of the relaxation times, particle size, dopant concentration, and surface wettability. We envisage the future use of DNP NMR approaches in establishing structure-activity relationships in inorganic perovskites, especially for mass-limited samples such as thin films.
Collapse
|
5
|
Song B, Li Y, Wu XP, Wang F, Lin M, Sun Y, Jia AP, Ning X, Jin L, Ke X, Yu Z, Yang G, Hou W, Ding W, Gong XQ, Peng L. Unveiling the Surface Structure of ZnO Nanorods and H 2 Activation Mechanisms with 17O NMR Spectroscopy. J Am Chem Soc 2022; 144:23340-23351. [PMID: 36512749 DOI: 10.1021/jacs.2c08356] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ZnO plays a very important role in many catalytic processes involving H2, yet the details on their interactions and H2 activation mechanism are still missing, owing to the lack of a characterization method that provides resolution at the atomic scale and follows the fate of oxide surface species. Here, we apply 17O solid-state NMR spectroscopy in combination with DFT calculations to unravel the surface structure of ZnO nanorods and explore the H2 activation process. We show that six different types of oxygen ions in the surface and subsurface of ZnO can be distinguished. H2 undergoes heterolytic dissociation on three-coordinated surface zinc and oxygen ions, while the formed hydride species migrate to nearby oxygen species, generating a second hydroxyl site. When oxygen vacancies are present, homolytic dissociation of H2 occurs and zinc hydride species form from the vacancies. Reaction mechanisms on oxide surfaces can be explored in a similar manner.
Collapse
Affiliation(s)
- Benteng Song
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yuhong Li
- Suzhou Key Laboratory of Functional Ceramic Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu215500, Jiangsu, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
| | - Fang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis138634, Singapore
| | - Yunhua Sun
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Ai-Ping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Xiang Ning
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Li Jin
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhiwu Yu
- High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei230031, China
| | - Gang Yang
- Suzhou Key Laboratory of Functional Ceramic Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu215500, Jiangsu, China
| | - Wenhua Hou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210093, China.,Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
6
|
Equbal A, Jain SK, Li Y, Tagami K, Wang X, Han S. Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:1-16. [PMID: 34852921 DOI: 10.1016/j.pnmrs.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Kumar Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Xiaoling Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
7
|
Nagashima H, Trébosc J, Kon Y, Lafon O, Amoureux JP. Efficient transfer of DNP-enhanced 1 H magnetization to half-integer quadrupolar nuclei in solids at moderate spinning rate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:920-939. [PMID: 33300128 DOI: 10.1002/mrc.5121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
We show herein how the proton magnetization enhanced by dynamic nuclear polarization (DNP) can be efficiently transferred at moderate magic-angle spinning (MAS) frequencies to half-integer quadrupolar nuclei, S ≥ 3/2, using the Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (D-RINEPT) technique, in which a symmetry-based SR 4 1 2 recoupling scheme built from adiabatic inversion 1 H pulses reintroduces the 1 H-S dipolar couplings, while suppressing the 1 H-1 H ones. The use of adiabatic pulses also improves the robustness to offsets and radiofrequency (rf)-field inhomogeneity. Furthermore, the efficiency of the polarization transfer is further improved by using 1 H composite pulses and continuous-wave irradiations between the recoupling blocks, as well as by manipulating the S satellite transitions during the first recoupling block. Furthermore, in the case of large 1 H-S dipolar couplings, the D-RINEPT variant with two pulses on the quadrupolar channel results in an improved transfer efficiency. We compare here the performances of this new adiabatic scheme with those of its parent version with single π pulses, as well as with those of PRESTO and CPMAS transfers. This comparison is performed using simulations as well as DNP-enhanced 27 Al, 95 Mo, and 17 O NMR experiments on isotopically unmodified γ-alumina, hydrated titania-supported MoO3 , Mg(OH)2 , and l-histidine·HCl·H2 O. The introduced RINEPT method outperforms the existing methods, both in terms of efficiency and robustness to rf-field inhomogeneity and offset.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Institut Universitaire de France, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Bruker BioSpin, Wissembourg, France
- NMR Science and Development Division, Riken, Yokohama, Japan
| |
Collapse
|
8
|
Gómez J, Rankin A, Trébosc J, Pourpoint F, Tsutsumi Y, Nagashima H, Lafon O, Amoureux JP. Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high magic-angle spinning frequencies. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:447-464. [PMID: 37904781 PMCID: PMC10539806 DOI: 10.5194/mr-2-447-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 11/01/2023]
Abstract
Half-integer spin quadrupolar nuclei are the only magnetic isotopes for the majority of the chemical elements. Therefore, the transfer of polarization from protons to these isotopes under magic-angle spinning (MAS) can provide precious insights into the interatomic proximities in hydrogen-containing solids, including organic, hybrid, nanostructured and biological solids. This transfer has recently been combined with dynamic nuclear polarization (DNP) in order to enhance the NMR signal of half-integer quadrupolar isotopes. However, the cross-polarization transfer lacks robustness in the case of quadrupolar nuclei, and we have recently introduced as an alternative technique a D -RINEPT (through-space refocused insensitive nuclei enhancement by polarization transfer) scheme combining a heteronuclear dipolar recoupling built from adiabatic pulses and a continuous-wave decoupling. This technique has been demonstrated at 9.4 T with moderate MAS frequencies, ν R ≈ 10 -15 kHz, in order to transfer the DNP-enhanced 1 H polarization to quadrupolar nuclei. Nevertheless, polarization transfers from protons to quadrupolar nuclei are also required at higher MAS frequencies in order to improve the 1 H resolution. We investigate here how this transfer can be achieved at ν R ≈ 20 and 60 kHz. We demonstrate that the D -RINEPT sequence using adiabatic pulses still produces efficient and robust transfers but requires large radio-frequency (rf) fields, which may not be compatible with the specifications of most MAS probes. As an alternative, we introduce robust and efficient variants of the D -RINEPT and PRESTO (phase-shifted recoupling effects a smooth transfer of order) sequences using symmetry-based recoupling schemes built from single and composite π pulses. Their performances are compared using the average Hamiltonian theory and experiments at B 0 = 18.8 T on γ -alumina and isopropylamine-templated microporous aluminophosphate (AlPO4 -14), featuring low and significant 1 H-1 H dipolar interactions, respectively. These experiments demonstrate that the 1 H magnetization can be efficiently transferred to 27 Al nuclei using D -RINEPT with SR 4 1 2 (2700 90180 ) recoupling and using PRESTO with R 22 2 7 (1800 ) or R 16 7 6 (2700 90180 ) schemes at ν R = 20 or 62.5 kHz, respectively. The D -RINEPT and PRESTO recoupling schemes complement each other since the latter is affected by dipolar truncation, whereas the former is not. We also analyze the losses during these recoupling schemes, and we show how these magnetization transfers can be used at ν R = 62.5 kHz to acquire in 72 min 2D HETCOR (heteronuclear correlation) spectra between 1 H and quadrupolar nuclei, with a non-uniform sampling (NUS).
