1
|
Lu Y, Huang YF. Spectroscopically Elucidating the Local Proton-Coupled Electron Transfer Loop from Amino to Nitro Groups via the Au Surface in a N 2 Atmosphere. Anal Chem 2024. [PMID: 39530224 DOI: 10.1021/acs.analchem.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proton-coupled electron transfer (PCET) has been significant in understanding the reactions in solution. In a solid-gas interface, it remains a challenge to identify electron transfer or proton transfer intermediates. Here, in a Au/N2 interface, we regulated and characterized the PCET from p-aminothiophenol (PATP) to p-nitrothiophenol (PNTP) in the plasmon-mediated conversion to p,p'-dimercaptoazobenzene by variable-temperature surface-enhanced Raman spectroscopy. The Raman bands of PATP and PNTP characteristically blue shifted and red shifted as the laser wavelength- and power density-regulated PCET from PATP to PNTP, respectively. These characteristic Raman band shifts were well reproduced by the density functional theoretical simulations of positively charged PATP and negatively charged PNTP, which explicitly evidenced the electron transfer intermediates of PATP or PNTP on the Au surface. PCET did not occur in the temperature cycle between 100 and 370 K without laser illumination. These results demonstrated a characteristic local PCET loop composed of electron transfer between PATP/PNTP and Au followed by intermolecular proton transfer between PATP and PNTP and the significance of conducting electron transfer on Au.
Collapse
Affiliation(s)
- Yang Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
2
|
Geddis A, Mendive-Tapia L, Sujantho A, Liu E, McAughtrie S, Goodwin R, Vendrell M, Campbell CJ. Label-Free SERS Sensors for Real-Time Monitoring of Tyrosine Phosphorylation. Anal Chem 2024; 96:17978-17983. [PMID: 39472080 PMCID: PMC11561882 DOI: 10.1021/acs.analchem.4c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/13/2024]
Abstract
Dysregulation of receptor tyrosine kinases (RTKs) has been shown to correlate with cancer cell proliferation and drug resistance. Thus, monitoring the activity of RTKs at a chemical level could provide new biomedical insights and methods to assess the drug efficacy. However, direct monitoring of kinase activity is challenging and most commonly relies on in vitro techniques such as Western blotting and ELISAs. Herein, we report the development of a gold nanoparticle-based surface-enhanced Raman scattering (SERS) sensor, which allows the real-time monitoring of tyrosine phosphorylation of a reporter peptide (Axltide) by the Axl enzyme. We demonstrate that our sensor shows strong signal localization, and we are able to detect tyrosine phosphorylation of the reporter peptide through chemical phosphorylation and enzymatically with similar peak changes to those observed in the spontaneous Raman spectra. Through monitoring the SERS spectrum, we can observe changes in phosphorylation in real time.
Collapse
Affiliation(s)
- Ailsa Geddis
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Audreylia Sujantho
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Erica Liu
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Sarah McAughtrie
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Richard Goodwin
- Clinical
Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Colin J. Campbell
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| |
Collapse
|
3
|
Zhang J, Yuan YX, Yan JW, Mao BW, Yao JL, Tian ZQ. Hydrophilicity Dependent Distribution of Water at Ionic Liquids/Metal Interface Monitored by Electrochemical SERS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50054-50060. [PMID: 39283756 DOI: 10.1021/acsami.4c11613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The understanding of the interfacial processes is critically important for extending the practical application of ionic liquids, particularly for the role of interfacial water. In the electrochemical system based on ionic liquid electrolytes, small amounts of water at the interface generate a significant change in the electrochemical behaviors of ionic liquids. Therefore, the investigation on the interfacial behavior of water is highly desired in ionic liquids with different anions, water content, and hydrophilicity. Herein, based on the probe strategy, in situ surface enhanced Raman spectroscopy (SERS) combined with electrochemical control (EC-SERS) was developed to investigate the influence of hydrophilicity/hydrophobicity of ionic liquids on the interfacial water. The water-sensitive transformation reaction of 4,4'-dimercaptoazobenzene (DMAB) to para-aminothiophenol (PATP) was employed as a probe reaction for investigating the behavior of interfacial water. The changes of relative SERS intensities of DMAB to PATP served as an indication of the