1
|
Skala ME, Zeitler SM, Golder MR. Liquid-assisted grinding enables a direct mechanochemical functionalization of polystyrene waste. Chem Sci 2024; 15:10900-10907. [PMID: 39027266 PMCID: PMC11253180 DOI: 10.1039/d4sc03362k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The plastic waste crisis has grave consequences for our environment, as most single-use commodity polymers remain in landfills and oceans long after their commercial lifetimes. Utilizing modern synthetic techniques to chemically modify the structure of these post-consumer plastics (e.g., upcycling) can impart new properties and added value for commercial applications. To expand beyond the abilities of current solution-state chemical processes, we demonstrate post-polymerization modification of polystyrene via solid-state mechanochemistry enabled by liquid-assisted grinding (LAG). Importantly, this emblematic trifluoromethylation study modifies discarded plastic, including dyed materials, using minimal exogenous solvent and plasticizers for improved sustainability. Ultimately, this work serves as a proof-of-concept for the direct mechanochemical post-polymerization modification of commodity polymers, and we expect future remediation of plastic waste via similar mechanochemical reactions.
Collapse
Affiliation(s)
- Morgan E Skala
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Sarah M Zeitler
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
2
|
Tegudeer Z, Moon J, Wright J, Das M, Rubasinghege G, Xu W, Gao WY. Generic and facile mechanochemical access to versatile lattice-confined Pd(ii)-based heterometallic sites. Chem Sci 2024; 15:10126-10134. [PMID: 38966377 PMCID: PMC11220583 DOI: 10.1039/d4sc01918k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) show remarkable potential in a broad array of applications given their physical and chemical versatility. Classical synthesis of MOFs is performed using solution chemistry at elevated temperatures to achieve reversible metal-ligand bond formation. These harsh conditions may not be suitable for chemical species sensitive to high temperature or prone to deleterious reactions with solvents. For instance, Pd(ii) is susceptible to reduction under solvothermal conditions and is not a common metal node of MOFs. We report a generic and facile mechanochemical strategy that directly incorporates a series of Pd(ii)-based heterobimetallic clusters into MOFs as metal nodes without Pd(ii) being reduced to Pd(0). Mechanochemistry features advantages of short reaction time, minimum solvent, high reaction yield, and high degree of synthetic control. Catalytic performances of lattice-confined heterobimetallic sites are examined for nitrene transfer reactions and we demonstrate that the chemoselectivity for allylic amination versus olefin aziridination is readily tuned by the identity of the first-row metal ion in Pd(ii)-based heterobimetallic clusters.
Collapse
Affiliation(s)
| | - Jisue Moon
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology Chicago Illinois 60616 USA
| | - Milton Das
- Department of Chemistry, New Mexico Institute of Mining and Technology Socorro New Mexico 87801 USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology Socorro New Mexico 87801 USA
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont Illinois 60439 USA
| | - Wen-Yang Gao
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| |
Collapse
|
3
|
Umapathy K, Muthamildevi M, Thiruvengadam D, Vijayarangan M, Rajan K, Jayabharathi J. Greenly Synthesized CoPBA@PANI as a Proficient Electrocatalyst for Oxygen Evolution Reaction and Its Green Sustainability Assessments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13102-13115. [PMID: 38864833 DOI: 10.1021/acs.langmuir.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Water electrolysis is a key factor to generate mobile and sustainable energy sources for H2 production. Cobalt-based Prussian Blue analogues encompassed with polymer support electrocatalysts CoPBAX@PANI (CoPBA@PANI-100, CoPBA@PANI-200, and CoPBA@PANI-300) have been synthesized and characterized. The well-designed CoPBA@PANI-200/GC shows a low overpotential (η10) of 301 mV with a small Tafel slope (56 mV dec-1), comapred to that of IrO2 (348 mV ; 98 mV dec-1) for OER. The conductivity with stability of CoPBAX@PANI have been increased due to the synergistic effect of CoPBA with PANI. PANI provides additional active sites and shows strong binding with Co ions, and the even distribution of CoPBA overcomes the sluggish kinetics. The turnover frequency (TOF) of CoPBA@PANI-200/GC (0.0212, s-1) was ∼15 times higher than IrO2 (0.0014 s-1) at 1.60 V. Furthermore, CoPBA@PANI-200/NF delivers low overpotential of 274 mV@10 mA cm-2 and exhibits a durability of >250 h with a potential loss of 4.2%. Benefiting from strong electronic interaction between polymer support and evenly distributed CoPBA, CoPBAx@PANI shows higher electrochemical active surface area (ECSA) of 53.08 mF cm-2. The solar-based water electrolysis confirmed the practical use of CoPBA@PANI-200/NF (1.57 V) for eco-benign industrial H2 production. The CoPBA@PANI-200 shows exceptional OER performances as well as favorable kinetics to resolve the sluggish water oxidation. Hence, the cost-effective CoPBA@PANI performances opens a prospective way to boost the efficiency of other cobalt-derived catalysts in renewable energy devices.
Collapse
Affiliation(s)
- Krishnan Umapathy
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Murugan Muthamildevi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Dhanasingh Thiruvengadam
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Murugan Vijayarangan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Kuppusamy Rajan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| | - Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
| |
Collapse
|
4
|
Menon AM, Sidhartha NN, Shruti I, Suresh A, Meena R, Dikundwar AG, Chopra D. Synthon Approach in Crystal Engineering to Modulate Physicochemical Properties in Organic Salts of Chlorpropamide. Mol Pharm 2024; 21:2894-2907. [PMID: 38688017 DOI: 10.1021/acs.molpharmaceut.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.
Collapse
Affiliation(s)
- Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Nagamalli Naga Sidhartha
- Department of Pharmaceutical Analysis, NIPER Hyderabad, Balanagar, Hyderabad, Telangana 500037, India
| | - Ipsha Shruti
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Ajay Suresh
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Ravindra Meena
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, NIPER Hyderabad, Balanagar, Hyderabad, Telangana 500037, India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
5
|
Zgrabik J, Bhowmick R, Eckstrom FD, Harrison AR, Fetrow TV, Blake AV, Vlaisavljevich B, Daly SR. The Influence of Phosphorus Substituents on the Structures and Solution Speciation of Trivalent Uranium and Lanthanide Phosphinodiboranates. Inorg Chem 2024; 63:9451-9463. [PMID: 38011639 PMCID: PMC11134491 DOI: 10.1021/acs.inorgchem.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Here, we report the mechanochemical synthesis and characterization of homoleptic uranium and lanthanide phosphinodiboranates with isopropyl and ethyl substituents attached to phosphorus. M(H3BPiPr2BH3)3 complexes with M = U, Nd, Sm, Tb, and Er were prepared by ball milling UI3(THF)4, SmBr3, or MI3 with three equivalents of K(H3BPiPr2BH3). M(H3BPEt2BH3)3 with M = U and Nd were prepared similarly using K(H3BPEt2BH3), and the complexes were purified by extraction and crystallization from Et2O or CH2Cl2. Single-crystal XRD studies revealed that all five M(H3BPiPr2BH3)3 crystallize as dimers, despite the significant differences in metal radii across the series. In contrast, Nd(H3BPEt2BH3)3 with smaller ethyl substituents crystallized as a coordination polymer. Crystals of U(H3BPEt2BH3)3 were not suitable for structural analysis, but crystals of U(H3BPMe2BH3)3 isolated in low yield by solution methods were isostructural with Nd(H3BPEt2BH3)3. 1H and 11B NMR studies in C6D6 revealed that all of the complexes form mixtures of monomer and oligomers when dissolved, and the extent of oligomerization was highly dependent on metal radius and phosphorus substituent size. A comprehensive analysis of all structurally characterized uranium and lanthanide phosphinodiboranate complexes reported to date, including those with larger Ph and tBu substituents, revealed that the degree of oligomerization in solution can be correlated to differences in B-P-B angles obtained from single-crystal XRD studies. Density functional theory calculations, which included structural optimizations in combination with conformational searches using tight binding methods, replicated the general experimental trends and revealed free energy differences that account for the different solution and solid-state structures. Collectively, these results reveal how steric changes to phosphorus substituents significantly removed from metal coordination sites can have a significant influence on solution speciation, deoligomerization energies, and the solid-state structure of homoleptic phosphinodiboranate complexes containing trivalent f-metals.