Collapse
Affiliation(s)
- Jennifer S. Gómez
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
| | - Andrew G. M. Rankin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- present address: Sorbonne Université, CNRS, Collège de
France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, Paris, 75005, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 –
IMEC – Fédération Chevreul, Lille, 59000, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
| | - Yu Tsutsumi
- Bruker Japan, 3-9 Moriya, Kanagawa, Yokohama, Kanagawa,
221-0022, Japan
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1
Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- Institut Universitaire de France, 1 rue Descartes, Paris, 75231,
France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- Riken NMR Science and Development Division, Yokohama, Kanagawa, 230-0045, Japan
- Bruker Biospin, 34 rue de l'industrie, Wissembourg, 67166, France
| |
Collapse
|
9
|
Carnevale D, Mouchaham G, Wang S, Baudin M, Serre C, Bodenhausen G, Abergel D. Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Phys Chem Chem Phys 2021; 23:2245-2251. [PMID: 33443274 DOI: 10.1039/d0cp06064j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 17O resonances of zirconium-oxo clusters that can be found in porous Zr carboxylate metal-organic frameworks (MOFs) have been investigated by magic-angle spinning (MAS) NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). High-resolution 17O spectra at 0.037% natural abundance could be obtained in 48 hours, thanks to DNP enhancement of the 1H polarization by factors ε(1H) = Swith/Swithout = 28, followed by 1H → 17O cross-polarization, allowing a saving in experimental time by a factor of ca. 800. The distinct 17O sites from the oxo-clusters can be resolved at 18.8 T. Their assignment is supported by density functional theory (DFT) calculations of chemical shifts and quadrupolar parameters. Protonation of 17O sites seems to be leading to large characteristic shifts. Hence, natural abundance 17O NMR spectra of diamagnetic MOFs can thus be used to probe and characterize the local environment of different 17O sites on an atomic scale.
Collapse
Affiliation(s)
- Diego Carnevale
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Page SJ, Gallo A, Brown SP, Lewandowski JR, Hanna JV, Franks WT. Simultaneous MQMAS NMR Experiments for Two Half-Integer Quadrupolar Nuclei. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106831. [PMID: 33022562 PMCID: PMC7661836 DOI: 10.1016/j.jmr.2020.106831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
A procedure to acquire two Multiple-Quantum Magic Angle Spinning (MQMAS) NMR experiments with the same instrument time is presented. A triply tuned probe is utilized with multiple receivers to collect data with staggered acquisitions and thus more efficiently use the instrument time. The data for one nucleus is collected during the recovery delay of the other nucleus, and vice versa. The instrument time is reduced to 60-80% of the time needed for the single acquisition collection Specifically our approach is presented for recording triple-quantum (3Q) 17O and either 3Q or quintuple-quantum (5Q) 27Al MAS NMR spectra of a 1.18Na2O•5SiO2•Al2O3 glass gel.
Collapse
Affiliation(s)
- Samuel J Page
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Angelo Gallo
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John V Hanna
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
11
|
Stevanato G, Casano G, Kubicki DJ, Rao Y, Esteban Hofer L, Menzildjian G, Karoui H, Siri D, Cordova M, Yulikov M, Jeschke G, Lelli M, Lesage A, Ouari O, Emsley L. Open and Closed Radicals: Local Geometry around Unpaired Electrons Governs Magic-Angle Spinning Dynamic Nuclear Polarization Performance. J Am Chem Soc 2020; 142:16587-16599. [PMID: 32806886 DOI: 10.1021/jacs.0c04911] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of magic-angle spinning dynamic nuclear polarization (MAS DNP) has allowed atomic-level characterization of materials for which conventional solid-state NMR is impractical due to the lack of sensitivity. The rapid progress of MAS DNP has been largely enabled through the understanding of rational design concepts for more efficient polarizing agents (PAs). Here, we identify a new design principle which has so far been overlooked. We find that the local geometry around the unpaired electron can change the DNP enhancement by an order of magnitude for two otherwise identical conformers. We present a set of 13 new stable mono- and dinitroxide PAs for MAS DNP NMR where this principle is demonstrated. The radicals are divided into two groups of isomers, named open (O-) and closed (C-), based on the ring conformations in the vicinity of the N-O bond. In all cases, the open conformers exhibit dramatically improved DNP performance as compared to the closed counterparts. In particular, a new urea-based biradical named HydrOPol and a mononitroxide O-MbPyTol yield enhancements of 330 ± 60 and 119 ± 25, respectively, at 9.4 T and 100 K, which are the highest enhancements reported so far in the aqueous solvents used here. We find that while the conformational changes do not significantly affect electron spin-spin distances, they do affect the distribution of the exchange couplings in these biradicals. Electron spin echo envelope modulation (ESEEM) experiments suggest that the improved performance of the open conformers is correlated with higher solvent accessibility.
Collapse
Affiliation(s)
- Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gilles Casano
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Dominik J Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Laura Esteban Hofer
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Georges Menzildjian
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS de Lyon/UCB-Lyon 1), 69100 Villeurbanne, France
| | - Hakim Karoui
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Didier Siri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Maxim Yulikov
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry, Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Moreno Lelli
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS de Lyon/UCB-Lyon 1), 69100 Villeurbanne, France
| | - Olivier Ouari
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Viger-Gravel J, Paruzzo FM, Cazaux C, Jabbour R, Leleu A, Canini F, Florian P, Ronzon F, Gajan D, Lesage A. Atomic-Scale Description of Interfaces between Antigen and Aluminum-Based Adjuvants Used in Vaccines by Dynamic Nuclear Polarization (DNP) Enhanced NMR Spectroscopy. Chemistry 2020; 26:8976-8982. [PMID: 32428253 DOI: 10.1002/chem.202001141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/05/2022]
Abstract
The addition of aluminum-based adjuvants in vaccines enhances the immune response to antigens. The strength of antigen adsorption on adjuvant gels is known to modulate vaccine efficacy. However, a detailed understanding of the mechanisms of interaction between aluminum gels and antigens is still missing. Herein, a new analytical approach based on dynamic nuclear polarization (DNP) enhanced NMR spectroscopy under magic angle spinning (MAS) is implemented to provide a molecular description of the antigen-adjuvant interface. This approach is demonstrated on hepatitis B surface antigen particles in combination with three aluminum gels obtained from different suppliers. Both noncovalent and covalent interactions between the phospholipids of the antigen particles and the surface of the aluminum gels are identified by using MAS DNP NMR 27 Al and 31 P correlation experiments. Although covalent interactions were detected for only one of the formulations, dipolar recoupling rotational echo adiabatic passage double resonance (REAPDOR) experiments reveal significant differences in the strength of weak interactions.