quantity variation of interfacial water. The results show that the transformation reaction efficiencies were critically dependent on the additional water contents, potential, and hydrophilicity of ionic liquids. With a very low molar fraction of additional water (Xw = 0.01), transformation efficiency of DMAB (the amount of interfacial water) followed the sequence of [BMIm]BF4 < [BMIm]PF6 < [BMIm]Tf2N. It was in agreement with the hydrophobicity order of the ionic liquids. With the increase in additional water content, the potential for the full transformation was positively moved, and the efficiency increased significantly. The stronger hydrophobicity allowed more water molecules to migrate to the interface, which was attributed to the difference in interactions between water and the anions of ionic liquids. It demonstrated that the small amount of water tended to gather at the interface in hydrophobic ionic liquids. Compared to traditional cyclic voltammetry, the EC-SERS technique combined with probe reactions is more sensitive to interfacial water. It is anticipated to develop as a promising tool for the investigating water-related issues at interfaces and to provide guidance to screen ionic liquids for practical application.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Ya-Xian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Ehtesabi S, Richter M, Kupfer S, Gräfe S. Assessing plasmon-induced reactions by a combined quantum chemical-quantum/classical hybrid approach. NANOSCALE 2024; 16:15219-15229. [PMID: 39072363 PMCID: PMC11325215 DOI: 10.1039/d4nr02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
Collapse
Affiliation(s)
- Sadaf Ehtesabi
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| |
Collapse
|
5
|
Zhang X, Cai X, Yin N, Che Y, Jiao Y, Zhang C, Yu J, Liu C. Hierarchical PVDF/ZnO/Ag/ZIF-8 nanofiber membrane used in trace-level Raman detection of H 2S. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134441. [PMID: 38678721 DOI: 10.1016/j.jhazmat.2024.134441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
surface enhanced Raman scattering (SERS) detection of gases has always been difficult due to the low affinity and poor Raman cross section of the moving molecules. To mitigate the impact of these problems on detection of gases, a structure of zinc oxide/silver nanowires coated with zeolitic imidazolate framework-8 (ZnO NWs/Ag/ZIF-8) was constructed on polyvinylidene fluoride (PVDF) nanofiber membrane (PVDF/ZnO NWs/Ag/ZIF-8) and in detail researched in this work. Benefitting from the quadruple synergistic effect of efficient Knudsen diffusion of gas molecules inside ZIF-8, enrichment of ZIF-8 microsponges for gaseous molecules, regulation of ZIF-8 dielectric layer for light and reverse light scattering of ZnO NW/Ag tip, the structure was proven to have precise co-confinement on both hot spots and gaseous molecules. As a result, this PVDF/ZnO NWs/Ag/ZIF-8 achieved excellent detection for hydrogen sulfide (H2S), with a limit of detection of 1 × 10-10 v/v and the minimum relative standard deviation value of ca. 7.13 %. Furthermore, as a proof of concept, in practical application, we designed and assembled our substrate (3.5 cm × 3.5 cm) into a SERS face mask and realized efficient monitoring of H2S in human's exhaled breath.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, PR China; School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Xin Cai
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Naiqiang Yin
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, PR China
| | - Yahui Che
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Yang Jiao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China.
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China; Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, PR China.
| | - Chundong Liu
- School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, PR China; School of Physics and Electronics, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
6
|
Jiang Y, Cao J, Hu S, Cheng T, Wang H, Guo X, Ying Y, Liu X, Wang F, Wen Y, Wu Y, Yang H. Internal standard optimization advances sensitivity and robustness of ratiometric detection method. Analyst 2024; 149:2806-2811. [PMID: 38683246 DOI: 10.1039/d4an00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
We design a p-aminothiophenol (pATP) modified Au/ITO chip to determine nitrite ions in lake water by a ratiometric surface-enhanced Raman scattering (SERS) method based on nitrite ions triggering the transformation of pATP to p,p'-dimercaptoazobenzene (DMAB). Intriguingly, by using the SERS peak (at 1008 cm-1) from benzoic ring deforming as an internal standard instead of the traditional peak at 1080 cm-1, the detection sensitivity of the method was improved 10 times.
