1
|
Fujita T, Shuta M, Mano M, Matsumoto S, Nagasawa A, Yamada A, Naito M. Forced Gradient Copolymer for Rational Design of Mussel-Inspired Adhesives and Dispersants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:266. [PMID: 36614607 PMCID: PMC9822366 DOI: 10.3390/ma16010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, there has been considerable research into functional materials inspired by living things. Much attention has been paid to the development of adhesive materials that mimic the adhesive proteins secreted by a mussel's foot. These mussel-inspired materials have superior adhesiveness to various adherents owing to the non-covalent interactions of their polyphenolic moieties, e.g., hydrogen bonding, electrostatic interactions, and even hydrophobic interactions. Various factors significantly affect the adhesiveness of mussel-inspired polymers, such as the molecular weight, cross-linking density, and composition ratio of the components, as well as the chemical structure of the polyphenolic adhesive moieties, such as l-3,4-dihydroxyphenylalanine (l-Dopa). However, the contributions of the position and distribution of the adhesive moiety in mussel-inspired polymers are often underestimated. In the present study, we prepared a series of mussel-inspired alkyl methacrylate copolymers by controlling the position and distribution of the adhesive moiety, which are known as "forced gradient copolymers". We used a newly designed gallic-acid-bearing methacrylate (GMA) as the polyphenolic adhesive moiety and copolymerized it with 2-ethylhexyl methacrylate (EHMA). The resulting forced gradient adhesive copolymer of GMA and EHMA (poly(GMA-co-EHMA), Poly1) was subjected to adhesion and dispersion tests with an aluminum substrate and a BaTiO3 nanoparticle in organic solvents, respectively. In particular, this study aims to clarify how the monomer position and distribution of the adhesive moiety in the mussel-inspired polymer affect its adhesion and dispersion behavior on a flat metal oxide surface and spherical inorganic oxide surfaces of several tens of nanometers in diameter, respectively. Here, forced gradient copolymer Poly1 consisted of a homopolymer moiety of EHMA (Poly3) and a random copolymer moiety of EHMA and GMA (Poly4). The composition ratio of GMA and the molecular weight were kept constant among the Poly1 series. Simultaneous control of the molecular lengths of Poly3 and Poly4 allowed us to discuss the effects on the distribution of GMA in Poly1. Poly1 exhibited apparent distribution dependency with regard to the adhesiveness and the dispersibility of BaTiO3. Poly1 showed the highest adhesion strength when the composition ratio of GMA was approximately 9 mol% in the portion of the Poly4 segment. In contrast, the block copolymer consisting of the Poly3 segment and Poly4 segment with only adhesive moiety 1 showed the lowest viscosity for dispersion of BaTiO3 nanoparticles. These results indicate that copolymers with mussel-inspired adhesive motifs require the proper design of the monomer position and distribution in Poly1 according to the shape and characteristics of the adherend to maximize their functionality. This research will facilitate the rational design of bio-inspired adhesive materials derived from plants that outperform natural materials, and it will eventually contribute to a sustainable circular economy.
Collapse
Affiliation(s)
- Takehiro Fujita
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Masami Shuta
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Mika Mano
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Shinnosuke Matsumoto
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Atsushi Nagasawa
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Akihiro Yamada
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Masanobu Naito
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties. Molecules 2022; 27:molecules27134027. [PMID: 35807272 PMCID: PMC9268726 DOI: 10.3390/molecules27134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization with N-hydroxyethyl acrylamide. All copolymers were characterized by 1H-NMR, dynamic differential calorimetry, and gel permeation chromatography. The dependency of the used comonomer ratios to the molecular mass of the corresponding copolymers has been described. The synthesis of the various polymers serves as a feasibility study and provides important data for a future biometric application in the medical field. We synthesized N-(3,4-dihydroxyphenyethyl) acrylamide copolymer up to 80 mol% by free radical polymerization without using any protecting groups. All polymers show identical perfect adhesive properties by a simple scratch test. Further, the monomers were used as a photo reactive glue formulation to test its adherence to a medical titanium surface sample by tensile shear test.