Collapse
Affiliation(s)
- Jasmine Viger-Gravel
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Federico M Paruzzo
- Institut des Sciences et Ingénierie Chimiques Batochime, École Polytechnique Fédérale de Lausanne (EPFL), 1530, Lausanne, Switzerland
| | - Corine Cazaux
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - Ribal Jabbour
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Amandine Leleu
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - Françoise Canini
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - Pierre Florian
- CNRS, UPR3079 CEMHTI, 1D ave de la Recherche Scientifique, 45100, Orléans, France
| | - Frédéric Ronzon
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - David Gajan
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Anne Lesage
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
13
|
Nagashima H, Trébosc J, Kon Y, Sato K, Lafon O, Amoureux JP. Observation of Low-γ Quadrupolar Nuclei by Surface-Enhanced NMR Spectroscopy. J Am Chem Soc 2020; 142:10659-10672. [DOI: 10.1021/jacs.9b13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS-2638, Fédération Chevreul, F-59000 Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Institut Universitaire de France, 1 rue Descartes, F-75231 Paris, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Bruker Biospin, 34 rue de l’industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| |
Collapse
|
14
|
Abstract
The solid effect (SE) is a two spin dynamic nuclear polarization (DNP) mechanism that enhances the sensitivity in NMR experiments by irradiation of the electron-nuclear spin transitions with continuous wave (CW) microwaves at ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively. Using trityl (OX063), dispersed in a 60/40 glycerol/water mixture at 80 K, as a polarizing agent, we show here that application of a chirped microwave pulse, with a bandwidth comparable to the EPR line width applied at the SE matching condition, improves the enhancement by a factor of 2.4 over the CW method. Furthermore, the chirped pulse yields an enhancement that is ∼20% larger than obtained with the ramped-amplitude NOVEL (RA-NOVEL), which to date has achieved the largest enhancements in time domain DNP experiments. Numerical simulations suggest that the spins follow an adiabatic trajectory during the polarization transfer; hence, we denote this sequence as an adiabatic solid effect (ASE). We foresee that ASE will be a practical pulsed DNP experiment to be implemented at higher static magnetic fields due to the moderate power requirement. In particular, the ASE uses only 13% of the maximum microwave power required for RA-NOVEL.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralph T Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Thach V Can
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Shen L, Wang Y, Du JH, Chen K, Lin Z, Wen Y, Hung I, Gan Z, Peng L. Probing Interactions of γ-Alumina with Water via Multinuclear Solid-State NMR Spectroscopy. ChemCatChem 2020; 12:1569-1574. [PMID: 34168686 DOI: 10.1002/cctc.201901838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interaction of γ-alumina with water are important in controlling its structure and catalytic properties. We apply solid-state multinuclear NMR spectroscopy to investigate this interaction by monitoring 1H and 17O spectra in real-time. Surface-selective detection is made possible by adsorbing 17O-enriched water on γ-alumina nanorods. Structural evolution on the surface was selectively probed by 1H/17O double resonance NMR and 27Al NMR at ultrahigh 35.2 T magnetic field. Formation of hydroxyl species on the surface of nanorods is rapid upon the exposure of water, which involves low coordinated aluminum ions with doubly bridging and isolated hydroxyl species being generated first. Fast exchange occurs between oxygen atoms in the water molecules and bare surface sites, indicating high reactivity of these oxygen species. These results provide new insights into the structure and dynamics on the surface of γ-alumina and the methods applied here can be extended to study the interaction of other oxides with water.
Collapse
Affiliation(s)
- Li Shen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Huan Du
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kuizhi Chen
- National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
17
|
Hanrahan MP, Chen Y, Blome-Fernández R, Stein JL, Pach GF, Adamson MAS, Neale NR, Cossairt BM, Vela J, Rossini AJ. Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials. J Am Chem Soc 2019; 141:15532-15546. [PMID: 31456398 DOI: 10.1021/jacs.9b05509] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by 1-2 orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (h-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity in comparison to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with h-BN, and then impregnating the powdered mixture with radical solution leads to further 4-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor of 9 improvement in NMR sensitivity in comparison to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si, and Cd3P2 NPs. These experiments allow NMR signals from the surface, subsurface, and core sites to be observed and assigned. For example, we demonstrate the acquisition of DNP-enhanced 2D 113Cd-113Cd correlation NMR experiments on CdS NPs and natural isotropic abundance 2D 13C-29Si HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures.
Collapse
Affiliation(s)
- Michael P Hanrahan
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | - Yunhua Chen
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | | | - Jennifer L Stein
- University of Washington , Department of Chemistry , Seattle , Washington 98195 , United States
| | - Gregory F Pach
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Marquix A S Adamson
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States
| | - Nathan R Neale
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , 15013 Denver West Parkway , Golden , Colorado 80401 , United States
| | - Brandi M Cossairt
- University of Washington , Department of Chemistry , Seattle , Washington 98195 , United States
| | - Javier Vela
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| | - Aaron J Rossini
- Iowa State University , Department of Chemistry , Ames , Iowa 50011 , United States.,US DOE Ames Laboratory , Ames , Iowa 50011 , United States
| |
Collapse
|
18
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
19
|
Wang X, Caulkins BG, Riviere G, Mueller LJ, Mentink-Vigier F, Long JR. Direct dynamic nuclear polarization of 15N and 13C spins at 14.1 T using a trityl radical and magic angle spinning. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:85-91. [PMID: 31026722 PMCID: PMC6604067 DOI: 10.1016/j.ssnmr.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 05/05/2023]
Abstract
We investigate solid-state dynamic nuclear polarization of 13C and 15N nuclei using monoradical trityl OX063 as a polarizing agent in a magnetic field of 14.1 T with magic angle spinning at ∼100 K. We monitored the field dependence of direct 13C and 15N polarization for frozen [13C, 15N] urea and achieved maximum absolute enhancement factors of 240 and 470, respectively. The field profiles are consistent with polarization of 15N spins via either the solid effect or the cross effect, and polarization of 13C spins via a combination of cross effect and solid effect. For microcrystalline, 15N-enriched tryptophan synthase sample containing trityl radical, a 1500-fold increase in 15N signal was observed under microwave irradiation. These results show the promise of trityl radicals and their derivatives for direct polarization of low gamma, spin-½ nuclei at high magnetic fields and suggest a novel approach for selectively polarizing specific moieties or for polarizing systems which have low levels of protonation.