Collapse
Affiliation(s)
- Joshua
C. Zgrabik
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Rina Bhowmick
- Department
of Chemistry, The University of South Dakota, 414 E Clark St., Vermillion, South Dakota 57069, United States
| | - Francesca D. Eckstrom
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - A. Rayford Harrison
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Taylor V. Fetrow
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Anastasia V. Blake
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Bess Vlaisavljevich
- Department
of Chemistry, The University of South Dakota, 414 E Clark St., Vermillion, South Dakota 57069, United States
| | - Scott R. Daly
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Nallaparaju JV, Satsi R, Merzhyievskyi D, Jarg T, Aav R, Kananovich DG. Mechanochemical Birch Reduction with Low Reactive Alkaline Earth Metals. Angew Chem Int Ed Engl 2024; 63:e202319449. [PMID: 38436590 DOI: 10.1002/anie.202319449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Birch reduction and similar dissolved metal-type transformations hold significant importance in the organic synthesis toolbox. Historically, the field has been dominated by alkali metal reductants. In this study, we report that largely neglected, low-reactive alkaline earth metals can become powerful and affordable reductants when used in a ball mill under essentially solvent-free conditions, in the presence of ethylenediamine and THF as liquid additives. Calcium can reduce both electron-deficient and electron-rich arenes, with yields of products similar to those obtained with lithium metal. Magnesium reveals enhanced reducing power, enabling the reduction of benzoic acids while keeping electron-rich aromatic moieties intact and allows for chemoselective transformations. The developed mechanochemical approach uses readily available and safer-to-handle metals, operates under air and ambient temperature conditions, and can be used for gram-scale preparations. Finally, we demonstrate that the developed conditions can be used for other dissolved metal-type reductive transformations, including reductive amination, deoxygenation, dehalogenation, alkene and alkyne reductions.
Collapse
Affiliation(s)
- Jagadeesh Varma Nallaparaju
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Riin Satsi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Danylo Merzhyievskyi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
- Department of Chemistry of Bioactive Nitrogen-containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Dzmitry G Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
7
|
Hosseinchi Qareaghaj O, Ghaffarzadeh M, Azizi N. Ultrafast and efficient continuous flow organic synthesis with a modified extruder-grinder system. Sci Rep 2024; 14:9671. [PMID: 38671008 PMCID: PMC11053142 DOI: 10.1038/s41598-024-59567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The study introduces a groundbreaking continuous system that combines an extruder and grinder to enable catalyst-free and solvent-free reactions under mild conditions. This temperature-controlled system facilitates the synthesis of highly functionalized chromenes, which have valuable applications in generating combinatorial libraries and complex target molecules. The newly developed mill extruder machine offers several advantages for industrial production on a large scale. It effectively reduces waste, saves energy, and enhances time efficiency. This system represents a significant advancement in the field, providing a new strategy for one-pot synthesis of various types of highly functionalized spirooxindoles and chromenes. Remarkably, these reactions can be accomplished within a short timeframe of 2-10 min, yielding impressive results of 75-98%. The results demonstrate superior performance compared to traditional reaction methods, making it an appealing tool and hotspot area of research in green chemistry.
Collapse
Affiliation(s)
| | - Mohammad Ghaffarzadeh
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| |
Collapse
|
8
|
Saha J, Banerjee S, Malo S, Das AK, Das I. A Torquoselective Thermal 6π-Electrocyclization Approach to 1,4-Cyclohexadienes via Solvent-Aided Proton Transfer: Experimental and Theoretical Studies. Chemistry 2024; 30:e202304009. [PMID: 38179806 DOI: 10.1002/chem.202304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Essalmi S, Lotfi S, BaQais A, Saadi M, Arab M, Ait Ahsaine H. Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Adv 2024; 14:9365-9390. [PMID: 38510487 PMCID: PMC10951820 DOI: 10.1039/d3ra08815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The growing apprehension surrounding heavy metal pollution in both environmental and industrial contexts has spurred extensive research into adsorption materials aimed at efficient remediation. Among these materials, Metal-Organic Frameworks (MOFs) have risen as versatile and promising contenders due to their adjustable properties, expansive surface areas, and sustainable characteristics, compared to traditional options like activated carbon and zeolites. This exhaustive review delves into the synthesis techniques, structural diversity, and adsorption capabilities of MOFs for the effective removal of heavy metals. The article explores the evolution of MOF design and fabrication methods, highlighting pivotal parameters influencing their adsorption performance, such as pore size, surface area, and the presence of functional groups. In this perspective review, a thorough analysis of various MOFs is presented, emphasizing the crucial role of ligands and metal nodes in adapting MOF properties for heavy metal removal. Moreover, the review delves into recent advancements in MOF-based composites and hybrid materials, shedding light on their heightened adsorption capacities, recyclability, and potential for regeneration. Challenges for optimization, regeneration efficiency and minimizing costs for large-scale applications are discussed.
Collapse
Affiliation(s)
- S Essalmi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - S Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - M Arab
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
10
|
Chen YC, Yuan SQ, Zhang GZ, Di YM, Qiu QW, Yang X, Lin MJ, Zhu YN, Chen HM. Mechanochemical Synthesis of Cuprous Complexes for X-ray Scintillation and Imaging. Inorg Chem 2024; 63:3572-3577. [PMID: 38324777 DOI: 10.1021/acs.inorgchem.3c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cuprous complex scintillators show promise for X-ray detection with abundant raw materials, diverse luminescent mechanisms, and adjustable structures. However, their synthesis typically requires a significant amount of organic solvents, which conflict with green chemistry principles. Herein, we present the synthesis of two high-performance cuprous complex scintillators using a simple mechanochemical method for the first time, namely [CuI(PPh3)2R] (R = 4-phenylpyridine hydroiodide (PH, Cu-1) and 4-(4-bromophenyl)pyridine hydroiodide (PH-Br, Cu-2). Both materials demonstrated remarkable scintillation performances, exhibiting radioluminescence (RL) intensities 1.52 times (Cu-1) and 2.52 times (Cu-2) greater than those of Bi4Ge3O12 (BGO), respectively. Compared to Cu-1, the enhanced RL performance of Cu-2 can be ascribed to its elevated quantum yield of 51.54%, significantly surpassing that of Cu-1 at 37.75%. This excellent luminescent performance is derived from the introduction of PH-Br, providing a more diverse array of intermolecular interactions that effectively constrain molecular vibration and rotation, further suppressing the nonradiative transition process. Furthermore, Cu-2 powder can be prepared into scintillator film with excellent X-ray imaging capabilities. This work establishes a pathway for the rapid, eco-friendly, and cost-effective synthesis of high-performance cuprous complex scintillators.