Collapse
Affiliation(s)
- Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Jiaying Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Tao Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Hanyu Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Chen HY, Zhu SC, Xu HB, Ye MJ, Huang WF, He Y, Qian RC, Li DW. Cell membrane-targeted surface enhanced Raman scattering nanoprobes for the monitoring of hydrogen sulfide secreted from living cells. Biosens Bioelectron 2024; 250:116054. [PMID: 38295581 DOI: 10.1016/j.bios.2024.116054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Hydrogen sulfide (H2S), an important gas signal molecule, participates in intercellular signal transmission and plays a considerable role in physiology and pathology. However, in-situ monitoring of H2S level during the processes of material transport between cells remains considerably challenging. Herein, a cell membrane-targeted surface-enhanced Raman scattering (SERS) nanoprobe was designed to quantitatively detect H2S secreted from living cells. The nanoprobes were fabricated by assembling cholesterol-functionalized DNA strands and dithiobis(phenylazide) (DTBPA) molecules on core-shell gold nanostars embedded with 4-mercaptoacetonitrile (4-MBN) (AuNPs@4-MBN@Au). Thus, three functions including cell-membrane targeted via cholesterol, internal standard calibration, and responsiveness to H2S through reduction of azide group in DTBPA molecules were integrated into the nanoprobes. In addition, the nanoprobes can quickly respond to H2S within 90 s and sensitively, selectively, and reliably detect H2S with a limit of detection as low as 37 nM due to internal standard-assisted calibration and reaction specificity. Moreover, the nanoprobes can effectively target on cell membrane and realize SERS visualization of dynamic H2S released from HeLa cells. By employing the proposed approach, an intriguing phenomenon was observed: the other two major endogenous gas transmitters, carbon monoxide (CO) and nitric oxide (NO), exhibited opposite effect on H2S production in living cells stimulated by related gas release molecules. In particular, the introduction of CO inhibited the generation of H2S in HeLa cells, while NO promoted its output. Thus, the nanoprobes can provide a robust method for investigating H2S-related extracellular metabolism and intercellular signaling transmission.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Shi-Cheng Zhu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ming-Jie Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Fei Huang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
8
|
Pannico M, Musto P. A stable and sensitive 2D SERS sensor for bioanalytical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123983. [PMID: 38330760 DOI: 10.1016/j.saa.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
In this study, we describe a 2D-SERS sensor obtained by deposition of spherical gold nanoparticles (AuNPs) onto a suitably functionalized metal surface. Morphological analysis of the SERS surface by SEM and AFM demonstrated a uniform and stable distribution of the active nanoparticles. Following p-mercaptoaniline (pMA) functionalization, the sensor was characterized by co-localized Raman measurements, demonstrating a significant enhancement in Raman signals with homogeneous SERS activity across the entire sampled area. The as-prepared SERS sensor was demonstrated to be suitable for Therapeutic Drug Monitoring (TDM) of 6-mercaptopurine (6-MP), exhibiting a linear correlation between analyte concentration and SERS intensity in the range 5 - 20 μM. This work highlights the potential of 2D-SERS sensors for hypersensitive and accurate analytical measurements, particularly in the biomedical field.
Collapse
Affiliation(s)
- Marianna Pannico
- National Research Council of Italy, Institute for Polymers, Composites and Biomaterials, 80078 Pozzuoli (NA), Italy.
| | - Pellegrino Musto
- National Research Council of Italy, Institute for Polymers, Composites and Biomaterials, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
9
|
Fiocco A, Pavlic AA, Kanoufi F, Maisonhaute E, Noël JM, Lucas IT. Electrochemical Tip-Enhanced Raman Spectroscopy for the Elucidation of Complex Electrochemical Reactions. Anal Chem 2024. [PMID: 38340052 DOI: 10.1021/acs.analchem.3c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is an emerging nanospectroscopy technique whose implementation in situ/operando, namely, in the liquid phase and under electrochemical polarization (EC-TERS), remains challenging. The investigation of electrochemical processes at the nanoscale, in real time and over wide potential windows can be of particular interest but tedious when using EC-STM-TERS. This approach was successfully applied to the investigation of a well-established but yet complex system (a thiolated nitrobenzene derivative 4-NBM) whose reduction mechanism involves various multistep reaction paths, most likely pH-dependent. In light of the EC-TERS analysis carried out under specific conditions limiting the full (6 e-/6 H+) electrochemical reduction of 4-NBM and its photocoupling, a bimolecular electrochemical reaction path, difficult to evidence from the electrochemical response only, is proposed.