Collapse
Affiliation(s)
- Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Bethany G Caulkins
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Gwladys Riviere
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA.
| |
Collapse
|
20
|
Wolf T, Kumar S, Singh H, Chakrabarty T, Aussenac F, Frenkel AI, Major DT, Leskes M. Endogenous Dynamic Nuclear Polarization for Natural Abundance 17O and Lithium NMR in the Bulk of Inorganic Solids. J Am Chem Soc 2018; 141:451-462. [DOI: 10.1021/jacs.8b11015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tamar Wolf
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sandeep Kumar
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Harishchandra Singh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tanmoy Chakrabarty
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fabien Aussenac
- Bruker BioSpin, 34 rue de l’Industrie BP 10002, 67166 Wissembourg Cedex, France
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Michal Leskes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Wisser D, Karthikeyan G, Lund A, Casano G, Karoui H, Yulikov M, Menzildjian G, Pinon AC, Purea A, Engelke F, Chaudhari SR, Kubicki D, Rossini AJ, Moroz IB, Gajan D, Copéret C, Jeschke G, Lelli M, Emsley L, Lesage A, Ouari O. BDPA-Nitroxide Biradicals Tailored for Efficient Dynamic Nuclear Polarization Enhanced Solid-State NMR at Magnetic Fields up to 21.1 T. J Am Chem Soc 2018; 140:13340-13349. [DOI: 10.1021/jacs.8b08081] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorothea Wisser
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | | | - Alicia Lund
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Gilles Casano
- AixMarseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Hakim Karoui
- AixMarseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Georges Menzildjian
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Arthur C. Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | - Sachin R. Chaudhari
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Dominik Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aaron J. Rossini
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ilia B. Moroz
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - David Gajan
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Moreno Lelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne Lesage
- Institut de Sciences Analytiques, Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Olivier Ouari
- AixMarseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
22
|
Rossini AJ. Materials Characterization by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. J Phys Chem Lett 2018; 9:5150-5159. [PMID: 30107121 DOI: 10.1021/acs.jpclett.8b01891] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-resolution solid-state NMR spectroscopy is a powerful tool for the study of organic and inorganic materials because it can directly probe the symmetry and structure at nuclear sites, the connectivity/bonding of atoms and precisely measure interatomic distances. However, NMR spectroscopy is hampered by intrinsically poor sensitivity; consequently, the application of NMR spectroscopy to many solid materials is often infeasible. High-field dynamic nuclear polarization (DNP) has emerged as a technique to routinely enhance the sensitivity of solid-state NMR experiments by 1-3 orders of magnitude. This Perspective gives a general overview of how DNP-enhanced solid-state NMR spectroscopy can be applied to a variety of inorganic and organic materials. DNP-enhanced solid-state NMR experiments provide unique insights into the molecular structure, which makes it possible to form structure-activity relationships that ultimately assist in the rational design and improvement of materials.
Collapse
Affiliation(s)
- Aaron J Rossini
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
- U.S. DOE Ames Laboratory , Ames , Iowa 50011 , United States
| |
Collapse
|
23
|
Mentink-Vigier F, Marin-Montesinos I, Jagtap AP, Halbritter T, van Tol J, Hediger S, Lee D, Sigurdsson ST, De Paëpe G. Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family. J Am Chem Soc 2018; 140:11013-11019. [PMID: 30095255 PMCID: PMC6145599 DOI: 10.1021/jacs.8b04911] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 12/11/2022]
Abstract
We introduce a new family of highly efficient polarizing agents for dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) applications, composed of asymmetric bis-nitroxides, in which a piperidine-based radical and a pyrrolinoxyl or a proxyl radical are linked together. The design of the AsymPol family was guided by the use of advanced simulations that allow computation of the impact of the radical structure on DNP efficiency. These simulations suggested the use of a relatively short linker with the intention to generate a sizable intramolecular electron dipolar coupling/ J-exchange interaction, while avoiding parallel nitroxide orientations. The characteristics of AsymPol were further tuned, for instance with the addition of a conjugated carbon-carbon double bond in the 5-membered ring to improve the rigidity and provide a favorable relative orientation, the replacement of methyls by spirocyclohexanolyl groups to slow the electron spin relaxation, and the introduction of phosphate groups to yield highly water-soluble dopants. An in-depth experimental and theoretical study for two members of the family, AsymPol and AsymPolPOK, is presented here. We report substantial sensitivity gains at both 9.4 and 18.8 T. The robust efficiency of this new family is further demonstrated through high-resolution surface characterization of an important industrial catalyst using fast sample spinning at 18.8 T. This work highlights a new direction for polarizing agent design and the critical importance of computations in this process.