Collapse
Affiliation(s)
- Yue-Chen Chen
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Si-Qi Yuan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Guo-Zhen Zhang
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yi-Ming Di
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiang-Wen Qiu
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xi Yang
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Ya-Nan Zhu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
11
|
Zuffa C, Cappuccino C, Casali L, Emmerling F, Maini L. Liquid reagents are not enough for liquid assisted grinding in the synthesis of [(AgBr)( n-pica)] n. Phys Chem Chem Phys 2024; 26:5010-5019. [PMID: 38258475 DOI: 10.1039/d3cp04791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This study investigates the mechanochemical reactions between AgBr 3-picolylamine and 4-picolylamine. The use of different stoichiometry ratios of the reagents allows [(AgBr)(n-pica)]n and [(AgBr)2(n-pica)]n to be obtained, and we report the new structures of [(AgBr)2(3-pica)]n and [(AgBr)2(4-pica)]n which are characterized by the presence of the following: (a) infinite inorganic chains, (b) silver atom coordinated only by bromide atoms and (c) argentophilic interactions. Furthermore, we studied the interconversion of [(AgBr)(n-pica)]n/[(AgBr)2(n-pica)]n by mechanochemical and thermal properties. The in situ experiments suggest that [(AgBr)(3-pica)]n is kinetically favoured while [(AgBr)2(3-pica)]n is converted into [(AgBr)(3-pica)]n only with a high excess of the ligand. Finally, the liquid nature of the ligands is not sufficient to assist the grinding process, and the complete reaction is observed with the addition of a small quantity of acetonitrile.
Collapse
Affiliation(s)
- Caterina Zuffa
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| | - Chiara Cappuccino
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| | - Lucia Casali
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Lucia Maini
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, Bologna, Italy.
| |
Collapse
|
12
|
Perez Bravo JJ, Gerbehaye C, Raquez JM, Mincheva R. Recent Advances in Solid-State Modification for Thermoplastic Polymers: A Comprehensive Review. Molecules 2024; 29:667. [PMID: 38338411 PMCID: PMC10856226 DOI: 10.3390/molecules29030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
This review introduces groundbreaking insights in polymer science, specifically spotlighting a novel review of the solid-state modification (SSM) approach of thermoplastic polymers, a method not extensively explored. Unlike traditional melt polymer modification, SSM stands out by incorporating monomers or oligomers into the amorphous phase of polymers through innovative exchange reactions. The background of the study places thermoplastics within the context of their increased use over the past century, highlighting their versatility in various applications and the associated environmental and health concerns due to certain additives. The results section outlines the unique aspects of SSM and its increasing recognition for its potential to enhance material performance in areas such as catalysts and composites. It also discusses the application of SSM in modifying different thermoplastic polymers, highlighting various studies demonstrating the method's effectiveness in altering polymer properties. Finally, this work emphasizes SSM's importance in environmental sustainability and its potential in the recycling and upcycling of plastic materials. It acknowledges the challenges and future perspectives in the field, particularly regarding the scalability of SSM techniques for industrial applications and their role in advancing a circular economy in the polymer industry.
Collapse
Affiliation(s)
| | | | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, CIRMAP, University of Mons, 23, Place du Parc, 7000 Mons, Belgium; (J.J.P.B.)
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, CIRMAP, University of Mons, 23, Place du Parc, 7000 Mons, Belgium; (J.J.P.B.)
| |
Collapse
|
13
|
Báti G, Csókás D, Stuparu MC. Mechanochemical Scholl Reaction on Phenylated Cyclopentadiene Core: One-Step Synthesis of Fluoreno[5]helicenes. Chemistry 2024; 30:e202302971. [PMID: 37870299 DOI: 10.1002/chem.202302971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we explore feasibility of the mechanochemical approach in the synthesis of tetrabenzofluorenes (fluoreno[5]helicenes). For this, commercially available phenylated cyclopentadiene precursors are subjected to the Scholl reaction in the solid state using FeCl3 as an oxidant and sodium chloride as the solid reaction medium. This ball milling process gave access to the 5-membered ring containing-helicenes in one synthetic step in high (95-96 %) isolated yields. The solution-phase reactions, however, were found to be moderate to low yielding in this regard (10-40 %).
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
14
|
Rahmani M, Matos CMO, Wang SQ, Bezrukov AA, Eaby AC, Sensharma D, Hjiej-Andaloussi Y, Vandichel M, Zaworotko MJ. Highly Selective p-Xylene Separation from Mixtures of C8 Aromatics by a Nonporous Molecular Apohost. J Am Chem Soc 2023; 145:27316-27324. [PMID: 38055597 PMCID: PMC10739993 DOI: 10.1021/jacs.3c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient conditions.
Collapse
Affiliation(s)
- Maryam Rahmani
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Catiúcia
R. M. O. Matos
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, 138634 Singapore
| | - Andrey A. Bezrukov
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Alan C. Eaby
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Debobroto Sensharma
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Yassin Hjiej-Andaloussi
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Matthias Vandichel
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
15
|
Binaeian E, Nabipour H, Ahmadi S, Rohani S. The green synthesis and applications of biological metal-organic frameworks for targeted drug delivery and tumor treatments. J Mater Chem B 2023; 11:11426-11459. [PMID: 38047399 DOI: 10.1039/d3tb01959d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Biological metal-organic frameworks (bio-MOFs) constitute a growing subclass of MOFs composed of metals and bio-ligands derived from biology, such as nucleobases, peptides, saccharides, and amino acids. Bio-ligands are more abundant than other traditional organic ligands, providing multiple coordination sites for MOFs. However, bio-MOFs are typically prepared using hazardous or harmful solvents or reagents, as well as laborious processes that do not conform to environmentally friendly standards. To improve biocompatibility and biosafety, eco-friendly synthesis and functionalization techniques should be employed with mild conditions and safer materials, aiming to reduce or avoid the use of toxic and hazardous chemical agents. Recently, bio-MOF applications have gained importance in some research areas, including imaging, tumor therapy, and targeted drug delivery, owing to their flexibility, low steric hindrances, low toxicity, remarkable biocompatibility, surface property refining, and degradability. This has led to an exponential increase in research on these materials. This paper provides a comprehensive review of updated strategies for the synthesis of environmentally friendly bio-MOFs, as well as an examination of the current progress and accomplishments in green-synthesized bio-MOFs for drug delivery aims and tumor treatments. In conclusion, we consider the challenges of applying bio-MOFs for biomedical applications and clarify the possible research orientation that can lead to highly efficient therapeutic outcomes.