Collapse
|
3
|
Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Sci Rep 2022; 12:7560. [PMID: 35534598 PMCID: PMC9085887 DOI: 10.1038/s41598-022-11400-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
This work reveals a versatile new method to produce films with antimicrobial properties that can also bond materials together with robust tensile adhesive strength. Specifically, we demonstrate the formation of coatings by using a dielectric barrier discharge (DBD) plasma to convert a liquid small-molecule precursor, m-cresol, to a solid film via plasma-assisted on-surface polymerisation. The films are quite appealing from a sustainability perspective: they are produced using a low-energy process and from a molecule produced in abundance as a by-product of coal tar processing. This process consumes only 1.5 Wh of electricity to create a 1 cm2 film, which is much lower than other methods commonly used for film deposition, such as chemical vapour deposition (CVD). Plasma treatments were performed in plain air without the need for any carrier or precursor gas, with a variety of exposure durations. By varying the plasma parameters, it is possible to modify both the adhesive property of the film, which is at a maximum at a 1 min plasma exposure, and the antimicrobial property of the film against Escherichia coli, which is at a maximum at a 30 s exposure.
Collapse
|
4
|
Zhang Z, Xie L, Ju Y, Dai Y. Recent Advances in Metal-Phenolic Networks for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100314. [PMID: 34018690 DOI: 10.1002/smll.202100314] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nanomedicine integrates different functional materials to realize the customization of carriers, aiming at increasing the cancer therapeutic efficacy and reducing the off-target toxicity. However, efforts on developing new drug carriers that combine precise diagnosis and accurate treatment have met challenges of uneasy synthesis, poor stability, difficult metabolism, and high cytotoxicity. Metal-phenolic networks (MPNs), making use of the coordination between phenolic ligands and metal ions, have emerged as promising candidates for nanomedicine, most notably through the service as multifunctional theranostic nanoplatforms. MPNs present unique properties, such as rapid preparation, negligible cytotoxicity, and pH responsiveness. Additionally, MPNs can be further modified and functionalized to meet specific application requirements. Here, the classification of polyphenols is first summarized, followed by the introduction of the properties and preparation strategies of MPNs. Then, their recent advances in biomedical sciences including bioimaging and anti-tumor therapies are highlighted. Finally, the main limitations, challenges, and outlooks regarding MPNs are raised and discussed.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
5
|
Huang S, Wan Y, Ming X, Zhou J, Zhou M, Chen H, Zhang Q, Zhu S. Adhering Low Surface Energy Materials without Surface Pretreatment via Ion-Dipole Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41112-41119. [PMID: 34406738 DOI: 10.1021/acsami.1c11822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low surface energy materials resist adhesion due to their chemical inertness and non-wetting properties. Herein, we report the creation of a transparent ionogel adhesive that uses ion-dipole interactions to achieve a higher bonding performance to polytetrafluoroethylene (PTFE) relative to most commercial glues. The ionogel adhesive is composed of a poly(hexafluorobutyl acrylate-co-methyl methacrylate) random copolymer and a hydrophobic ionic liquid. The prepared ionogel can adhere to various hydrophobic substrates, such as PTFE, polypropylene, and polyethylene, as well as hydrophilic glass, ceramics, and steel. The design strategy and adhesion behavior are well interpreted using the density functional theory calculations and molecular dynamics simulations. The straightforward ultraviolet-curing method, high optical clarity, versatile adhesion ability, and reversible adhesion capabilities make this high-performance adhesive a promising product for commercialization.