Collapse
Affiliation(s)
- Frédéric Mentink-Vigier
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-MEM, F-38000 Grenoble, France
- CIMAR/NMR
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | | | - Anil P. Jagtap
- Department
of Chemistry, University of Iceland, Science
Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Thomas Halbritter
- Department
of Chemistry, University of Iceland, Science
Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Johan van Tol
- EMR
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Sabine Hediger
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-MEM, F-38000 Grenoble, France
| | - Daniel Lee
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-MEM, F-38000 Grenoble, France
| | - Snorri Th. Sigurdsson
- Department
of Chemistry, University of Iceland, Science
Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Gaël De Paëpe
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-MEM, F-38000 Grenoble, France
| |
Collapse
|
24
|
Li W, Wang Q, Xu J, Aussenac F, Qi G, Zhao X, Gao P, Wang C, Deng F. Probing the surface of γ-Al 2O 3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Phys Chem Chem Phys 2018; 20:17218-17225. [PMID: 29900471 DOI: 10.1039/c8cp03132k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Al2O3 is an important catalyst and catalyst support of industrial interest. Its acid/base characteristics are correlated to the surface structure, which has always been an issue of concern. In this work, the complex (sub-)surface oxygen species on surface-selectively labelled γ-Al2O3 were probed by 17O dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS). Direct 17O MAS and indirect 1H-17O cross-polarization (CP)/MAS DNP experiments enable observation of the (sub-)surface bare oxygen species and hydroxyl groups. In particular, a two-dimensional (2D) 17O 3QMAS DNP spectrum was for the first time achieved for γ-Al2O3, in which two O(Al)4 and one O(Al)3 bare oxygen species were identified. The 17O isotropic chemical shifts (δcs) vary from 56.7 to 81.0 ppm and the quadrupolar coupling constants (CQ) range from 0.6 to 2.5 MHz for the three oxygen species. The coordinatively unsaturated O(Al)3 species is characterized by a higher field chemical shift (56.7 ppm) and the largest CQ value (2.5 MHz) among these oxygen sites. 2D 1H → 17O HETCOR DNP experiments allow us to discriminate three bridging (Aln)-μ2-OH and two terminal (Aln)-μ1-OH hydroxyl groups. The structural features of the bare oxygen species and hydroxyl groups are similar for the γ-Al2O3 samples isotopically labelled by 17O2 gas or H217O. The results presented here show that the combination of surface-selective labelling and DNP-SENS is an effective approach for characterizing oxides with complex surface species.
Collapse
Affiliation(s)
- Wenzheng Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Du JH, Peng L. Recent progress in investigations of surface structure and properties of solid oxide materials with nuclear magnetic resonance spectroscopy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
27
|
Chaudhari S, Wisser D, Pinon AC, Berruyer P, Gajan D, Tordo P, Ouari O, Reiter C, Engelke F, Copéret C, Lelli M, Lesage A, Emsley L. Dynamic Nuclear Polarization Efficiency Increased by Very Fast Magic Angle Spinning. J Am Chem Soc 2017; 139:10609-10612. [PMID: 28692804 PMCID: PMC5719465 DOI: 10.1021/jacs.7b05194] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/03/2022]
Abstract
Dynamic nuclear polarization (DNP) has recently emerged as a tool to enhance the sensitivity of solid-state NMR experiments. However, so far high enhancements (>100) are limited to relatively low magnetic fields, and DNP at fields higher than 9.4 T significantly drops in efficiency. Here we report solid-state Overhauser effect DNP enhancements of over 100 at 18.8 T. This is achieved through the unexpected discovery that enhancements increase rapidly with increasing magic angle spinning (MAS) rates. The measurements are made using 1,3-bisdiphenylene-2-phenylallyl dissolved in o-terphenyl at 40 kHz MAS. We introduce a source-sink diffusion model for polarization transfer which is capable of explaining the experimental observations. The advantage of this approach is demonstrated on mesoporous alumina with the acquisition of well-resolved DNP surface-enhanced 27Al cross-polarization spectra.
Collapse
Affiliation(s)
- Sachin
R. Chaudhari
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Dorothea Wisser
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Arthur C. Pinon
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - David Gajan
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Paul Tordo
- Aix-Marseille
Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Olivier Ouari
- Aix-Marseille
Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | | | | | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Moreno Lelli
- Center for
Magnetic Resonance, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Anne Lesage
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Venkatesh A, Hanrahan MP, Rossini AJ. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:171-181. [PMID: 28392024 DOI: 10.1016/j.ssnmr.2017.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/09/2023]
Abstract
Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as 13C, 15N and 29Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the 1H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as 17O, 27Al, 35Cl and 71Ga is demonstrated.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Michael P Hanrahan
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
29
|
Paluch P, Potrzebowska N, Ruppert AM, Potrzebowski MJ. Application of 1H and 27Al magic angle spinning solid state NMR at 60kHz for studies of Au and Au-Ni catalysts supported on boehmite/alumina. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:111-117. [PMID: 28159455 DOI: 10.1016/j.ssnmr.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
In this work for the first time we show the power of solid state NMR spectroscopy in structural analysis of alumina and catalysts supported on the alumina surface employing very fast (60kHz) magic angle spinning (MAS) technique. In the methodological part we demonstrate that under such MAS condition, cross-polarization (CP) from proton to aluminum is an efficient process when a very weak 27Al RF field is applied. The mechanism of CP transfer and the Hartmann-Hahn (H-H) matching conditions were tested for 27Al RF fields equal to 3.3 and 8.3kHz. It has been found that double quantum (DQ) CP/MAS is the best choice for H-H set with RF =3.3kHz. It has been also proved that the quality of 1H-27Al CP/MAS spectra strongly depends on 27Al carrier offset. Applied to γ-alumina, this method revealed that 1H-27Al CP/MAS at 60kHz is extremely useful for mapping the distribution of hydroxyl groups on the surface. Indeed, the AlV sites, which are not easily detected with Single Pulse Experiment (SPE), are clearly seen when 1H-27Al CP/MAS is applied. Utilizing 2D 1H-27Al CP/MAS HETCOR experiment it was possible to assign the proton positions and to correlate them with aluminum centers. Studies of mono- (Au) and bi- (Au-Ni) metallic catalysts supported on boehmite/alumina carrier employing 1D and 2D HETCOR experiments clearly show that distributions of hydroxyl groups for both systems are dramatically different.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland
| | - Natalia Potrzebowska
- Institute of General and Ecological Chemistry Faculty of Chemistry Lodz, University of Technology, Zeromskiego 116, PL-90-924 Lodz, Poland
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry Faculty of Chemistry Lodz, University of Technology, Zeromskiego 116, PL-90-924 Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland
| |
Collapse
|
30
|
Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE. Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. Proc Natl Acad Sci U S A 2017; 114:5171-5176. [PMID: 28461483 PMCID: PMC5441803 DOI: 10.1073/pnas.1701484114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An experimental strategy has been developed to increase the efficiency of dynamic nuclear polarization (DNP) in solid-state NMR studies. The method makes assignments simpler, faster, and more reliable via sequential correlations of both side-chain and Cα resonances. The approach is particularly suited to complex biomolecules and systems with significant chemical-shift degeneracy. It was designed to overcome the spectral congestion and line broadening that occur due to sample freezing at the cryogenic temperatures required for DNP. Nonuniform sampling (NUS) is incorporated to achieve time-efficient collection of multidimensional data. Additionally, fast (25 kHz) magic-angle spinning (MAS) provides optimal sensitivity and resolution. Data collected in <1 wk produced a virtually complete de novo assignment of the coat protein of Pf1 virus. The peak positions and linewidths for samples near 100 K are perturbed relative to those near 273 K. These temperature-induced perturbations are strongly correlated with hydration surfaces.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Boris Itin
- New York Structural Biology Center, New York, NY 10027
| | - Rivkah Rogawski
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Loren A Day
- Public Health Research Institute, Rutgers University, Newark, NJ 07103
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027;
| |
Collapse
|
31
|
Perras FA, Padmos JD, Johnson RL, Wang LL, Schwartz TJ, Kobayashi T, Horton JH, Dumesic JA, Shanks BH, Johnson DD, Pruski M. Characterizing Substrate–Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. J Am Chem Soc 2017; 139:2702-2709. [DOI: 10.1021/jacs.6b11408] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frédéric A. Perras
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - J. Daniel Padmos
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L. Johnson
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lin-Lin Wang
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Thomas J. Schwartz
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Takeshi Kobayashi
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - J. Hugh Horton
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - James A. Dumesic
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brent H. Shanks
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Duane D. Johnson
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department
of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Pruski
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
32
|
Hope MA, Halat DM, Magusin PCMM, Paul S, Peng L, Grey CP. Surface-selective direct 17O DNP NMR of CeO2 nanoparticles. Chem Commun (Camb) 2017; 53:2142-2145. [DOI: 10.1039/c6cc10145c] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We demonstrate surface-selective direct 17O DNP, showing the first three layers of CeO2 nanoparticles can be distinguished with high selectivity.