Collapse
Affiliation(s)
- Ehsan Binaeian
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Soroush Ahmadi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
16
|
Cabeza JA, Reynes JF, García F, García-Álvarez P, García-Soriano R. Fast and scalable solvent-free access to Lappert's heavier tetrylenes E{N(SiMe 3) 2} 2 (E = Ge, Sn, Pb) and ECl{N(SiMe 3) 2} (E = Ge, Sn). Chem Sci 2023; 14:12477-12483. [PMID: 38020393 PMCID: PMC10646885 DOI: 10.1039/d3sc02709k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iconic Lappert's heavier tetrylenes E{N(SiMe3)2}2 (E = Ge (1), Sn (2), Pb (3)) have been efficiently prepared from GeCl2·(1,4-dioxane), SnCl2 or PbCl2 and Li{N(SiMe3)2} via a completely solvent-free one-pot mechanochemical route followed by sublimation. This fast, high-yielding and scalable approach (2 has been prepared in a 100 mmol scale), which involves a small environmental footprint, represents a remarkable improvement over any synthetic route reported over the last five decades, being a so far rare example of the use of mechanochemistry in the realm of main group chemistry. This solventless route has been successfully extended to the preparation of other heavier tetrylenes, such as ECl{N(SiMe3)2} (E = Ge (4), Sn (5)).
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Rubén García-Soriano
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
17
|
Báti G, Laxmi S, Stuparu MC. Mechanochemical Synthesis of Corannulene: Scalable and Efficient Preparation of A Curved Polycyclic Aromatic Hydrocarbon under Ball Milling Conditions. CHEMSUSCHEM 2023; 16:e202301087. [PMID: 37581302 DOI: 10.1002/cssc.202301087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Corannulene, a curved polycyclic aromatic hydrocarbon, is prepared in a multigram scale through mechanochemical synthesis. Initially, a mixer mill approach is examined and found to be suitable for a gram scale synthesis. For larger scales, planetary mills are used. For instance, 15 g of corannulene could be obtained in a single milling cycle with an isolated yield of 90 %. The yields are lower when the jar rotation rate is lower or higher than 400 revolutions per minute (rpm). Cumulatively, 98 g of corannulene is produced through the ball milling-based grinding techniques. These results indicate the future potential of mechanochemistry in the rational chemical synthesis of highly curved nanocarbons such as fullerenes and carbon nanotubes.
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Shoba Laxmi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
18
|
Seo T, Kubota K, Ito H. Dual Nickel(II)/Mechanoredox Catalysis: Mechanical-Force-Driven Aryl-Amination Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2023; 62:e202311531. [PMID: 37638843 DOI: 10.1002/anie.202311531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The combination of a nickel(II) catalyst and a mechanoredox catalyst under ball-milling conditions promotes mechanical-force-driven C-N cross-coupling reactions. In this nickel(II)/mechanoredox cocatalyst system, the modulation of the oxidation state of the nickel center, induced by piezoelectricity, is used to facilitate a highly efficient aryl-amination reaction, which is characterized by a broad substrate scope, an inexpensive combination of catalysts (NiBr2 and BaTiO3 ), short reaction times, and an almost negligible quantity of solvents. Moreover, this reaction can be readily up-scaled to the multi-gram scale, and all synthetic operations can be carried out under atmospheric conditions without the need for complicated reaction setups. Furthermore, this force-induced system is suitable for excitation-energy-accepting molecules and poorly soluble polyaromatic substrates that are incompatible with solution-based nickel(II)/photoredox cocatalysts.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| |
Collapse
|
19
|
Jaryal R, Khan SA. Liquid-assisted mechanochemical synthesis, crystallographic, theoretical and molecular docking study on HIV instasome of novel copper complexes: (µ-acetato)-bis(2,2'-bipyridine)-copper and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide. Biometals 2023; 36:975-996. [PMID: 37010713 DOI: 10.1007/s10534-023-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
In the present work the two new Cu(II) complexes, (µ-acetato)-bis(2,2'-bipyridine)-copper [Cu(bpy)2(CH3CO2)] and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide [Cu(2-methylimid)4Br]Br have been synthesized by liquid assisted mechanochemical method. The [Cu(bpy)2(CH3CO2)] complex (1) and [Cu(2-methylimid)4Br]Br complex (2) characterised by IR and UV-visible spectroscopy and the structure are confirmed by XRD diffraction studies. Complex (1) crystallized in the Monoclinic with the space group of C2/c where a = 24.312(5) Å, b = 8.5892(18) Å, c = 14.559(3) Å, α = 90°, β = 106.177(7)° and γ = 90° and Complex (2) crystallized in the Tetragonal with the space group of P4nc, a = 9.9259(2) Å, b = 9.9259(2) Å, c = 10.9357(2) Å, α = 90°, β = 90° and γ = 90°. The complex (1) has distorted octahedral geometry where the acetate ligand showed bidentate bridging with the central metal ion and complex (2) has slightly deformed square pyramidal geometry. The HOMO-LUMO energy gap value and the low chemical potential showed that the complex (2) is stable and difficult to polarize compare to complex (1). The molecular docking study of complexes with the HIV instasome nucleoprotein showed the binding energy values - 7.1 and - 5.3 kcal/mol for complex (1) and complex (2) respectively. The negative binding energy values showed the complexes have affinity to bind with HIV instasome nucleoproteins. The in-silico pharmacokinetic study of the complex (1) and complex (2) showed non AMES toxicity, non-carcinogens and low honey Bee toxicity but weakly inhibit Human Ether-a-go-go-related gene.
Collapse
Affiliation(s)
- Ruchika Jaryal
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India.
| | - Shamshad Ahmad Khan
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India
| |
Collapse
|
20
|
Varma Nallaparaju J, Nikonovich T, Jarg T, Merzhyievskyi D, Aav R, Kananovich DG. Mechanochemistry-Amended Barbier Reaction as an Expedient Alternative to Grignard Synthesis. Angew Chem Int Ed Engl 2023; 62:e202305775. [PMID: 37387203 DOI: 10.1002/anie.202305775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Organomagnesium halides (Grignard reagents) are essential carbanionic building blocks widely used in carbon-carbon and carbon-heteroatom bond-forming reactions with various electrophiles. In the Barbier variant of the Grignard synthesis, the generation of air- and moisture-sensitive Grignard reagents occurs concurrently with their reaction with an electrophile. Although operationally simpler, the classic Barbier approach suffers from low yields due to multiple side reactions, thereby limiting the scope of its application. Here, we report a mechanochemical adaptation of the Mg-mediated Barbier reaction, which overcomes these limitations and facilitates the coupling of versatile organic halides (e.g., allylic, vinylic, aromatic, aliphatic) with a diverse range of electrophilic substrates (e.g., aromatic aldehydes, ketones, esters, amides, O-benzoyl hydroxylamine, chlorosilane, borate ester) to assemble C-C, C-N, C-Si, and C-B bonds. The mechanochemical approach has the advantage of being essentially solvent-free, operationally simple, immune to air, and surprisingly tolerant to water and some weak Brønsted acids. Notably, solid ammonium chloride was found to improve yields in the reactions of ketones. Mechanistic studies have clarified the role of mechanochemistry in the process, indicating the generation of transient organometallics facilitated by improved mass transfer and activation of the surface of magnesium metal.