Collapse
Affiliation(s)
- Shuaishuai Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yichen Wan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Jiaming Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Miaomiao Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hong Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
6
|
Kafkopoulos G, Padberg CJ, Duvigneau J, Vancso GJ. Adhesion Engineering in Polymer-Metal Comolded Joints with Biomimetic Polydopamine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19244-19253. [PMID: 33848117 PMCID: PMC8153540 DOI: 10.1021/acsami.1c01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Joints that connect thermoplastic polymer matrices (TPMs) and metals, which are obtained by comolding, are of growing importance in numerous applications. The overall performance of these constructs is strongly impacted by the TPM-metal interfacial strength, which can be tuned by tailoring the surface chemistry of the metal prior to the comolding process. In the present work, a model TPM-metal system consisting of poly(methyl methacrylate) (PMMA) and titanium is used to prepare comolded joints. The interfacial adhesion is quantified by wire pullout experiments. Pullout tests prior to and following surface modification are performed and analyzed. Unmodified wires show poor interfacial strength, with a work of adhesion (Ga) value of 3.8 J m-2. To enhance interfacial adhesion, a biomimetic polydopamine (PDA) layer is first deposited on titanium followed by a second layer of a poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) copolymer prior to comolding. During processing, the MAA moieties of the copolymer thermally react with PDA, forming amide bonds, while MMA promotes the formation of secondary bonds and molecular interdigitation with the PMMA matrix. Control testing reveals that neither PDA nor the copolymer provides a substantial increase in adhesion. However, when used in combination, a significant increase in adhesion is detected. This observation indicates a pronounced synergistic effect between the two layers that strengthens the PMMA-titanium bonding. Enhanced adhesion is optimized by tuning the MMA-to-MAA ratio of the copolymer, which shows a maximum at a 24% MAA content and a greatly increased Ga value of 155 J m-2; this value corresponds to a 40-fold increase. Further growth in the Ga values at higher MAA contents is hindered by the thermal cross-linking of MAA; MAA contents above 24% restrict the formation of secondary bonds and molecular interdigitation with the PMMA chains. Our results provide new design principles to produce thermoplastic-metal comolded joints with strong interfaces.
Collapse
Affiliation(s)
- Georgios Kafkopoulos
- Department of Materials Science
and Technology of Polymers, University of
Twente, Enschede 7522 NB, the Netherlands
| | - Clemens J. Padberg
- Department of Materials Science
and Technology of Polymers, University of
Twente, Enschede 7522 NB, the Netherlands
| | - Joost Duvigneau
- Department of Materials Science
and Technology of Polymers, University of
Twente, Enschede 7522 NB, the Netherlands
| | - G. Julius Vancso
- Department of Materials Science
and Technology of Polymers, University of
Twente, Enschede 7522 NB, the Netherlands
| |
Collapse
|
7
|
Putnam AA, Wilker JJ. Changing polymer catechol content to generate adhesives for high versus low energy surfaces. SOFT MATTER 2021; 17:1999-2009. [PMID: 33438707 DOI: 10.1039/d0sm01944e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adhesive bonding is commonly used to replace mechanical fasteners in many applications. However, the surface chemistry of different substrates varies, making adhesion to a variety of materials difficult. Many biological adhesives are adept at sticking to multiple surfaces with a range of surface chemistries. Marine mussels utilize a catechol moiety within their adhesive proteins to bring about surface binding as well as cohesive cross-linking. Mimicking this functionality in synthetic polymers has yielded high strength adhesives that can attach to both high and low surface energy materials, although not equally well. Here, the amount of catechol within a copolymer system was varied for potential tailoring to specific surfaces. Structure-function studies revealed differing trends of optimal catechol content for high energy aluminum versus low energy polytetrafluoroethylene (TeflonTM) surfaces. Adhesion strengths were optimized with ∼10 mol% catechol for aluminum and ∼41 mol% for TeflonTM. Varying the catechol incorporation also resulted in changes to wettability, failure modes, and mechanics on these substrates. When considering performance of the entire bulk material, the different surfaces required an altered adhesive-cohesive balance. Tailoring the composition of polymeric adhesives for different surfaces may aid future manufacturing in cases where joining a variety of materials is required.
Collapse
Affiliation(s)
- Amelia A Putnam
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. and School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Tang Z, Zhao M, Wang Y, Zhang W, Zhang M, Xiao H, Huang L, Chen L, Ouyang X, Zeng H, Wu H. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination. Int J Biol Macromol 2020; 144:127-134. [DOI: 10.1016/j.ijbiomac.2019.12.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
|
9
|
Dang QD, Moon JR, Jeon YS, Kim J. Supramolecular adhesive gels based on biocompatible poly(2‐ethyl‐2‐oxazoline) and tannic acid via hydrogen bonding complexation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Quoc Dat Dang
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| | - Jong Ryul Moon
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| | - Young Sil Jeon
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| | - Ji‐Heung Kim
- Department of Chemical EngineeringSungkyunkwan University, 2066 Seobu‐ro, Jangan‐gu Suwon Gyeong Gi 16419 Republic of Korea
| |
Collapse
|
10
|
Shimamura N, Kanda R, Matsukubo Y, Hirai Y, Abe H, Hirai Y, Yoshida T, Yabu H, Masuhara A. Preparation of Hierarchic Porous Films of α-MnO 2 Nanoparticles by Using the Breath Figure Technique and Application for Hybrid Capacitor Electrodes. ACS OMEGA 2019; 4:3827-3831. [PMID: 31459593 PMCID: PMC6649290 DOI: 10.1021/acsomega.8b03381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 06/10/2023]
Abstract
The honeycomb-structured film has advantages such as high wettability and high surface area. This structure and properties are suitable for the capacitor electrode. In this study, the electrode structure is controlled by the synthesis of MnO2 nanoparticles using the breath figure method. The electrode performance was calculated by electrochemical measurements. As a result, the capacitance value was 100.5 F/g at 1 mV s-1, which was improved 2.7 times as compared with that without structure control.
