1
|
Jiang Y, Mao K, Li J, Duan D, Li J, Wang X, Zhong Y, Zhang C, Liu H, Gong W, Long R, Xiong Y. Pushing the Performance Limit of Cu/CeO 2 Catalyst in CO 2 Electroreduction: A Cluster Model Study for Loading Single Atoms. ACS NANO 2023; 17:2620-2628. [PMID: 36715316 DOI: 10.1021/acsnano.2c10534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pushing the performance limit of catalysts is a major goal of CO2 electroreduction toward practical application. A single-atom catalyst is recognized as a solution for achieving this goal, which is, however, a double-edged sword considering the limited loading amount and stability of single-atom sites. To overcome the limit, the loading of single atoms on supports should be well addressed, requiring a suitable model system. Herein, we report the model system of an ultrasmall CeO2 cluster (2.4 nm) with an atomic precise structure and a high surface-to-volume ratio for loading Cu single atoms. The combination of multiple characterizations and theoretical calculations reveals the loading location and limit of Cu single atoms on CeO2 clusters, determining an optimal configuration for CO2 electroreduction. The optimal catalyst achieves a maximum Faradaic efficiency (FE) of 67% and a maximum partial current density of -364 mA/cm2 for CH4, and can maintain high CH4 FE values over 50% in a wide range of applied current densities (-50 ∼ -600 mA/cm2), exceeding those of the reported catalysts.
Collapse
Affiliation(s)
- Yawen Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui230031, China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Delong Duan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Xinyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yuan Zhong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Chao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui230031, China
| |
Collapse
|
2
|
Nunzi F, De Angelis F. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem Sci 2022; 13:9485-9497. [PMID: 36091912 PMCID: PMC9400622 DOI: 10.1039/d2sc02872g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Heterogenous photocatalysis is regarded as a holy grail in relation to the energy and environmental issues with which our society is currently struggling. In this context, the characterization of titanium dioxide nanostructures and the relationships between structural/electronic parameters and chemical/physical–chemical properties is a primary target, whose achievement is in high demand. Theoretical simulations can strongly support experiments to reach this goal. While the bulk and surface properties of TiO2 materials are quite well understood, the field of nanostructures still presents a few unexplored areas. Here we consider possible approaches for the modeling of reduced and extended TiO2 nanostructures, and we review the main outcomes of the investigation of the structural, electronic, and optical properties of TiO2 nanoparticles and their relationships with the size, morphology, and shape of the particles. Further investigations are highly desired to fill the gaps still remaining and to allow improvements in the efficiencies of these materials for photocatalytic and photovoltaic applications. The latest findings from theoretical investigations into TiO2 nanoparticles are reviewed, including both realistic models from a bottom-up approach (1–3 nm diameter) and cut from bulk models (>3 nm diameter) in a top-down approach.![]()
Collapse
Affiliation(s)
- Francesca Nunzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche (SCITEC-CNR) Via Elce di Sotto 8 06123 Perugia Italy
| | - Filippo De Angelis
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche (SCITEC-CNR) Via Elce di Sotto 8 06123 Perugia Italy
- Department of Natural Sciences and Mathematics, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University Khobar Dhahran 34754 Saudi Arabia
| |
Collapse
|
3
|
Divya T, Anjali C, Sunajadevi K, Anas K, Renuka N. Influence of hydrothermal synthesis conditions on lattice defects in cerium oxide. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Du D, Kullgren J, Kocmaruk B, Hermansson K, Broqvist P. Simulated temperature programmed desorption experiments for nanoceria powders. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Lawrence EL, Levin BDA, Miller BK, Crozier PA. Approaches to Exploring Spatio-Temporal Surface Dynamics in Nanoparticles with In Situ Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:86-94. [PMID: 31858934 DOI: 10.1017/s1431927619015228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many nanoparticles in fields such as heterogeneous catalysis undergo surface structural fluctuations during chemical reactions, which may control functionality. These dynamic structural changes may be ideally investigated with time-resolved in situ electron microscopy. We have explored approaches for extracting quantitative information from large time-resolved image data sets with a low signal to noise recorded with a direct electron detector on an aberration-corrected transmission electron microscope. We focus on quantitatively characterizing beam-induced dynamic structural rearrangements taking place on the surface of CeO2 (ceria). A 2D Gaussian fitting procedure is employed to determine the position and occupancy of each atomic column in the nanoparticle with a temporal resolution of 2.5 ms and a spatial precision of 0.25 Å. Local rapid lattice expansions/contractions and atomic migration were revealed to occur on the (100) surface, whereas (111) surfaces were relatively stable throughout the experiment. The application of this methodology to other materials will provide new insights into the behavior of nanoparticle surface reconstructions that were previously inaccessible using other methods, which will have important consequences for the understanding of dynamic structure-property relationships.