Collapse
Affiliation(s)
- Jagadeesh Varma Nallaparaju
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tatsiana Nikonovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Danylo Merzhyievskyi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
- Department of Chemistry of Bioactive Nitrogen-containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Dzmitry G Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
21
|
Kanbua C, Rattanawongwiboon T, Khamlue R, Ummartyotin S. Green synthesis of sulfonated cellulose/polyether block amide/polyethylene glycol diacrylate (SC/PEBAX/PEGDA) composite membrane by gamma radiation and sulfonation techniques for battery application. Int J Biol Macromol 2023; 248:125844. [PMID: 37455000 DOI: 10.1016/j.ijbiomac.2023.125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Sulfonated cellulose (SC) was successfully prepared through a two-step process of gamma radiation and subsequently sulfonation with potassium metabisulfite of microcrystalline cellulose extracted from sugarcane bagasse. The effect of gamma radiation dose on cellulose showed an increment of oxidation degree, which was evidenced by the intensity ratio of I1718 (carbonyl)/ I2892 (aliphatic) from FTIR analysis. The obtained SC was introduced into polyether block amide/polyethylene glycol diacrylate (PEBAX/PEGDA) polymer matrix as a reinforcement and hydrophilic filler for improving electrolyte affinity and thermal stability of its composite membrane. The increase of SC in PEBAX/PEGDA composite membranes resulted in enhancement of hydrophilicity, electrolyte uptake, and thermal stability compared to pristine composite membranes. However, the excess SC content in the composite membrane exhibited the low physical properties, caused by negligible dispersion on the surface membrane. With the optimum 2.0 wt% SC in PEBAX/PEGDA, the porosity, contact angle and electrolyte uptake capacity was found to be 64.0 %, 12.8° and 37.5 %, respectively. 2.0 wt% SC/PEBAX/PEGDA showed the outstanding thermal stability with negligible shrinkage <10 % at 150 °C whereas pristine PEBAX/PEGDA showed the shrinkage of 29 %. The obtained SC/PEBAX/PEGDA composite membrane is considered as a potential candidate to replace the commercial polyolefin-based separator in lithium-ion batteries.
Collapse
Affiliation(s)
- Chonlada Kanbua
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani 12120, Thailand
| | - Thitirat Rattanawongwiboon
- Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakorn Nayok 26120, Thailand.
| | - Rattapon Khamlue
- Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakorn Nayok 26120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani 12120, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
22
|
Luo H, Liu FZ, Liu Y, Chu Z, Yan K. Biasing Divergent Polycyclic Aromatic Hydrocarbon Oxidation Pathway by Solvent-Free Mechanochemistry. J Am Chem Soc 2023. [PMID: 37428958 DOI: 10.1021/jacs.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Precise control in reaction selectivity is the goal in modern organic synthesis, and it has been widely studied throughout the synthetic community. In comparison, control of divergent reactivity of a given reagent under different reaction conditions is relatively less explored aspect of chemical selectivity. We herein report an unusual reaction between polycyclic aromatic hydrocarbons and periodic acid H5IO6 (1), where the product outcome is dictated by the choice of reaction conditions. That is, reactions under solution-based condition give preferentially C-H iodination products, while reactions under solvent-free mechanochemical condition provide C-H oxidation quinone products. Control experiments further indicated that the iodination product is not a reaction intermediate toward the oxidation product and vice versa. Mechanistic studies unveiled an in situ crystalline-to-crystalline phase change in 2 during ball-milling treatment, where we assigned it as a polymeric hydrogen-bond network of 1. We believe that this polymeric crystalline phase shields the more embedded electrophilic I═O group of 1 from C-H iodination and bias a divergent C-H oxidation pathway (with I═O) in the solid state. Collectively, this work demonstrates that mechanochemistry can be employed to completely switch a reaction pathway and unmask hidden reactivity of chemical reagents.
Collapse
Affiliation(s)
- Hao Luo
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoyang Chu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
23
|
Seo T, Kubota K, Ito H. Mechanochemistry-Directed Ligand Design: Development of a High-Performance Phosphine Ligand for Palladium-Catalyzed Mechanochemical Organoboron Cross-Coupling. J Am Chem Soc 2023; 145:6823-6837. [PMID: 36892233 DOI: 10.1021/jacs.2c13543] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Mechanochemical synthesis that uses transition-metal catalysts has attracted significant attention due to its numerous advantages, including low solvent waste, short reaction times, and the avoidance of problems associated with the low solubility of starting materials. However, even though the mechanochemical reaction environment is largely different from that of homogeneous solution systems, transition-metal catalysts, which were originally developed for use in solution, have been used directly in mechanochemical reactions without any molecular-level modifications to ensure their suitability for mechanochemistry. Alas, this has limited the development of more efficient mechanochemical cross-coupling processes. Here, we report a conceptually distinct approach, whereby a mechanochemistry-directed design is used to develop ligands for mechanochemical Suzuki-Miyaura cross-coupling reactions. The ligand development was guided by the experimental observation of catalyst deactivation via the aggregation of palladium species, a problem that is particularly prominent in solid-state reactions. By embedding the ligand into a poly(ethylene glycol) (PEG) polymer, we found that phosphine-ligated palladium(0) species could be immobilized in the fluid phase created by the PEG chains, preventing the physical mixing of the catalyst into the crystalline solid phase and thus undesired catalyst deactivation. This catalytic system showed high catalytic activity in reactions of polyaromatic substrates close to room temperature. These substrates usually require elevated temperatures to be reactive in the presence of catalyst systems with conventional ligands such as SPhos. The present study hence provides important insights for the design of high-performance catalysts for solid-state reactions and has the potential to inspire the development of industrially attractive, almost solvent-free mechanochemical cross-coupling technologies.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
24
|
Solvent-Free Mechanochemical Synthesis of Organic Proton Conducting Salts Incorporating Imidazole and Dicarboxylic Acids. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
25
|
Chakma P, Zeitler SM, Baum F, Yu J, Shindy W, Pozzo LD, Golder MR. Mechanoredox Catalysis Enables a Sustainable and Versatile Reversible Addition-Fragmentation Chain Transfer Polymerization Process. Angew Chem Int Ed Engl 2023; 62:e202215733. [PMID: 36395245 DOI: 10.1002/anie.202215733] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/19/2022]
Abstract
The sustainable synthesis of macromolecules with control over sequence and molar mass remains a challenge in polymer chemistry. By coupling mechanochemistry and electron-transfer processes (i.e., mechanoredox catalysis), an energy-conscious controlled radical polymerization methodology is realized. This work explores an efficient mechanoredox reversible addition-fragmentation chain transfer (RAFT) polymerization process using mechanical stimuli by implementing piezoelectric barium titanate and a diaryliodonium initiator with minimal solvent usage. This mechanoredox RAFT process demonstrates exquisite control over poly(meth)acrylate dispersity and chain length while also showcasing an alternative to the solution-state synthesis of semifluorinated polymers that typically utilize exotic solvents and/or reagents. This chemistry will find utility in the sustainable development of materials across the energy, biomedical, and engineering communities.