Collapse
Affiliation(s)
- Nobuhiro Shimamura
- Graduate
School of Science and Engineering, Faculty of Engineering, and Research Center for
Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryuji Kanda
- Graduate
School of Science and Engineering, Faculty of Engineering, and Research Center for
Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuma Matsukubo
- Graduate
School of Science and Engineering, Faculty of Engineering, and Research Center for
Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yutaro Hirai
- Graduate
School of Engineering, Tohoku University, 6-6, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroya Abe
- Graduate
School of Environmental Studies, Tohoku
University, 468-1, Aramaki, Aza-Aoba, Aoba-Ku, Sendai 980-0845, Japan
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yuji Hirai
- Graduate
School of Science and Engineering, Faculty of Engineering, and Research Center for
Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tsukasa Yoshida
- Graduate
School of Science and Engineering, Faculty of Engineering, and Research Center for
Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroshi Yabu
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Akito Masuhara
- Graduate
School of Science and Engineering, Faculty of Engineering, and Research Center for
Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Kaur S, Narayanan A, Dalvi S, Liu Q, Joy A, Dhinojwala A. Direct Observation of the Interplay of Catechol Binding and Polymer Hydrophobicity in a Mussel-Inspired Elastomeric Adhesive. ACS CENTRAL SCIENCE 2018; 4:1420-1429. [PMID: 30410980 PMCID: PMC6202650 DOI: 10.1021/acscentsci.8b00526] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 05/29/2023]
Abstract
Marine organisms such as mussels have mastered the challenges in underwater adhesion by incorporating post-translationally modified amino acids like l-3,4-dihydroxyphenylalanine (DOPA) in adhesive proteins. Here we designed a catechol containing elastomer adhesive to identify the role of catechol in interfacial adhesion in both dry and wet conditions. To decouple the adhesive contribution of catechol to the overall adhesion, the elastomer was designed to be cross-linked through [2 + 2] photo-cycloaddition of coumarin. The elastomer with catechol moieties displayed a higher adhesion strength than the catechol-protected elastomer. The contact interface was probed using interface-sensitive sum frequency generation spectroscopy to explore the question of whether catechol can displace water and bond with hydrophilic surfaces. The spectroscopy measurements reveal that the maximum binding energy of the catechol and protected-catechol elastomers to sapphire substrate is 7.0 ± 0.1 kJ/(mole of surface O-H), which is equivalent to 0.10 J/m2. The higher dry and wet adhesion observed in the macroscopic adhesion measurements for the catechol containing elastomer originates from multiple hydrogen bonds of the catechol dihydroxy groups to the surface. In addition, our results show that catechol by itself does not remove the confined interstitial water. In these elastomers, it is the hydrophobic groups that help in partially removing interstitial water. The observation of the synergy between catechol binding and hydrophobicity in enabling the mussel-inspired soft adhesive elastomer to stick underwater provides a framework for designing materials for applications in tissue adhesion and moist-skin wearable electronics.