Collapse
Affiliation(s)
- Alice Fiocco
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Aja A Pavlic
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | | | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Ivan T Lucas
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
- Nantes Université, CNRS, IMN, F-44322 Nantes, France
| |
Collapse
|
10
|
Li Z, Ehtesabi S, Gojare S, Richter M, Kupfer S, Gräfe S, Kurouski D. Plasmon-Determined Selectivity in Photocatalytic Transformations on Gold and Gold-Palladium Nanostructures. ACS PHOTONICS 2023; 10:3390-3400. [PMID: 38356782 PMCID: PMC10863388 DOI: 10.1021/acsphotonics.3c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 02/16/2024]
Abstract
Noble metal nanostructures absorb light producing coherent oscillations of the metal's electrons, so-called localized surface plasmon resonances (LSPRs). LSPRs can decay generating hot carriers, highly energetic species that trigger chemical transformations in the molecules located on the metal surfaces. The number of chemical reactions can be expanded by coupling noble and catalytically active metals. However, it remains unclear whether such mono- and bimetallic nanostructures possess any sensitivity toward one or another chemical reaction if both of them can take place in one molecular analyte. In this study, we utilize tip-enhanced Raman spectroscopy (TERS), an emerging analytical technique that has single-molecule sensitivity and sub-nanometer spatial resolution, to investigate plasmon-driven reactivity of 2-nitro-5-thiolobenzoic acid (2-N-5TBA) on gold and gold@palladium nanoplates (AuNPs and Au@PdNPs). This molecular analyte possesses both nitro and carboxyl groups, which can be reduced or removed by hot carriers. We found that on AuNPs, 2-N-5TBA dimerized forming 4,4'-dimethylazobenzene (DMAB), the bicarbonyl derivative of DMAB, as well as 4-nitrobenzenethiol (4-NBT). Our accompanying theoretical investigation based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) confirmed these findings. The theoretical analysis shows that 2-N-5TBA first dimerized forming the bicarbonyl derivative of DMAB, which then decarboxylated forming DMAB. Finally, DMAB can be further reduced leading to 4-NBT. This reaction mechanism is supported by TERS-determined yields on these three molecules on AuNPs. We also found that on Au@PdNPs, 2-N-5TBA first formed the bicarbonyl derivative of DMAB, which is then reduced to both bihydroxyl-DMAB and 4-amino-3-mercaptobenzoic acid. The yield of these reaction products on Au@PdNPs strictly follows the free-energy potential of these molecules on the metallic surfaces.
Collapse
Affiliation(s)
- Zhandong Li
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Siddhi Gojare
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Martin Richter
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Pan SQ, Luo P, Chen J, Wu T, Xu B, Chen F, Wu DY, Ren B, Liu GK, Xie J, Xu P, Tian ZQ. Seeing Is Not Necessarily Believing: Is the Surface-Enhanced Raman Spectroscopy Signal Really from the Target? Anal Chem 2023; 95:13346-13352. [PMID: 37611317 DOI: 10.1021/acs.analchem.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Reagent purity is crucial to experimental research, considering that the ignorance of ultratrace impurities may induce wrong conclusions in either revealing the reaction nature or qualifying the target. Specifically, in the field of surface science, the strong interaction between the impurity and the surface will bring a non-negligible negative effect. Surface-enhanced Raman spectroscopy (SERS) is a highly surface-sensitive technique, providing fingerprint identification and near-single molecule sensitivity. In the SERS analysis of trace chloromethyl diethyl phosphate (DECMP), we figured out that the SERS performance of DECMP is significantly distorted by the trace impurities from DECMP. With the aid of gas chromatography-based techniques, one strongly interfering impurity (2,2-dichloro-N,N-dimethylacetamide), the byproduct during the synthesis of DECMP, was confirmed. Furthermore, the nonignorable interference of impurities on the SERS measurement of NaBr, NaI, or sulfadiazine was also observed. The generality ignited us to refresh and consolidate the guideline for the reliable SERS qualitative analysis, by which the potential misleading brought by ultratrace impurities, especially those strongly adsorbed on Au or Ag surfaces, could be well excluded.