Collapse
Affiliation(s)
- Progyateg Chakma
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Sarah M Zeitler
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Fábio Baum
- Department of Chemical Engineering and Department of Material Science & Engineering, University of Washington, 105 Benson Hall, Seattle, WA 98195, USA
| | - Jiatong Yu
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Waseem Shindy
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering and Department of Material Science & Engineering, University of Washington, 105 Benson Hall, Seattle, WA 98195, USA
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Pétry N, Luttringer F, Bantreil X, Lamaty F. A mechanochemical approach to the synthesis of sydnones and derivatives. Faraday Discuss 2023; 241:114-127. [PMID: 36134497 DOI: 10.1039/d2fd00096b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sydnones are heterocyclic compounds which display important biological activities, including their abilities to react in 1,3-dipolar additions for applications in the development of new prodrugs. Capitalizing on our preliminary work on the mechanosynthesis of sydnones, an extension of this work to two related families of molecules, diarylsydnones and iminosydnones is reported. A ball-milling approach towards the synthesis of diaryl sydnones was developed, a necessary step for the synthesis of potential sydnone-based ligands of metal complexes. A mechanochemistry-based synthesis of iminosydnones was optimized, including the preparation of active pharmaceutical ingredients (API) related to feprosidnine, linsidomine, mesocarb and molsidomine. This work demonstrated that the ball-milling procedures were efficient and time saving through avoiding purification steps, and reduced the use of organic solvents.
Collapse
Affiliation(s)
- Nicolas Pétry
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France. .,Institut Universitaire de France (IUF), France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
27
|
Boldyreva E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday Discuss 2023; 241:9-62. [PMID: 36519434 DOI: 10.1039/d2fd00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper presents a view on the achievements, challenges and prospects of mechanochemistry. The extensive reference list can serve as a good entry point to a plethora of mechanochemical literature.
Collapse
Affiliation(s)
- Elena Boldyreva
- Boreskov Institute of Catalysis SB RAS & Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
28
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Miguel-Casañ E, Darawsheh MD, Fariña-Torres V, Vitórica-Yrezábal IJ, Andres-Garcia E, Fañanás-Mastral M, Mínguez Espallargas G. Heterometallic palladium-iron metal-organic framework as a highly active catalyst for cross-coupling reactions. Chem Sci 2022; 14:179-185. [PMID: 36605746 PMCID: PMC9769104 DOI: 10.1039/d2sc05192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(ii) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g-1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Mohanad D. Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Víctor Fariña-Torres
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | | | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | | |
Collapse
|
30
|
Mannias G, Scano A, Pilloni M, Magner E, Ennas G. Tailoring MOFs to Biomedical Applications: A Chimera or a Concrete Reality? The Case Study of Fe-BTC by bio-friendly Mechanosynthesis. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Giada Mannias
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Alessandra Scano
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| | - Martina Pilloni
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Guido Ennas
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM unit, Monserrato, Italy
| |
Collapse
|
31
|
Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat Rev Chem 2022; 7:51-65. [PMID: 37117822 DOI: 10.1038/s41570-022-00442-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Owing to its efficiency and unique reactivity, mechanochemical processing of bulk solids has developed into a powerful tool for the synthesis and transformation of various classes of materials. Nevertheless, mechanochemistry is primarily based on simple techniques, such as milling in comminution devices. Recently, mechanochemical reactivity has started being combined with other energy sources commonly used in solution-based chemistry. Milling under controlled temperature, light irradiation, sound agitation or electrical impulses in newly developed experimental setups has led to reactions not achievable by conventional mechanochemical processing. This Perspective describes these unique reactivities and the advances in equipment tailored to synthetic mechanochemistry. These techniques - thermo-mechanochemistry, sono-mechanochemistry, electro-mechanochemistry and photo-mechanochemistry - represent a notable advance in modern mechanochemistry and herald a new level of solid-state reactivity: mechanochemistry 2.0.
Collapse
|
32
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Langerreiter D, Kostiainen MA, Kaabel S, Anaya‐Plaza E. A Greener Route to Blue: Solid-State Synthesis of Phthalocyanines. Angew Chem Int Ed Engl 2022; 61:e202209033. [PMID: 35876617 PMCID: PMC9804881 DOI: 10.1002/anie.202209033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/09/2023]
Abstract
Phthalocyanines are important organic dyes with a broad applicability in optoelectronics, catalysis, sensing and nanomedicine. Currently, phthalocyanines are synthetized in high boiling organic solvents, like dimethylaminoethanol (DMAE), which is a flammable, corrosive, and bioactive substance, miscible with water and harmful to the environment. Here we show a new solid-state approach for the high-yielding synthesis of phthalocyanines, which reduces up to 100-fold the amount of DMAE. Through systematic screening of solid-state reaction parameters, carried out by ball-milling and aging, we reveal the influence of key variables-temperature, presence of a template, and the amount and role of DMAE in the conversion of tBu phthalonitrile to tetra-tBu phthalocyanine. These results set the foundations to synthesize these high-performance dyes through a greener approach, opening the field of solid-state synthesis to a wider family of phthalocyanines.
Collapse
Affiliation(s)
| | | | - Sandra Kaabel
- Department of Bioproducts and BiosystemsAalto University02150EspooFinland
| | | |
Collapse
|
34
|
Zuo S, Zheng S, Liu J, Zuo A. Mechanochemical synthesis of unsymmetrical salens for the preparation of Co-salen complexes and their evaluation as catalysts for the synthesis of α-aryloxy alcohols via asymmetric phenolic kinetic resolution of terminal epoxides. Beilstein J Org Chem 2022; 18:1416-1423. [PMID: 36300012 PMCID: PMC9577384 DOI: 10.3762/bjoc.18.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we report the mechanochemical synthesis of unsymmetrical salens using grinding and ball milling technologies, respectively, both of which were afforded in good yield. The chelating effect of the unsymmetrical salens with zinc, copper, and cobalt was studied and the chiral Co-salen complex 2f was obtained in 98% yield. Hydrolytic kinetic resolution (HKR) of epichlorohydrin with water catalyzed by complex 2f (0.5 mol %) was explored and resulted in 98% ee, suggesting complex 2f could serve as an enantioselective catalyst for the asymmetric ring opening of terminal epoxides by phenols. A library of α-aryloxy alcohols 3 was thereafter synthesized in good yield and high ee using 2f via the phenolic KR of epichlorohydrin.