Collapse
Affiliation(s)
| | | | - Siddhesh Dalvi
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Qianhui Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
12
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Synthesis, Self-assembly and Electrode Application of Mussel-inspired Alternating Copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2151-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Wang B, Lee JS, Jeon YS, Kim J, Kim JH. Hydrophobicity-enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. POLYM INT 2018. [DOI: 10.1002/pi.5544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bo Wang
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jae Sang Lee
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Young-Sil Jeon
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jaeyun Kim
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Ji-Heung Kim
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|
15
|
Mu Y, Wu X, Pei D, Wu Z, Zhang C, Zhou D, Wan X. Contribution of the Polarity of Mussel-Inspired Adhesives in the Realization of Strong Underwater Bonding. ACS Biomater Sci Eng 2017; 3:3133-3140. [DOI: 10.1021/acsbiomaterials.7b00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Youbing Mu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiao Wu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Danfeng Pei
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
| | - Zelin Wu
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
| | - Chen Zhang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, P. R. China
| | - Dongshan Zhou
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province 210093, P. R. China
| | - Xiaobo Wan
- The
Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling
Road, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Seo S, Lee DW, Ahn JS, Cunha K, Filippidi E, Ju SW, Shin E, Kim BS, Levine ZA, Lins RD, Israelachvili JN, Waite JH, Valentine MT, Shea JE, Ahn BK. Significant Performance Enhancement of Polymer Resins by Bioinspired Dynamic Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201703026. [PMID: 28833661 PMCID: PMC5640498 DOI: 10.1002/adma.201703026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Indexed: 05/09/2023]
Abstract
Marine mussels use catechol-rich interfacial mussel foot proteins (mfps) as primers that attach to mineral surfaces via hydrogen, metal coordination, electrostatic, ionic, or hydrophobic bonds, creating a secondary surface that promotes bonding to the bulk mfps. Inspired by this biological adhesive primer, it is shown that a ≈1 nm thick catecholic single-molecule priming layer increases the adhesion strength of crosslinked polymethacrylate resin on mineral surfaces by up to an order of magnitude when compared with conventional primers such as noncatecholic silane- and phosphate-based grafts. Molecular dynamics simulations confirm that catechol groups anchor to a variety of mineral surfaces and shed light on the binding mode of each molecule. Here, a ≈50% toughness enhancement is achieved in a stiff load-bearing polymer network, demonstrating the utility of mussel-inspired bonding for processing a wide range of polymeric interfaces, including structural, load-bearing materials.
Collapse
Affiliation(s)
- Sungbaek Seo
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Materials Research Laboratory, Materials Research Science and Engineering Center, University of California, Santa Barbara, CA, 93106, USA
- Biomaterials Science, Pusan National University, Miryang, 627-706, South Korea
| | - Dong Woog Lee
- Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea
- Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Jin Soo Ahn
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Dental Research Institute and Biomaterials Science, Dentistry, Seoul National University, Seoul, 110-749, South Korea
| | - Keila Cunha
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-670, Brazil
- Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Emmanouela Filippidi
- Materials Research Laboratory, Materials Research Science and Engineering Center, University of California, Santa Barbara, CA, 93106, USA
- Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Sung Won Ju
- Dental Research Institute and Biomaterials Science, Dentistry, Seoul National University, Seoul, 110-749, South Korea
| | - Eeseul Shin
- Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea
| | - Byeong-Su Kim
- Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea
| | - Zachary A Levine
- Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Roberto D Lins
- Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-670, Brazil
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil
| | - Jacob N Israelachvili
- Materials Research Laboratory, Materials Research Science and Engineering Center, University of California, Santa Barbara, CA, 93106, USA
- Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - J Herbert Waite
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Materials Research Laboratory, Materials Research Science and Engineering Center, University of California, Santa Barbara, CA, 93106, USA
| | - Megan T Valentine
- Materials Research Laboratory, Materials Research Science and Engineering Center, University of California, Santa Barbara, CA, 93106, USA
- Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Joan Emma Shea
- Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - B Kollbe Ahn
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Materials Research Laboratory, Materials Research Science and Engineering Center, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
17
|
Affiliation(s)
- B. Kollbe Ahn
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Wu Z, Li L, Mu Y, Wan X. Synthesis and Adhesive Property Study of a Mussel-Inspired Adhesive Based on Poly(vinyl alcohol) Backbone. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zelin Wu