Collapse
Affiliation(s)
- Ethan L Lawrence
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
| | - Barnaby D A Levin
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
| | | | - Peter A Crozier
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
6
|
Li Y, Li S, Bäumer M, Ivanova-Shor EA, Moskaleva LV. What Changes on the Inverse Catalyst? Insights from CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
| | - Shikun Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
| | - Marcus Bäumer
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
| | - Elena A. Ivanova-Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”, Krasnoyarsk 660036, Russia
| | - Lyudmila V. Moskaleva
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
7
|
Kottwitz M, Li Y, Palomino RM, Liu Z, Wang G, Wu Q, Huang J, Timoshenko J, Senanayake SD, Balasubramanian M, Lu D, Nuzzo RG, Frenkel AI. Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02083] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthew Kottwitz
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuanyuan Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert M. Palomino
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zongyuan Liu
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangjin Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jiahao Huang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Janis Timoshenko
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sanjaya D. Senanayake
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ralph G. Nuzzo
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinasväg 51, 100 44 Stockholm, Sweden
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
8
|
Amidani L, Plakhova TV, Romanchuk AY, Gerber E, Weiss S, Efimenko A, Sahle CJ, Butorin SM, Kalmykov SN, Kvashnina KO. Understanding the size effects on the electronic structure of ThO2 nanoparticles. Phys Chem Chem Phys 2019; 21:10635-10643. [DOI: 10.1039/c9cp01283d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High-resolution XANES spectra of small ThO2 nanoparticles show the signature of the more exposed Th atoms at the surface.
Collapse
Affiliation(s)
- Lucia Amidani
- The Rossendorf Beamline at ESRF – The European Synchrotron
- CS40220
- 38043 Grenoble Cedex 9
- France
- Helmholtz Zentrum Dresden-Rossendorf (HZDR)
| | - Tatiana V. Plakhova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Anna Yu. Romanchuk
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Evgeny Gerber
- The Rossendorf Beamline at ESRF – The European Synchrotron
- CS40220
- 38043 Grenoble Cedex 9
- France
- Helmholtz Zentrum Dresden-Rossendorf (HZDR)
| | - Stephan Weiss
- Helmholtz Zentrum Dresden-Rossendorf (HZDR)
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Anna Efimenko
- ESRF – The European Synchrotron
- CS40220
- 38043 Grenoble Cedex 9
- France
| | | | - Sergei M. Butorin
- Molecular and Condensed Matter Physics
- Department of Physics and Astronomy
- Uppsala University
- Uppsala
- Sweden
| | - Stepan N. Kalmykov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Kristina O. Kvashnina
- The Rossendorf Beamline at ESRF – The European Synchrotron
- CS40220
- 38043 Grenoble Cedex 9
- France
- Helmholtz Zentrum Dresden-Rossendorf (HZDR)
| |
Collapse
|
9
|
Figueroba A, Bruix A, Kovács G, Neyman KM. Metal-doped ceria nanoparticles: stability and redox processes. Phys Chem Chem Phys 2017; 19:21729-21738. [PMID: 28776626 DOI: 10.1039/c7cp02820b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doping oxide materials by inserting atoms of a different element in their lattices is a common procedure for modifying properties of the host oxide. Using catalytically active, yet expensive noble metals as dopants allows synthesizing materials with atomically dispersed metal atoms, which can become cost-efficient catalysts. The stability and chemical properties of the resulting materials depend on the structure of the host oxide and on the position of the dopant atoms in it. In the present work we analyze by means of density functional calculations the relative stability and redox properties of cerium dioxide (ceria) nanoparticles doped with atoms of four technologically relevant transition metals - Pt, Pd, Ni and Cu. Our calculations indicate that the dopants are most stable at surface positions of ceria nanoparticles, highlighting the role of under-coordinated sites in the preparation and characterization of doped nanostructured oxides. The energies of two catalytically important reduction reactions - the formation of oxygen vacancies and homolytic dissociative adsorption of H2 - are found to strongly depend on the position of the doping atoms in nanoparticulate ceria.
Collapse
Affiliation(s)
- Alberto Figueroba
- Departament de Ciència dels Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Lamiel-Garcia O, Cuko A, Calatayud M, Illas F, Bromley ST. Predicting size-dependent emergence of crystallinity in nanomaterials: titania nanoclusters versus nanocrystals. NANOSCALE 2017; 9:1049-1058. [PMID: 27809322 DOI: 10.1039/c6nr05788h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bottom-up and top-down derived nanoparticle structures refined by accurate ab initio calculations are used to investigate the size dependent emergence of crystallinity in titania from the monomer upwards. Global optimisation and data mining are used to provide a series of (TiO2)N global minima candidates in the range N = 1-38, where our approach provides many new low energy structures for N > 10. A range of nanocrystal cuts from the anatase crystal structure are also considered up to a size of over 250 atoms. All nanocrystals considered are predicted to be metastable with respect to non-crystalline nanoclusters, which has implications with respect to the limitations of the cluster approach to modelling large titania nanosystems. Extrapolating both data sets using a generalised expansion of a top-down derived energy expression for nanoparticles, we obtain an estimate of the non-crystalline to crystalline crossover size for titania. Our results compare well with the available experimental results and imply that anatase-like crystallinity emerges in titania nanoparticles of approximately 2-3 nm diameter.