Collapse
Affiliation(s)
- Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuxiang Zheng
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ang Zuo
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
35
|
Teoh Y, Ayoub G, Huskić I, Titi HM, Nickels CW, Herrmann B, Friščić T. SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media**. Angew Chem Int Ed Engl 2022; 61:e202206293. [DOI: 10.1002/anie.202206293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Teoh
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Ghada Ayoub
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Igor Huskić
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | | | | | - Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| |
Collapse
|
36
|
Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metal-organic frameworks: a review. Chem Commun (Camb) 2022; 58:11488-11506. [PMID: 36165339 DOI: 10.1039/d2cc04190a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) possess excellent advantages, such as high porosity, large specific surface area, and an adjustable structure, showing good potential for applications in gas adsorption and separation, catalysis, conductivity, sensing, magnetism, etc. However, they still suffer from significant limitations in terms of the scale-up synthesis and shaping, hindering the realization of large-scale commercial applications. Despite some attempts having been devoted to addressing this, challenges remain. In this paper, we outline the advantages and drawbacks of existing synthetic routes such as electrochemistry, microwave, ultrasonic radiation, green solvent reflux, room temperature stirring, steam-assisted transformation, mechanochemistry, and fluid chemistry in terms of scale-up production. Then, the shaping methods of MOFs such as extrusion, mechanical compaction, rolling granulation, spray drying, gel technology, embedded granulation, phase inversion, 3D printing and other shaping methods for the preparation of membranes, coatings and nanoparticles are discussed. Finally, perspectives on the large-scale synthesis and shaping of MOFs are also proposed. This work helps provide in-depth insight into the scale-up production and shaping process of MOFs and boost commercial applications of MOFs.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Guilin Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhe Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Qingrun Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Hongxing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Bin Tao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| |
Collapse
|
37
|
High‐Humidity Shaker Aging to Access Chitin and Cellulose Nanocrystals**. Angew Chem Int Ed Engl 2022; 61:e202207206. [DOI: 10.1002/anie.202207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/07/2022]
|
38
|
Sen S, Barman D, Khan H, Das R, Maiti D. Cu(II)-Catalyzed Multicomponent Reaction of Pyridine Derivatives/Isoquinolines with Iodonium Ylide and 1,4-Quinones Using Mechanochemistry. J Org Chem 2022; 87:12164-12174. [PMID: 36044036 DOI: 10.1021/acs.joc.2c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient copper-catalyzed solvent-free multicomponent reaction for pyridine derivatives, iodonium ylides, and 1,4-quinones is developed via a room-temperature ball milling technique. The reported protocol provides a sustainable synthesis of isoindolo[2,1-a]pyridine/isoquinoline class of molecules in good to excellent yield in a mixer mill (RETSCH MM400) engaging the commercially available copper acetate (Cu(OAc)2) as a catalyst without the use of organic solvents. It tolerates a myriad of electron-rich and electron-deficient functionalities on the pyridine moiety. The scalability of the protocol was illustrated by successfully performing the reaction in the gram scale. The photoluminescence and related cellular study revealed that these can be used as a fluorescent chromophore-based cellular probe. A clean reaction profile and a facile experimental setup that is devoid of anhydrous reaction conditions and toxic organic solvents have established the advantages of this strategy over the reported process.
Collapse
Affiliation(s)
- Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar 201314, UP, India
| | - Dhiraj Barman
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar 201314, UP, India
| | - Haya Khan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar 201314, UP, India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar 201314, UP, India
| | - Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Dadri, Chithera, Gautam Buddha Nagar 201314, UP, India
| |
Collapse
|
39
|
Moores A, Jin T, Liu T, Hajiali F, Santos M, Liu Y, Kurdyla D, Régnier S, Hrapovic S, Lam E. High‐Humidity Shaker Aging to Access Chitin and Cellulose Nanocrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Audrey Moores
- McGill University Department of Chemistry, Department of Chemistry 801 Sherbrooke St. West H3A0B8 Montréal CANADA
| | - Tony Jin
- McGill University Chemistry CANADA
| | | | | | | | - Yali Liu
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Davis Kurdyla
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Sophie Régnier
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Sabahudin Hrapovic
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| | - Edmond Lam
- National Research Council Canada Aquatic and Crop Resource Development Research Centre CANADA
| |
Collapse
|
40
|
Rensch T, Chantrain V, Sander M, Grätz S, Borchardt L. Scale-Up of Solvent-Free, Mechanochemical Precursor Synthesis for Nanoporous Carbon Materials via Extrusion. CHEMSUSCHEM 2022; 15:e202200651. [PMID: 35670243 PMCID: PMC9543152 DOI: 10.1002/cssc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The mechanochemical synthesis of nitrogen-rich nanoporous carbon materials has been scaled up using an extruder. Lignin, urea, and K2 CO3 were extruded under heat and pressure to yield nanoporous carbons with up to 3500 m2 g-1 specific surface area after pyrolysis. The route was further broadened by applying different nitrogen sources as well as sawdust as a low-cost renewable feedstock to receive carbons with a C/N ratio of up to 15 depending on nitrogen source and extrusion parameters. The texture of obtained carbons was investigated by scanning electron microscopy as well as argon and nitrogen physisorption, while the chemical structure was analyzed by X-ray photoelectron spectroscopy. The received carbon was tested as a supercapacitor electrode, showing comparable performance to similar ball-mill-synthesized materials. Lastly, the space-time yield was applied to justify the use of a continuous reactor versus the ball mill.
Collapse
Affiliation(s)
- Tilo Rensch
- Department of Inorganic ChemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Viviene Chantrain
- Department of Inorganic ChemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Miriam Sander
- Department of Inorganic ChemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Sven Grätz
- Department of Inorganic ChemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Lars Borchardt
- Department of Inorganic ChemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| |
Collapse
|
41
|
Čarný T, Peňaška T, Andrejčák S, Šebesta R. Mechanochemical Pd‐Catalyzed Cross‐Coupling of Arylhalides and Organozinc Pivalates. Chemistry 2022; 28:e202202040. [DOI: 10.1002/chem.202202040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Tibor Peňaška
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
42
|
Goldberga I, Patris N, Chen CH, Thomassot E, Trébosc J, Hung I, Gan Z, Berthomieu D, Métro TX, Bonhomme C, Gervais C, Laurencin D. First Direct Insight into the Local Environment and Dynamics of Water Molecules in the Whewellite Mineral Phase: Mechanochemical Isotopic Enrichment and High-Resolution 17O and 2H NMR Analyses. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12044-12059. [PMID: 35928237 PMCID: PMC9340807 DOI: 10.1021/acs.jpcc.2c02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Calcium oxalate minerals of the general formula CaC2O4 . xH2O are widely present in nature and usually associated with pathological calcifications, constituting up to 70-80% of the mineral component of renal calculi. The monohydrate phase (CaC2O4 .H2O, COM) is the most stable form, accounting for the majority of the hydrated calcium oxalates found. These mineral phases have been studied extensively via X-ray diffraction and IR spectroscopy and, to a lesser extent, using 1H, 13C, and 43Ca solid-state NMR spectroscopy. However, several aspects of their structure and reactivity are still unclear, such as the evolution from low- to high-temperature COM structures (LT-COM and HT-COM, respectively) and the involvement of water molecules in this phase transition. Here, we report for the first time a 17O and 2H solid-state NMR investigation of the local structure and dynamics of water in the COM phase. A new procedure for the selective 17O- and 2H-isotopic enrichment of water molecules within the COM mineral is presented using mechanochemistry, which employs only microliter quantities of enriched water and leads to exchange yields up to ∼30%. 17O NMR allows both crystallographically inequivalent water molecules in the LT-COM structure to be resolved, while 2H NMR studies provide unambiguous evidence that these water molecules are undergoing different types of motions at high temperatures without exchanging with one another. Dynamics appear to be essential for water molecules in these structures, which have not been accounted for in previous structural studies on the HT-COM structure due to lack of available tools, highlighting the importance of such NMR investigations for refining the overall knowledge on biologically relevant minerals like calcium oxalates.
