1
|
Hajialyani M, Hosseinzadeh L, Wu JJ. Microfluidics-Integrated Sensors toward Rapid Detection of Single Nucleotide Variations. ACS OMEGA 2021; 6:24297-24303. [PMID: 34604613 PMCID: PMC8482391 DOI: 10.1021/acsomega.1c02563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 05/03/2023]
Abstract
Rapid detection of single nucleotide variations (SNVs) is of critical importance to early diagnosis of several diseases and the prediction of diverse responses to a specific treatment. Based on the information published in the literature, discrimination of SNVs is a developing area of study with great research enthusiasm and is also an area that can benefit from microfluidics-integrated designs. This review provides a brief overview of different microfluidics-based strategies for rapid detection of SNVs and mismatched bases. Sensors based on various microfluidic formats, such as paper-based microfluidic biosensors, droplet-based microfluidic systems, and magnetic bead-based microfluidic biosensors, have been discussed with respect to their specific pros and cons for SNV detection. These systems have shown promise for distributed on-site diagnostics in personalized medicine.
Collapse
Affiliation(s)
- Marziyeh Hajialyani
- Department
of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Leila Hosseinzadeh
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, 6715847141 Kermanshah, Iran
| | - Jie Jayne Wu
- Department
of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| |
Collapse
|
2
|
Qiu E, Jin S, Xiao Z, Chen Q, Wang Q, Liu H, Xie C, Chen C, Li Z, Han S. CRISPR-based detection of Helicobacter pylori in stool samples. Helicobacter 2021; 26:e12828. [PMID: 34117655 DOI: 10.1111/hel.12828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Noninvasive detection of Helicobacter pylori plays an important role in clinical practice. However, few noninvasive methods have been applied in epidemiological studies due to the requirement for expensive equipment and complicated processes. The aim of this study was to establish a reliable, fast, and inexpensive noninvasive method based on CRISPR-Cas12a technology for the detection of Helicobacter pylori in stool specimens. METHOD A novel detection method based on CRISPR-Cas12a technology was established and validated with 41 stool specimens collected from Zhujiang Hospital and compared with reliable Helicobacter pylori detection assays, such as the rapid urease test and urea breath test. RESULT A CRISPR-Cas12a system-based method was established, and its sensitivity and specificity were evaluated. Utilizing a lateral flow biosensor, the limit of detection was 5 copies/μl, and our method could successfully distinguish Helicobacter pylori from other pathogens, suggesting no cross-reactivity with other pathogens. Furthermore, lateral flow biosensor strips were utilized to test stool specimens, which could display the detection results in an accessible way. CONCLUSION Our CRISPR-Cas12a system-based method successfully detected Helicobacter pylori in stool specimens. It is a rapid, simple, and inexpensive method for the detection and screening of Helicobacter pylori, which makes it a very promising supplemental test. However, its sensitivity and specificity compared with those of the gold standard test still need to be examined.
Collapse
Affiliation(s)
- Enming Qiu
- General Surgery Center, Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoqin Jin
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo Xiao
- Guangzhou Pluslife Technology Co, Ltd, Guangzhou, China
| | - Qianyun Chen
- General Surgery Center, Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiaohui Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huayong Liu
- Guangzhou Pluslife Technology Co, Ltd, Guangzhou, China
| | - Chanfang Xie
- Guangzhou Pluslife Technology Co, Ltd, Guangzhou, China
| | - Chong Chen
- Guangzhou Pluslife Technology Co, Ltd, Guangzhou, China
| | - Zhou Li
- General Surgery Center, Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai Han
- General Surgery Center, Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Oh HK, Kim JW, Kim JM, Kim MG. High sensitive and broad-range detection of cortisol in human saliva using a trap lateral flow immunoassay (trapLFI) sensor. Analyst 2019; 143:3883-3889. [PMID: 30022174 DOI: 10.1039/c8an00719e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cortisol, a steroid hormone, is a main biomarker of psychological stress. Early diagnosis and proper treatment of such stress is crucial to prevent the excessive secretion of cortisol. However, cortisol has a low molecular weight and cannot provide sufficient recognition sites for sandwich immunoreaction; it has previously been measured using a competitive immunoassay instead of a general sandwich immunoassay. The disadvantage of this approach is that quantitative measurements are limited because of the narrow measurable range that is key for biosensors. To overcome this limitation, we propose a new detection platform that enables small molecules such as cortisol to be quantified with high detection sensitivity. A trap lateral flow immunoassay (trapLFI) sensor has deletion and detection zones instead of the test and control zones in general lateral flow immunoassay (LFI) sensors. The conjugates used to minimize possible detection targets at low concentration are gold nanoparticles that include an antibody against cortisol and an enzyme for signal generation. Target-bound conjugates are captured in the detection zone, whereas conjugates not binding with targets are trapped in the deletion zone. Using this platform, enzyme-catalyzed color signals increase in the detection zone and decrease in the deletion zone with the concentration of cortisol. The ratio of signal from deletion zone and detection zone supplied a wide analytical range (0.01-100 ng mL-1) with high detection sensitivity (9.9 pg mL-1). Analysis of 15 human saliva samples showed a good correlation with conventional ELISA results (R2 = 0.9432).