Collapse
Affiliation(s)
| | - David M. Halat
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | | - Subhradip Paul
- DNP MAS NMR Facility
- Sir Peter Mansfield Magnetic Resonance Centre
- University of Nottingham
- Nottingham
- UK
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Clare P. Grey
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
33
|
Pump E, Viger-Gravel J, Abou-Hamad E, Samantaray MK, Hamzaoui B, Gurinov A, Anjum DH, Gajan D, Lesage A, Bendjeriou-Sedjerari A, Emsley L, Basset JM. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem Sci 2017; 8:284-290. [PMID: 28451174 PMCID: PMC5365068 DOI: 10.1039/c6sc02379g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/12/2016] [Indexed: 01/16/2023] Open
Abstract
Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [([triple bond, length as m-dash]Si-O-)W(Me)5] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.
Collapse
Affiliation(s)
- Eva Pump
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Jasmine Viger-Gravel
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Bilel Hamzaoui
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Andrei Gurinov
- Imaging and Characterization Lab. King Abdullah University of Science and Technology (KAUST) , Thuwal , 23955-6900 , Saudi Arabia
| | - Dalaver H Anjum
- Imaging and Characterization Lab. King Abdullah University of Science and Technology (KAUST) , Thuwal , 23955-6900 , Saudi Arabia
| | - David Gajan
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Anne Lesage
- Institut de Sciences Analytiques (CNRS/ENS-Lyon/UCB-Lyon 1) , Université de Lyon , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Anissa Bendjeriou-Sedjerari
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , KAUST Catalysis Center (KCC) , Thuwal , 23955-6900 , Saudi Arabia . ;
| |
Collapse
|
34
|
Haouas M, Taulelle F, Martineau C. Recent advances in application of (27)Al NMR spectroscopy to materials science. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 94-95:11-36. [PMID: 27247283 DOI: 10.1016/j.pnmrs.2016.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Valuable information about the local environment of the aluminum nucleus can be obtained through (27)Al Nuclear Magnetic Resonance (NMR) parameters like the isotropic chemical shift, scalar and quadrupolar coupling constants, and relaxation rate. With nearly 250 scientific articles per year dealing with (27)Al NMR spectroscopy, this analytical tool has become popular because of the recent progress that has made the acquisition and interpretation of the NMR data much easier. The application of (27)Al NMR techniques to various classes of compounds, either in solution or solid-state, has been shown to be extremely informative concerning local structure and chemistry of aluminum in its various environments. The development of experimental methodologies combined with theoretical approaches and modeling has contributed to major advances in spectroscopic characterization especially in materials sciences where long-range periodicity and classical local NMR probes are lacking. In this review we will present an overview of results obtained by (27)Al NMR as well as the most relevant methodological developments over the last 25years, concerning particularly on progress in the application of liquid- and solid-state (27)Al NMR to the study of aluminum-based materials such as aluminum polyoxoanions, zeolites, aluminophosphates, and metal-organic-frameworks.
Collapse
Affiliation(s)
- Mohamed Haouas
- Institut Lavoisier de Versailles (UMR CNRS 8180), Tectospin Group, Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France.
| | - Francis Taulelle
- Institut Lavoisier de Versailles (UMR CNRS 8180), Tectospin Group, Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| | - Charlotte Martineau
- Institut Lavoisier de Versailles (UMR CNRS 8180), Tectospin Group, Université de Versailles Saint Quentin en Yvelines, 78035 Versailles, France
| |
Collapse
|
35
|
Chaudhari SR, Berruyer P, Gajan D, Reiter C, Engelke F, Silverio DL, Copéret C, Lelli M, Lesage A, Emsley L. Dynamic nuclear polarization at 40 kHz magic angle spinning. Phys Chem Chem Phys 2016; 18:10616-22. [PMID: 27035630 PMCID: PMC5048395 DOI: 10.1039/c6cp00839a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/11/2016] [Indexed: 01/07/2023]
Abstract
DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase (29)Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material.
Collapse
Affiliation(s)
- Sachin R. Chaudhari
- Institut de Sciences Analytiques , Centre de RMN à Très Hauts Champs , Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , France .
| | - Pierrick Berruyer
- Institut de Sciences Analytiques , Centre de RMN à Très Hauts Champs , Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , France .
| | - David Gajan
- Institut de Sciences Analytiques , Centre de RMN à Très Hauts Champs , Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , France .
| | | | | | - Daniel L. Silverio
- ETH Zürich , Department of Chemistry , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Moreno Lelli
- University of Florence , Chemistry Department , Magnetic Resonance Center , 50019 Sesto Fiorentino (FI) , Italy
| | - Anne Lesage
- Institut de Sciences Analytiques , Centre de RMN à Très Hauts Champs , Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , France .