- School of Materials Science and Engineering; Wuhan Institute of Technology; Wuhan 430073 P. R. China
- The Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266101 China
| | - Liang Li
- School of Materials Science and Engineering; Wuhan Institute of Technology; Wuhan 430073 P. R. China
| | - Youbing Mu
- The Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaobo Wan
- The Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
19
|
Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang YS, Annabi N, Khademhosseini A. Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11428-11439. [PMID: 28140564 PMCID: PMC5844698 DOI: 10.1021/acsami.6b16779] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Prevention of postsurgery infection and promotion of biointegration are the key factors to achieve long-term success in orthopedic implants. Localized delivery of antibiotics and bioactive molecules by the implant surface serves as a promising approach toward these goals. However, previously reported methods for surface functionalization of the titanium alloy implants to load bioactive ingredients suffer from time-consuming complex processes and lack of long-term stability. Here, we present the design and characterization of an adhesive, osteoconductive, and antimicrobial hydrogel coating for Ti implants. To form this multifunctional hydrogel, a photo-cross-linkable gelatin-based hydrogel was modified with catechol motifs to enhance adhesion to Ti surfaces and thus promote coating stability. To induce antimicrobial and osteoconductive properties, a short cationic antimicrobial peptide (AMP) and synthetic silicate nanoparticles (SNs) were introduced into the hydrogel formulation. The controlled release of AMP loaded in the hydrogel demonstrated excellent antimicrobial activity to prevent biofilm formation. Moreover, the addition of SNs to the hydrogel formulation enhanced osteogenesis when cultured with human mesenchymal stem cells, suggesting the potential to promote new bone formation in the surrounding tissues. Considering the unique features of our implant hydrogel coating, including high adhesion, antimicrobial capability, and the ability to induce osteogenesis, it is believed that our design provides a useful alternative method for bone implant surface modification and functionalization.
Collapse
Affiliation(s)
- Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Othopeadic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mehdi Kazemzadeh-Narbat
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanhui Liu
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Akbar Khalilpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, the Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
20
|
Payra D, Fujii Y, Das S, Takaishi J, Naito M. Rational design of a biomimetic glue with tunable strength and ductility. Polym Chem 2017. [DOI: 10.1039/c6py02232d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A biomimetic design has been explored to achieve high-performance polymer glue with tuneable strength and ductility, which is suitable for a wide-range of substrates under both similar and dissimilar bonding.
Collapse
Affiliation(s)
- Debabrata Payra
- International Center for Young Scientists (ICYS)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
- Adhesive Materials Group
| | - Yoshihisa Fujii
- Separation Functional Materials Group
- Research Center for Structural Materials
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Sandip Das
- Adhesive Materials Group
- Research Center for Structural Materials (RCSM)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
| | - Junko Takaishi
- Adhesive Materials Group
- Research Center for Structural Materials (RCSM)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
| | - Masanobu Naito
- Adhesive Materials Group
- Research Center for Structural Materials (RCSM)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
| |
Collapse
|
21
|
Ko J, Kim YJ, Kim YS. Self-Healing Polymer Dielectric for a High Capacitance Gate Insulator. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23854-61. [PMID: 27559823 DOI: 10.1021/acsami.6b08220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Self-healing materials are required for development of various flexible electronic devices to repair cracks and ruptures caused by repetitive bending or folding. Specifically, a self-healing dielectric layer has huge potential to achieve healing electronics without mechanical breakdown in flexible operations. Here, we developed a high performance self-healing dielectric layer with an ionic liquid and catechol-functionalized polymer which exhibited a self-healing ability for both bulk and film states under mild self-healing conditions at 55 °C for 30 min. Due to the sufficient ion mobility of the ionic liquid in the polymer matrix, it had a high capacitance value above 1 μF/cm(2) at 20 Hz. Moreover, zinc oxide (ZnO) thin-film transistors (TFTs) with a self-healing dielectric layer exhibited a high field-effect mobility of 16.1 ± 3.07 cm(2) V(-1) s(-1) at a gate bias of 3 V. Even after repetitive self-healing of the dielectric layer from mechanical breaking, the electrical performance of the TFTs was well-maintained.
Collapse
Affiliation(s)
- Jieun Ko
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 08826, Republic of Korea
| | - Young-Jae Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 08826, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology , 145 Gwang gyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
22
|
Li Q, Barrett DG, Messersmith PB, Holten-Andersen N. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics. ACS NANO 2016; 10:1317-24. [PMID: 26645284 PMCID: PMC5660864 DOI: 10.1021/acsnano.5b06692] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.