Collapse
Affiliation(s)
- Hyun-Kyung Oh
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Chumdangwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | | | | | | |
Collapse
|
4
|
Park M, Hwang CSH, Jeong KH. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:290-295. [PMID: 29220574 DOI: 10.1021/acsami.7b16182] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plasmonic alloy has attracted much interest in tailoring localized surface plasmon resonance (LSPR) for recent biosensing techniques. In particular, paper-based plasmonic substrates allow capillary-driven lateral flow as well as three-dimensional metal nanostructures, and therefore they become actively transferred to LSPR-based biosensing such as surface-enhanced Raman spectroscopy (SERS) or metal-enhanced fluorescence (MEF). However, employing plasmonic alloy nanoislands on heat-sensitive substrate is still challenging, which significantly inhibits broad-range tailoring of the plasmon resonance wavelength (PRW) for superior sensitivity. Here we report paper-based plasmonic substrate with plasmonic alloy of Au/Ag nanocomposites for highly sensitive MEF and SERS biosensing applications. The nanofabrication procedures include concurrent deposition of Au and Ag below 100 °C without any damage on cellulose fibers. The Au/Ag nanocomposites feature nanoplasmonic alloy with single plasmon peak as well as broad-range tunability of PRW by composition control. This paper-based plasmonic alloy substrate enables about twofold enhancement of fluorescence signals and selective MEF after paper chromatography. The experimental results clearly demonstrate extraordinary enhancement in SERS signals for picomolar detection of folic acid as a cancer biomarker. This new method provides huge opportunities for fabricating plasmonic alloy on heat-sensitive substrate and biosensing applications.
Collapse
Affiliation(s)
- Moonseong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Charles S H Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Zhuang B. Introduction. DEVELOPMENT OF A FULLY INTEGRATED “SAMPLE-IN-ANSWER-OUT” SYSTEM FOR AUTOMATIC GENETIC ANALYSIS 2018:1-30. [DOI: 10.1007/978-981-10-4753-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Liu W, Zhu M, Liu H, Wei J, Zhou X, Xing D. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants. Biosens Bioelectron 2016; 81:309-316. [PMID: 26985583 DOI: 10.1016/j.bios.2016.02.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Searching for a strategy to enhance the efficiency of nucleic acid amplification and achieve exquisite discrimination of nucleic acids at the single-base level for biological detection has become an exciting research direction in recent years. Here, we have developed a simple and universal primer design strategy which produces a fascinating effect on isothermal strand displacement amplification (iSDA). We refer to the resultant primer as "invading stacking primer (IS-Primer)" which is based on contiguous stacking hybridization and toehold-mediated exchange reaction and function by merely changing the hybridization location of the primer. Using the IS-Primer, the sensitivity in detecting the target miR-21 is improved approximately five fold compared with the traditional iSDA reaction. It was further demonstrated that the IS-Primer acts as an invading strand to initiate branch migration which can increase the efficiency of the untwisting of the hairpin probe. This effect is equivalent to reducing the free energy of the stem, and the technique shows superior selectivity for single-base mismatches. By demonstrating the enhanced effect of the IS-Primer in the iSDA reaction, this work may provide a potentially new avenue for developing more sensitive and selective nucleic acids assays.
Collapse
Affiliation(s)
- Weipeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jitao Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
He C, Lu J, Lin W. Hybrid nanoparticles for combination therapy of cancer. J Control Release 2015; 219:224-236. [PMID: 26387745 PMCID: PMC4656047 DOI: 10.1016/j.jconrel.2015.09.029] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022]
Abstract
Nanoparticle anticancer drug delivery enhances therapeutic efficacies and reduces side effects by improving pharmacokinetics and biodistributions of the drug payloads in animal models. Despite promising preclinical efficacy results, monotherapy nanomedicines have failed to produce enhanced response rates over conventional chemotherapy in human clinical trials. The discrepancy between preclinical data and clinical outcomes is believed to result from the less pronounced enhanced permeability and retention (EPR) effect in and the heterogeneity of human tumors as well as the intrinsic/acquired drug resistance to monotherapy over the treatment course. To address these issues, recent efforts have been devoted to developing nanocarriers that can efficiently deliver multiple therapeutics with controlled release properties and increased tumor deposition. In ideal scenarios, the drug or therapeutic modality combinations have different mechanisms of action to afford synergistic effects. In this review, we summarize recent progress in designing hybrid nanoparticles for the co-delivery of combination therapies, including multiple chemotherapeutics, chemotherapeutics and biologics, chemotherapeutics and photodynamic therapy, and chemotherapeutics and radiotherapy. The in vitro and in vivo anticancer effects are also discussed.