Collapse
Affiliation(s)
- Ieva Goldberga
- ICGM,
Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Nicolas Patris
- HydroSciences
Montpellier, UMR 5151, CNRS, IRD, Université
de Montpellier, 34090 Montpellier, France
| | - Chia-Hsin Chen
- ICGM,
Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Emilie Thomassot
- Université
de Lorraine, CRPG, CNRS UMR 7358, 54500 Vandœuvre-lès-Nancy, France
| | - Julien Trébosc
- Université
de Lille, CNRS, INRAE, Centrale Lille, Université d’Artois
FR2638−IMEC−Institut Michel Eugène Chevreul, 59000 Lille, France
| | - Ivan Hung
- National
High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National
High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida 32310, United States
| | | | | | | | | | | |
Collapse
|
43
|
Teoh Y, Ayoub G, Huskic I, Titi HM, Nickels CW, Herrmann B, Friscic T. SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | - Brad Herrmann
- Flacktek, Inc. Flacktek, Inc. 1708 SC-11 29356 Landrum UNITED STATES
| | - Tomislav Friscic
- McGill University Chemistry 801 Sherbrooke St. W. H3A 0B8 Montreal CANADA
| |
Collapse
|
44
|
Langerreiter D, Kostiainen MA, Kaabel S, Anaya-Plaza E. A Greener Route to Blue: Solid‐State Synthesis of Phthalocyanines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Zotova J, Twamley B, Tajber L. Impact of the Dicarboxylic Acid Chain Length on Intermolecular Interactions with Lidocaine. Mol Pharm 2022; 19:2980-2991. [PMID: 35850530 PMCID: PMC9346613 DOI: 10.1021/acs.molpharmaceut.2c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acid-base multicomponent systems have become a popular choice as a strategy to fine-tune the physicochemical properties of active pharmaceutical ingredients. Current prediction tools based on the principles of anticrystal engineering cannot always accurately predict the nature of intermolecular interactions within a multicomponent system. Even small changes in the physicochemical parameters of parent components can result in unexpected outcomes, and many salt, cocrystal, and ionic liquid forms are still being discovered empirically. In this work, we aimed to establish structural consistency in a series of mixtures comprising lidocaine (LID) with decanedioic, undecanedioic, dodecanedioic, and tridecanedioic acids and to explore how length and flexibility of the acid carbon backbone affect the molecular recognition, crystallization, and thermal behavior of the expected binary systems. We found that neat grinding of LID with dicarboxylic acids results in the formation of eutectic phases. The observed eutectic melting points deviated from the ideal eutectic temperatures predicted by the Schroeder van Laar model because of hydrogen bonding between the reacting components within the mixtures. Furthermore, thermal and infrared analysis provided evidence for the possible formation of new phases stemming from partial ionization of the counterions. Besides, the structure of a previously undetermined form I of the tridecanedioic acid was solved by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Julija Zotova
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
46
|
Kubota K, Baba E, Seo T, Ishiyama T, Ito H. Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry. Beilstein J Org Chem 2022; 18:855-862. [PMID: 35957749 PMCID: PMC9344555 DOI: 10.3762/bjoc.18.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023] Open
Abstract
This study describes the solid-state palladium-catalyzed cross-coupling between aryl halides and bis(pinacolato)diboron using ball milling. The reactions were completed within 10 min for most aryl halides to afford a variety of synthetically useful arylboronates in high yields. Notably, all experimental operations could be performed in air, and did not require the use of large amounts of dry and degassed organic solvents. The utility of this method was further demonstrated by gram-scale synthesis under solvent-free, mechanochemical conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Emiru Baba
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tatsuo Ishiyama
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
47
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Christian Schumacher
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| |
Collapse
|
48
|
Johnston C, Migaud ME. Solvent-Assisted Mechanochemical Synthesis of a Nucleotide Dimer. Curr Protoc 2022; 2:e418. [PMID: 35447016 DOI: 10.1002/cpz1.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This article contains a synthetic protocol for solvent-assisted mechanochemical synthesis of a nucleotide dimer. First, a dinucleoside phosphite is prepared by solvent-assisted mechanochemistry via the phosphoramidite method. Second, the dinucleoside phosphite is oxidized to form the dinucleotide under mechanochemical conditions. Finally, the dinucleotide is purified by column chromatography. Support protocols are also provided for preparing the acidic salts that can be utilized for phosphoramidite couplings and for demonstrating that the reaction occurs under mechanochemical conditions rather than as a result of solvent added for analysis. Mechanochemistry as applied to synthesis of dinucleotides is a recent development and it is anticipated that the principles in this protocol will be widely applicable to a range of nucleoside and ribonucleoside monomers. The advantages of mechanochemistry over traditional solution-phase chemistry are the simplicity of the procedure, improved hydrolytic stability, and elimination of the need to solubilize poorly soluble compounds. © 2022 Wiley Periodicals LLC. Basic Protocol: Solvent-assisted mechanochemical synthesis of a nucleotide dimer Supplementary Protocol 1: Synthesis of N-methylimidazolium triflate Supplementary Protocol 2: Synthesis of pyridinium trifluoroacetate Supplementary Protocol 3: Confirmation of the efficacy of mechanochemical conditions.
Collapse
Affiliation(s)
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama
| |
Collapse
|
49
|
Peňaška T, Modrocká V, Stankovianska K, Mečiarová M, Rakovský E, Šebesta R. Organocatalytic Diastereodivergent Enantioselective Formal oxa-Diels-Alder Reaction of Unsaturated Ketones with Enoates Under Liquid-Assisted Grinding Conditions. CHEMSUSCHEM 2022; 15:e202200028. [PMID: 35146952 DOI: 10.1002/cssc.202200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Chiral heterocycles occur in many compounds of interest, but their efficient synthesis is challenging. This study concerns the enantioselective and diastereoselective synthesis of densely substituted chiral pyran derivatives. Diastereodivergence of the oxa-Diels-Alder reaction is achieved by using either a bifunctional amino-thiourea or a monofunctional quinine organocatalyst under ball-milling conditions. Liquid-assisted grinding proves a highly efficient means of affording pyrans in high yield, with high enantiomeric purities and short reaction times.
Collapse
Affiliation(s)
- Tibor Peňaška
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Viktória Modrocká
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Klára Stankovianska
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
50
|
Zeitler SM, Chakma P, Golder MR. Diaryliodonium salts facilitate metal-free mechanoredox free radical polymerizations. Chem Sci 2022; 13:4131-4138. [PMID: 35440983 PMCID: PMC8985515 DOI: 10.1039/d2sc00313a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Mechanically-induced redox processes offer a promising alternative to more conventional thermal and photochemical synthetic methods. For macromolecule synthesis, current methods utilize sensitive transition metal additives and suffer from background reactivity. Alternative methodology will offer exquisite control over these stimuli-induced mechanoredox reactions to couple force with redox-driven chemical transformations. Herein, we present the iodonium-initiated free-radical polymerization of (meth)acrylate monomers under ultrasonic irradiation and ball-milling conditions. We explore the kinetic and structural consequences of these complementary mechanical inputs to access high molecular weight polymers. This methodology will undoubtedly find broad utility across stimuli-controlled polymerization reactions and adaptive material design.
Collapse
Affiliation(s)
- Sarah M Zeitler
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Progyateg Chakma
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|