Collapse
Affiliation(s)
- Qiaochu Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Devin G. Barrett
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Phillip B. Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, California 94720-1760, United States
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Corresponding Author:
| |
Collapse
|
23
|
Mu Y, Wan X. Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone. Macromol Rapid Commun 2016; 37:545-50. [DOI: 10.1002/marc.201500723] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/05/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Youbing Mu
- The Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; 189 Songling Road Qingdao P. R. China
- University of Chinese Academy of Sciences; 19A Yuquan Road Beijing 100049 P. R. China
| | - Xiaobo Wan
- The Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; 189 Songling Road Qingdao P. R. China
| |
Collapse
|
24
|
Xu LQ, Pranantyo D, Ng YX, Teo SLM, Neoh KG, Kang ET, Fu GD. Antifouling Coatings of Catecholamine Copolymers on Stainless Steel. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Qun Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Ying Xian Ng
- Tropical
Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119223
| | - Serena Lay-Ming Teo
- Tropical
Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119223
| | - Koon-Gee Neoh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Guo Dong Fu
- School
of Chemistry and Chemical Engineering, Southeast University, Jiangning District,
Nanjing, Jiangsu Province, P.R. China 211189
| |
Collapse
|
25
|
Saito Y, Yabu H. Synthesis of poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT process and preparation of organic-solvent-dispersive Ag NPs by automatic reduction of metal ions in the presence of PDHSt-b-PSt. Chem Commun (Camb) 2015; 51:3743-6. [PMID: 25500961 DOI: 10.1039/c4cc08366k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We proposed a block copolymer, poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt), that contains catechol groups in the side chains of PDHSt moieties. Since catechol groups automatically reduce silver (Ag) ions to their metallic state, the block copolymer was used as a reductant to synthesize organic-solvent-dispersive Ag NPs (NPs) stabilized with the block copolymer at room temperature. Ag NP sizes were controlled by changing molecular weights of PDHSt of the block copolymer.
Collapse
Affiliation(s)
- Yuta Saito
- Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, Japan.
| | | |
Collapse
|
26
|
Payra D, Naito M, Fujii Y, Yamada NL, Hiromoto S, Singh A. Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Adv 2015. [DOI: 10.1039/c4ra17196a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioinspired organic polymer is demonstrated for efficient and versatile corrosion resistance. Present method affords a thin, transparent and highly adhesive protective coatings for wide range of structural metals/alloys.
Collapse
Affiliation(s)
- Debabrata Payra
- Environmental Remediation Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Masanobu Naito
- Environmental Remediation Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- TU-NIMS Joint Research Center
| | - Yoshihisa Fujii
- Polymer Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Norifumi L. Yamada
- Neutron Science Division
- Institute of Materials Structure Science
- High Energy Acceleration Research Organization
- Naka-gun
- Japan
| | - Sachiko Hiromoto
- Biomaterials Unit
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Alok Singh
- Structural Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| |
Collapse
|
27
|
Saito Y, Shimomura M, Yabu H. Breath Figures of Nanoscale Bricks: A Universal Method for Creating Hierarchic Porous Materials from Inorganic Nanoparticles Stabilized with Mussel-Inspired Copolymers. Macromol Rapid Commun 2014; 35:1763-1769. [PMID: 25179786 DOI: 10.1002/marc.201400363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Indexed: 02/28/2024]
Abstract
High-performance catalysts and photovoltaics are required for building an environmentally sustainable society. Because catalytic and photovoltaic reactions occur at the interfaces between reactants and surfaces, the chemical, physical, and structural properties of interfaces have been the focus of much research. To improve the performance of these materials further, inorganic porous materials with hierarchic porous architectures have been fabricated. The breath figure technique allows preparing porous films by using water droplets as templates. In this study, a valuable preparation method for hierarchic porous inorganic materials is shown. Hierarchic porous materials are prepared from surface-coated inorganic nanoparticles with amphiphilic copolymers having catechol moieties followed by sintering. Micron-scale pores are prepared by using water droplets as templates, and nanoscale pores are formed between the nanoparticles. The fabrication method allows the preparation of hierarchic porous films from inorganic nanoparticles of various shapes and materials.
Collapse
Affiliation(s)
- Yuta Saito
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | | | | |
Collapse
|
28
|
|
29
|
Abstract
This paper reports the synthesis of catechol-functionalized thiol–ene networks as photocurable adhesives, where adhesive interactions are derived from 4-allylpyrocatechol – an alkene readily obtained from Syzygium aromaticum flower buds (clove oil).