Collapse
Affiliation(s)
- Chunbai He
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Jianqin Lu
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Noor MO, Hrovat D, Moazami-Goudarzi M, Espie GS, Krull UJ. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Anal Chim Acta 2015; 885:156-65. [PMID: 26231901 DOI: 10.1016/j.aca.2015.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non-ratiometric QD-FRET transduction method. The selectivity of the hybridization assays was demonstrated by the detection of single nucleotide polymorphism.
Collapse
Affiliation(s)
- M Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Maryam Moazami-Goudarzi
- Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - George S Espie
- Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
9
|
Chang K, Deng S, Chen M. Novel biosensing methodologies for improving the detection of single nucleotide polymorphism. Biosens Bioelectron 2015; 66:297-307. [DOI: 10.1016/j.bios.2014.11.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/28/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
|
10
|
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS NANO 2015; 9:2565-2573. [PMID: 25756526 PMCID: PMC5407437 DOI: 10.1021/nn5057595] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time.
Collapse
Affiliation(s)
- Robert Chapman
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mark Burnapp
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Andrew Bentham
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - David Hillier
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Abigail Zabron
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Shahid Khan
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Matthew Tyreman
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Wu ZK, Zhou DM, Wu Z, Chu X, Yu RQ, Jiang JH. Single-base mismatch discrimination by T7 exonuclease with target cyclic amplification detection. Chem Commun (Camb) 2015; 51:2954-6. [DOI: 10.1039/c4cc09984b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T7 exonuclease is reported for the first time to have high specificity in discriminating single-base mismatch.
Collapse
Affiliation(s)
- Zhen-Kun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Dian-Ming Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhan Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
12
|
Wang D, Ge C, Wang L, Xing X, Zeng L. A simple lateral flow biosensor for the rapid detection of copper(ii) ions based on click chemistry. RSC Adv 2015. [DOI: 10.1039/c5ra11752f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and enzyme-free lateral flow biosensor for the rapid detection of Cu2+ based on copper(i) ion (Cu+)-catalyzed click chemistry has been constructed for the first time.
Collapse
Affiliation(s)
- Dou Wang
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Chenchen Ge
- Kingmed Diagnostics Division of Medical Research & Development Services
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd
- Guangzhou
- China
| | - Lin Wang
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Xuerong Xing
- Tianjin Institute of Industrial Biotechnology
- University of Chinese Academy of Sciences
- Tianjin
- China
| | - Lingwen Zeng
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
| |
Collapse
|
13
|
Circular strand displacement polymerization reaction: a promising technique? Bioanalysis 2014; 6:899-901. [PMID: 24806897 DOI: 10.4155/bio.14.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Knez K, Spasic D, Janssen KPF, Lammertyn J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst 2014; 139:353-70. [PMID: 24298558 DOI: 10.1039/c3an01436c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is a crucial challenge in the development of a novel generation of diagnostic tools. Accurate detection of SNPs can prove elusive, as the impact of a single variable nucleotide on the properties of a target sequence is limited, even if this sequence consists of only a few nucleotides. New, accurate and facile strategies for the detection of point mutations are therefore absolutely necessary for the increased adoption of point-of-care molecular diagnostics. Currently, PCR and sequencing are mostly applied for diagnosing SNPs. However these methods have serious drawbacks as routine diagnostic tools because of their labour intensity and cost. Several new, more suitable methods can be applied to enable sensitive detection of mutations based on specially designed hybridization probes, mutation recognizing enzymes and thermal denaturation. Here, an overview is presented of the most recent advances in the field of fast and sensitive SNP detection assays with strong potential for integration in point-of-care tests.