Collapse
Affiliation(s)
- Oriol Lamiel-Garcia
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Andi Cuko
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain and SorbonneUniversités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137, 4, place Jussieu F. 75252, Paris Cedex 05, France
| | - Monica Calatayud
- SorbonneUniversités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137, 4, place Jussieu F. 75252, Paris Cedex 05, France and InstitutUniversitaire de France, France
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Stefan T Bromley
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain.
| |
Collapse
|
11
|
Lykhach Y, Bruix A, Fabris S, Potin V, Matolínová I, Matolín V, Libuda J, Neyman KM. Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00710h] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanomaterials coated with atomically dispersed platinum on ceria are structurally dynamic and show high potential for applications in fuel cells.
Collapse
Affiliation(s)
- Yaroslava Lykhach
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Albert Bruix
- Department of Physics and Astronomy and Interdisciplinary Nanoscience Center
- Aarhus University
- DK-8000 Aarhus
- Denmark
| | - Stefano Fabris
- CNR-IOM DEMOCRITOS
- Istituto Officina dei Materiali
- Consiglio Nazionale delle Ricerche and SISSA
- Trieste
- Italy
| | - Valérie Potin
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS-Université de Bourgogne Franche-Comté
- F-21078 Dijon Cedex
- France
| | - Iva Matolínová
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- Charles University
- 18000 Prague
- Czech Republic
| | - Vladimír Matolín
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- Charles University
- 18000 Prague
- Czech Republic
| | - Jörg Libuda
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
- Erlangen Catalysis Resource Center
| | - Konstantin M. Neyman
- Departament de Ciència dels Materials i Química Física and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats)
| |
Collapse
|
12
|
|
13
|
Geng L, Song J, Zhou Y, Xie Y, Huang J, Zhang W, Peng L, Liu G. CeO2 nanorods anchored on mesoporous carbon as an efficient catalyst for imine synthesis. Chem Commun (Camb) 2016; 52:13495-13498. [DOI: 10.1039/c6cc05496j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CeO2 nanorods anchored on mesoporous carbon exhibit high activity and stability in aerobic oxidative coupling of alcohols and amines to imines.
Collapse
Affiliation(s)
- Longlong Geng
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jinling Song
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yahui Zhou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yan Xie
- Gold Catalysis Research Center
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jiahui Huang
- Gold Catalysis Research Center
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Wenxiang Zhang
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Gang Liu
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
14
|
Abstract
Cerium dioxide is a compound important for heterogeneous catalysis, energy technologies, biomedical applications, etc. One of its most remarkable properties is low O vacancy (Ovac) formation energy Ef. Nanostructuring of ceria was shown to decrease Ef and to make the oxide material more active in oxidative reactions. Here we investigate computationally formation of Ovac on CeO2(111) surfaces nanostructured by steps with experimentally observed structures. To facilitate the search for Ovac + 2Ce(3+) configurations that yield the lowest Ef values we proposed and employed an efficient computational scheme where DFT + U calculations were preceded by a pre-screening procedure based on the results of plain DFT calculations. Ef values on the steps were calculated to be up to 0.7 eV lower than on a regular CeO2(111) surface. Some energetically stable Ovac + 2Ce(3+) configurations were found to include subsurface Ce(3+) ions. The present results quantify to what extent the roughness of the CeO2(111) surface affects its reducibility.
Collapse
Affiliation(s)
- Sergey M Kozlov
- Departament de Química Física and Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| | | |
Collapse
|
15
|
Kozlov SM, Demiroglu I, Neyman KM, Bromley ST. Reduced ceria nanofilms from structure prediction. NANOSCALE 2015; 7:4361-4366. [PMID: 25679977 DOI: 10.1039/c4nr07458k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth.
Collapse
Affiliation(s)
- Sergey M Kozlov
- Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Bruix A, Lykhach Y, Matolínová I, Neitzel A, Skála T, Tsud N, Vorokhta M, Stetsovych V, Ševčíková K, Mysliveček J, Fiala R, Václavů M, Prince KC, Bruyère S, Potin V, Illas F, Matolín V, Libuda J, Neyman KM. Auf dem Weg zu größtmöglicher Effizienz bei der katalytischen Nutzung von Edelmetallen: atomar dispergiertes Oberflächen-Platin. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402342] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Bruix A, Lykhach Y, Matolínová I, Neitzel A, Skála T, Tsud N, Vorokhta M, Stetsovych V, Ševčíková K, Mysliveček J, Fiala R, Václavů M, Prince KC, Bruyère S, Potin V, Illas F, Matolín V, Libuda J, Neyman KM. Maximum Noble-Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angew Chem Int Ed Engl 2014; 53:10525-30. [DOI: 10.1002/anie.201402342] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 11/09/2022]
|