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
36
|
Geiger Y, Gottlieb HE, Akbey Ü, Oschkinat H, Goobes G. Studying the Conformation of a Silaffin-Derived Pentalysine Peptide Embedded in Bioinspired Silica using Solution and Dynamic Nuclear Polarization Magic-Angle Spinning NMR. J Am Chem Soc 2016; 138:5561-7. [DOI: 10.1021/jacs.5b07809] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasmin Geiger
- Department
of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Hugo E. Gottlieb
- Department
of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ümit Akbey
- Leibniz Institute für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert-Roessle-Str.
10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz Institute für Molekulare Pharmakologie (FMP), NMR Supported Structural Biology, Robert-Roessle-Str.
10, Berlin 13125, Germany
| | - Gil Goobes
- Department
of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
37
|
Ong T, Liao W, Mougel V, Gajan D, Lesage A, Emsley L, Copéret C. Atomistic Description of Reaction Intermediates for Supported Metathesis Catalysts Enabled by DNP SENS. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ta‐Chung Ong
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Wei‐Chih Liao
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - David Gajan
- Centre de RMN à Très Hauts Champs Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1) Université de Lyon 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1) Université de Lyon 69100 Villeurbanne France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
38
|
Ong TC, Liao WC, Mougel V, Gajan D, Lesage A, Emsley L, Copéret C. Atomistic Description of Reaction Intermediates for Supported Metathesis Catalysts Enabled by DNP SENS. Angew Chem Int Ed Engl 2016; 55:4743-7. [DOI: 10.1002/anie.201510821] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ta-Chung Ong
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| | - David Gajan
- Centre de RMN à Très Hauts Champs; Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1); Université de Lyon; 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs; Institut de Sciences Analytiques (CNRS/ENS Lyon/UCB Lyon 1); Université de Lyon; 69100 Villeurbanne France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques; École Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| |
Collapse
|
39
|
Siaw TA, Leavesley A, Lund A, Kaminker I, Han S. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:131-153. [PMID: 26920839 PMCID: PMC4770585 DOI: 10.1016/j.jmr.2015.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 05/12/2023]
Abstract
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.
Collapse
Affiliation(s)
- Ting Ann Siaw
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Alisa Leavesley
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Alicia Lund
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Ilia Kaminker
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
40
|
Hirsh DA, Rossini AJ, Emsley L, Schurko RW. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients. Phys Chem Chem Phys 2016; 18:25893-25904. [DOI: 10.1039/c6cp04353d] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms.
Collapse
Affiliation(s)
- David A. Hirsh
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Aaron J. Rossini
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Lausanne
- Switzerland
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
41
|
Zhang Y, Baker PJ, Casabianca LB. BDPA-Doped Polystyrene Beads as Polarization Agents for DNP-NMR. J Phys Chem B 2015; 120:18-24. [PMID: 26717243 DOI: 10.1021/acs.jpcb.5b08741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aromatic free radical BDPA (α,γ-bisdiphenylene-β-phenylallyl), which has been widely used as a polarizing agent for Dynamic Nuclear Polarization (DNP) of hydrophobic analytes, has been incorporated into nanometer-scale polystyrene latex beads. We have shown that the resulting BDPA-doped beads can be used to hyperpolarize (13)C and (7)Li nuclei in aqueous environments, without the need for a glassing cosolvent. DNP enhancement factors of between 20 and 100 were achieved with overall BDPA concentrations of 2 mM or less. These Highly-Effective Polymer/Radical Beads (HYPR-beads) have potential use as an inexpensive polarizing agent for water-soluble analytes, and also have applications as model nanoparticles in DNP studies.
Collapse
Affiliation(s)
- Yunzhi Zhang
- Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Phillip J Baker
- Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| | - Leah B Casabianca
- Department of Chemistry, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
42
|
Bouleau E, Saint-Bonnet P, Mentink-Vigier F, Takahashi H, Jacquot JF, Bardet M, Aussenac F, Purea A, Engelke F, Hediger S, Lee D, De Paëpe G. Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning. Chem Sci 2015; 6:6806-6812. [PMID: 28757972 PMCID: PMC5508678 DOI: 10.1039/c5sc02819a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023] Open
Abstract
We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool.
Collapse
Affiliation(s)
- E Bouleau
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - P Saint-Bonnet
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - F Mentink-Vigier
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - H Takahashi
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - J-F Jacquot
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - M Bardet
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - F Aussenac
- Bruker BioSpin SAS , Wissembourg , France
| | - A Purea
- Bruker BioSpin GmbH , Rheinstetten , Germany
| | - F Engelke
- Bruker BioSpin GmbH , Rheinstetten , Germany
| | - S Hediger
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
- CNRS , SCIB , F-38000 Grenoble , France
| | - D Lee
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| | - G De Paëpe
- Univ. Grenoble Alpes , INAC , F-38000 Grenoble , France .
- CEA , INAC , F-38000 Grenoble , France
| |
Collapse
|
43
|
Kubicki DJ, Casano G, Schwarzwälder M, Abel S, Sauvée C, Ganesan K, Yulikov M, Rossini AJ, Jeschke G, Copéret C, Lesage A, Tordo P, Ouari O, Emsley L. Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem Sci 2015; 7:550-558. [PMID: 29896347 PMCID: PMC5952883 DOI: 10.1039/c5sc02921j] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/12/2015] [Indexed: 12/27/2022] Open
Abstract
A series of 37 dinitroxide biradicals have been prepared and their performance studied as polarizing agents in cross-effect DNP NMR experiments at 9.4 T and 100 K in 1,1,2,2-tetrachloroethane (TCE). We observe that in this regime the DNP performance is strongly correlated with the substituents on the polarizing agents, and electron and nuclear spin relaxation times, with longer relaxation times leading to better enhancements. We also observe that deuteration of the radicals generally leads to better DNP enhancement but with longer build-up time. One of the new radicals introduced here provides the best performance obtained so far under these conditions.