Collapse
Affiliation(s)
- Karel Knez
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, Leuven, Belgium.
| | | | | | | |
Collapse
|
15
|
Label-free DNAsensor with PCR-like sensitivity based on background reduction and target-triggered polymerization amplification. Biosens Bioelectron 2014; 52:417-21. [DOI: 10.1016/j.bios.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/04/2013] [Indexed: 11/23/2022]
|
16
|
Liu J, Chen L, Lie P, Dun B, Zeng L. A universal biosensor for multiplex DNA detection based on hairpin probe assisted cascade signal amplification. Chem Commun (Camb) 2013; 49:5165-7. [PMID: 23628952 DOI: 10.1039/c3cc41941j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A hairpin DNA probe mediated cascade signal amplification method was developed for visual and rapid DNA analysis with a detection limit of 100 aM. The implementation of tag/anti-tag DNA and gold nanoparticle reporters permits a universal platform for multiplex genotyping without instrumentation.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | |
Collapse
|
17
|
Yu L, Wu W, Chen J, Xiao Z, Ge C, Lie P, Fang Z, Chen L, Zhang Y, Zeng L. Spectrophotometric and ultrasensitive DNA bioassay by circular-strand displacement polymerization reaction. Analyst 2013; 138:7182-7. [PMID: 24126460 DOI: 10.1039/c3an01347b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated a new spectrophotometric DNA detection approach based on a circular strand-displacement polymerization reaction for the quantitative detection of sequence specific DNA. In this assay, the hybridization of an immobilized hairpin probe on the microtiter plate, to target DNA, results in a conformational change and leads to a stem separation. A short primer thus anneals with the open stem and triggers a polymerization reaction, allowing a cyclic reaction comprising the release of target DNA and hybridization of the target with the remaining immobilized hairpin probe. Through this cyclical process, a large number of duplex DNA complexes are produced. Finally, the biotin modified duplex DNA products can be detected via the HRP catalyzed substrate 3,3',5,5'-tetramethylbenzidine using a spectrophotometer. As a proof of concept, a short DNA sequence (20-nt) related to the South East Asia (SEA) type deletion of α-thalassemia was chosen as the model target. This proposed assay has a very high sensitivity and selectivity with a dynamic response ranging from 0.1 fM to 10 nM and the detection limit was 8 aM. It can be performed within 2 hours, and it can differentiate target SEA DNA from wild-type DNA. By substituting the hairpin probes used in the present work, this assay can be used to detect other subtypes of genetic disorders.
Collapse
Affiliation(s)
- Luxin Yu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ge C, Yu L, Fang Z, Zeng L. An Enhanced Strip Biosensor for Rapid and Sensitive Detection of Histone Methylation. Anal Chem 2013; 85:9343-9. [DOI: 10.1021/ac402202x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chenchen Ge
- Key
Laboratory of Regenerative Biology, South China Institute for Stem
Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Luxin Yu
- Key
Laboratory of Regenerative Biology, South China Institute for Stem
Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyuan Fang
- Key
Laboratory of Regenerative Biology, South China Institute for Stem
Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lingwen Zeng
- Key
Laboratory of Regenerative Biology, South China Institute for Stem
Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
19
|
Wang C, Zhou H, Zhu W, Li H, Jiang J, Shen G, Yu R. Ultrasensitive electrochemical DNA detection based on dual amplification of circular strand-displacement polymerase reaction and hybridization chain reaction. Biosens Bioelectron 2013; 47:324-8. [PMID: 23603128 DOI: 10.1016/j.bios.2013.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
We developed a novel electrochemical strategy for ultrasensitive DNA detection using a dual amplification strategy based on the circular strand-displacement polymerase reaction (CSDPR) and the hybridization chain reaction (HCR). In this assay, hybridization of hairpin-shaped capture DNA to target DNA resulted in a conformational change of the capture DNA with a concomitant exposure of its stem. The primer was then hybridized with the exposed stem and triggered a polymerization reaction, allowing a cyclic reaction comprising release of target DNA, hybridization of target with remaining capture DNA, polymerization initiated by the primer. Furthermore, the free part of the primer propagated a chain reaction of hybridization events between two DNA hairpin probes with biotin labels, enabling an electrochemical reading using the streptavidin-alkaline phosphatase. The proposed biosensor showed to have very high sensitivity and selectivity with a dynamic response range through 10fM to 1nM, and the detect limit was as low as 8fM. The proposed strategy could have the potential for molecular diagnostics in complex biological systems.
Collapse
Affiliation(s)
- Cui Wang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Noor MO, Shahmuradyan A, Krull UJ. Paper-Based Solid-Phase Nucleic Acid Hybridization Assay Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Anal Chem 2013; 85:1860-7. [DOI: 10.1021/ac3032383] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Omair Noor
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| | - Anna Shahmuradyan
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| |
Collapse
|
21
|
Chen J, Zhou X, Zeng L. Enzyme-free strip biosensor for amplified detection of Pb2+based on a catalytic DNA circuit. Chem Commun (Camb) 2013; 49:984-6. [DOI: 10.1039/c2cc37598b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|