Collapse
Affiliation(s)
- Brian R. Donovan
- School of Polymers and High Performance Materials
- The University of Southern Mississippi
- Hattiesburg, USA
| | - Jared S. Cobb
- School of Polymers and High Performance Materials
- The University of Southern Mississippi
- Hattiesburg, USA
| | - Ethan F. T. Hoff
- School of Polymers and High Performance Materials
- The University of Southern Mississippi
- Hattiesburg, USA
| | - Derek L. Patton
- School of Polymers and High Performance Materials
- The University of Southern Mississippi
- Hattiesburg, USA
| |
Collapse
|
30
|
Jenkins CL, Meredith HJ, Wilker JJ. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5091-5096. [PMID: 23668520 DOI: 10.1021/am4009538] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers.
Collapse
Affiliation(s)
- Courtney L Jenkins
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
31
|
Yu J, Wei W, Menyo MS, Masic A, Waite JH, Israelachvili JN. Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromolecules 2013; 14:1072-7. [PMID: 23452271 DOI: 10.1021/bm301908y] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The underwater adhesion of marine mussels relies on mussel foot proteins (mfps) rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (Dopa). As a side chain, Dopa is capable of strong bidentate interactions with a variety of surfaces, including many minerals and metal oxides. Titanium is among the most widely used medical implant material and quickly forms a TiO2 passivation layer under physiological conditions. Understanding the binding mechanism of Dopa to TiO2 surfaces is therefore of considerable theoretical and practical interest. Using a surface forces apparatus, we explored the force-distance profiles and adhesion energies of mussel foot protein 3 (mfp-3) to TiO2 surfaces at three different pHs (pH 3, 5.5 and 7.5). At pH 3, mfp-3 showed the strongest adhesion force on TiO2, with an adhesion energy of ∼-7.0 mJ/m(2). Increasing the pH gives rise to two opposing effects: (1) increased oxidation of Dopa, thus, decreasing availability for the Dopa-mediated adhesion, and (2) increased bidentate Dopa-Ti coordination, leading to the further stabilization of the Dopa group and, thus, an increase in adhesion force. Both effects were reflected in the resonance-enhanced Raman spectra obtained at the three deposition pHs. The two competing effects give rise to a higher adhesion force of mfp-3 on the TiO2 surface at pH 7.5 than at pH 5.5. Our results suggest that Dopa-containing proteins and synthetic polymers have great potential as coating materials for medical implant materials, particularly if redox activity can be controlled.
Collapse
Affiliation(s)
- Jing Yu
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | |
Collapse
|
32
|
Neto AI, Meredith HJ, Jenkins CL, Wilker JJ, Mano JF. Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Adv 2013. [DOI: 10.1039/c3ra40715b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Rībena D, Alekseev A, van Asselen O, Mannie GJA, Hendrix MMRM, van der Ven LGJ, Sommerdijk NAJM, de With G. Significance of the amide functionality on DOPA-based monolayers on gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16900-16908. [PMID: 23157706 DOI: 10.1021/la303308m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The adhesive proteins secreted by marine mussels contain an unusual amino acid, 3,4-dihydroxyphenylalanine (DOPA), that is responsible for the cohesive and adhesive strength of this natural glue and gives mussels the ability to attach themselves to rocks, metals, and plastics. Here we report a detailed structural and spectroscopic investigation of the interface between N-stearoyldopamine and a single-crystalline Au(111) model surface and an amide-absent molecule, 4-stearylcatechol, also on Au(111), with the aim of understanding the role of the amide functionality in the packing, orientation, and fundamental interaction between the substrate and the monolayer formed from an aqueous environment by the Langmuir-Blodgett technique. The organization of monolayers on gold was observed directly and studied in detail by X-ray photoelectron spectroscopy (XPS), contact angle measurements (CA), surface-enhanced Raman spectroscopy (SERS), infrared reflection-absorption spectroscopy (IRRAS), and atomic force microscopy (AFM). Our study shows that within the monolayer the catecholic oxygen atoms are coordinated to the gold surface, having a more perpendicular orientation with respect to the aromatic ring and the apparently tilted alkyl chains, whereas the amide functionality stabilizes the monolayer that is formed.
Collapse
Affiliation(s)
- Dina Rībena
- Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|