Collapse
Affiliation(s)
- Dominik J Kubicki
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Gilles Casano
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Martin Schwarzwälder
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Sébastien Abel
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Claire Sauvée
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Karthikeyan Ganesan
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Maxim Yulikov
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Aaron J Rossini
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Gunnar Jeschke
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Christophe Copéret
- ETH Zurich , Department of Chemistry, Laboratory of Inorganic Chemistry , 8093 Zurich , Switzerland
| | - Anne Lesage
- Université de Lyon , Institut de Sciences Analytiques (CNRS / ENS de Lyon / UCB-Lyon 1) , Centre de RMN à Très Hauts Champs , 69100 Villeurbanne , France
| | - Paul Tordo
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Olivier Ouari
- Aix-Marseille Université , CNRS , ICR UMR 7273 , 13397 Marseille , France . ;
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
44
|
Valla M, Rossini A, Caillot M, Chizallet C, Raybaud P, Digne M, Chaumonnot A, Lesage A, Emsley L, van Bokhoven JA, Copéret C. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations. J Am Chem Soc 2015; 137:10710-9. [PMID: 26244620 PMCID: PMC4671101 DOI: 10.1021/jacs.5b06134] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 02/07/2023]
Abstract
Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively.
Collapse
Affiliation(s)
- Maxence Valla
- Department
of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Aaron
J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Maxime Caillot
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- IFP
Energies nouvelles, Rond-point
de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Céline Chizallet
- IFP
Energies nouvelles, Rond-point
de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Pascal Raybaud
- IFP
Energies nouvelles, Rond-point
de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Mathieu Digne
- IFP
Energies nouvelles, Rond-point
de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Alexandra Chaumonnot
- IFP
Energies nouvelles, Rond-point
de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Anne Lesage
- Centre de
RMN à Très Hauts Champs, Institut de Sciences Analytiques
(CNRS/ENS Lyon/UCB Lyon 1), Université
de Lyon, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jeroen A. van Bokhoven
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Paul
Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|
45
|
Sangodkar RP, Smith BJ, Gajan D, Rossini AJ, Roberts LR, Funkhouser GP, Lesage A, Emsley L, Chmelka BF. Influences of Dilute Organic Adsorbates on the Hydration of Low-Surface-Area Silicates. J Am Chem Soc 2015; 137:8096-112. [DOI: 10.1021/jacs.5b00622] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rahul P. Sangodkar
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Benjamin J. Smith
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - David Gajan
- Centre
de RMN à Très Hauts Champs, Institut de Sciences Analytiques
(CNRS/ENS Lyon/UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Aaron J. Rossini
- Centre
de RMN à Très Hauts Champs, Institut de Sciences Analytiques
(CNRS/ENS Lyon/UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Lawrence R. Roberts
- Roberts Consulting Group, 44
Windsor Avenue, Acton, Massachusetts 01720, United States
| | - Gary P. Funkhouser
- Halliburton, 3000 North
Sam Houston Parkway East, Houston, Texas 77032, United States
| | - Anne Lesage
- Centre
de RMN à Très Hauts Champs, Institut de Sciences Analytiques
(CNRS/ENS Lyon/UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Centre
de RMN à Très Hauts Champs, Institut de Sciences Analytiques
(CNRS/ENS Lyon/UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bradley F. Chmelka
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
46
|
Polenova T, Gupta R, Goldbourt A. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem 2015; 87:5458-69. [PMID: 25794311 PMCID: PMC4890703 DOI: 10.1021/ac504288u] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution.
Collapse
Affiliation(s)
- Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
47
|
Lee D, Hediger S, De Paëpe G. Is solid-state NMR enhanced by dynamic nuclear polarization? SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 66-67:6-20. [PMID: 25779337 DOI: 10.1016/j.ssnmr.2015.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 05/03/2023]
Abstract
The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP.
Collapse
Affiliation(s)
- Daniel Lee
- Univ. Grenoble Alpes, INAC, SCIB, F-38000 Grenoble, France; CEA, INAC, SCIB, F-38000 Grenoble, France.
| | - Sabine Hediger
- Univ. Grenoble Alpes, INAC, SCIB, F-38000 Grenoble, France; CEA, INAC, SCIB, F-38000 Grenoble, France; CNRS, SCIB, F-38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, INAC, SCIB, F-38000 Grenoble, France; CEA, INAC, SCIB, F-38000 Grenoble, France
| |
Collapse
|
48
|
Perez Linde AJ, Carnevale D, Miéville P, Sienkiewicz A, Bodenhausen G. Dynamic nuclear polarization enhancement of protons and vanadium-51 in the presence of pH-dependent vanadyl radicals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:88-92. [PMID: 25228149 DOI: 10.1002/mrc.4138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
We report applications of dynamic nuclear polarization to enhance proton and vanadium-51 polarization of vanadyl sulfate samples doped with TOTAPOL under magic angle spinning conditions. The electron paramagnetic resonance response stemming from the paramagnetic (51)V species was monitored as a function of pH, which can be adjusted to improve the enhancement of the proton polarization. By means of cross-polarization from the proton bath, (51)V spins could be hyperpolarized. Enhancement factors, build-up times, and longitudinal relaxation times T1((1)H) and T1((51)V) were investigated as a function of pH.
Collapse
Affiliation(s)
- Angel J Perez Linde
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Lund A, Hsieh MF, Siaw TA, Han SI. Direct dynamic nuclear polarization targeting catalytically active 27Al sites. Phys Chem Chem Phys 2015; 17:25449-54. [DOI: 10.1039/c5cp03396a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first study demonstrating the viability of targeted 27Al DNP characterization by varying the functional side groups of mono-radical spin probes.
Collapse
Affiliation(s)
- Alicia Lund
- Department of Chemistry and Biochemistry University of California Santa Barbara
- Santa Barbara
- USA
| | - Ming-Feng Hsieh
- Department of Chemical Engineering University of California Santa Barbara
- Santa Barbara
- USA
| | - Ting-Ann Siaw
- Department of Chemistry and Biochemistry University of California Santa Barbara
- Santa Barbara
- USA
| | - Song-I. Han
- Department of Chemistry and Biochemistry University of California Santa Barbara
- Santa Barbara
- USA
- Department of Chemical Engineering University of California Santa Barbara
- Santa Barbara
| |
Collapse
|
50
|
Perras FA, Kobayashi T, Pruski M. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Phys Chem Chem Phys 2015; 17:22616-22. [DOI: 10.1039/c5cp04145g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show both experimentally and numerically that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under MAS, the PRESTO technique consistently outperforms the traditionally used CP method, affording more quantitative intensities, improved lineshapes, better sensitivity, and easier optimization.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Ames
- USA
- Department of Chemistry
- Iowa State University
| |
Collapse
|