Collapse
Affiliation(s)
- Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ping Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Tairui Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Fushan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Pengxiang Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Alula MT. Peroxidase-like activity of biosynthesized silver nanoparticles for colorimetric detection of cysteine. RSC Adv 2023; 13:16396-16404. [PMID: 37266501 PMCID: PMC10231313 DOI: 10.1039/d3ra01587d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Cysteine is one of the important amino acids that is involved in various physiological processes, food industries, pharmaceuticals, and personal care. It also serves as a biomarker for some diseases. The large use of cysteine necessitates rapid, cheap, and accurate determination of cysteine in a range of samples. Although many techniques have been employed for the detection of cysteine, they suffer from limitations that make them unsuitable for routine analysis. Here we report on a cheap colorimetric method using biosynthesized silver nanoparticles (AgNPs) as nanozymes. The AgNPs were characterized by UV/visible spectrophotometry, scanning electron microscopy (SEM), and surface-enhanced Raman spectroscopy (SERS). The AgNPs exhibit peroxidase-like activity using o-phenylenediamine (OPD) as a chromogenic reagent. The low Km values observed for OPD and H2O2 (0.9133 and 61.56 mM respectively) show strong affinity of the substrates to AgNPs. The peroxidase-like activity of AgNPs, however, was inhibited on the addition of cysteine. The results show that the absorption intensity of the oxidized OPD decreased linearly with the concentration of cysteine in the range of 0.5-20 μM. The limit of detection (LOD) in this linear range was found to be as low as 90.4 nM. The recovery from urine sample (spiked with cysteine) analyses demonstrated the feasibility of the method in real sample application. From our findings, we anticipate that our method can be applied for the analysis of cysteine in various samples.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology Plot 10071, Private Bag 16 Palapye Botswana +267-4900102 +267-76126741
| |
Collapse
|
13
|
Yang B, Chen G, Ghafoor A, Zhang YF, Zhang XB, Li H, Dong XR, Wang RP, Zhang Y, Zhang Y, Dong ZC. Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202218799. [PMID: 36719175 DOI: 10.1002/anie.202218799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip-molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.
Collapse
Affiliation(s)
- Ben Yang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gong Chen
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Atif Ghafoor
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu-Fan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xian-Biao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hang Li
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Ru Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rui-Pu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
14
|
Bhadoria P, Saroj A, Ramanathan V. To dimerize or not: para-aminothiophenol on a bismuth heterostructure. Phys Chem Chem Phys 2023; 25:9569-9575. [PMID: 36939734 DOI: 10.1039/d2cp05918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) of p-aminothiophenol (PATP) was investigated on β-Bi2O3/Bi2O2CO3 nanoparticles, a novel bismuth based metal substrate with the lowest limit of detection of 1 mM. Unlike on noble metal surfaces where PATP gets converted to p,p'-dimercaptoazobenzene (DMAB) due to photocatalytic coupling, no such transformation of PATP was observed on β-Bi2O3/Bi2O2CO3 nanoparticles. Density functional theory (DFT) calculations at the PW91PW91/LANL2DZ/6-311+G(d,p) level of theory supported the experimental results exceedingly well. Also, the charge transfer direction from PATP to β-Bi2O3/Bi2O2CO3 nanoparticles was revealed by the projected density of states calculation.
Collapse
Affiliation(s)
- Poonam Bhadoria
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Arti Saroj
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Venkatnarayan Ramanathan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
15
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
16
|
Wang T, Xiao P, Ye L, Zhu P, Zhuang L. Coupling Au-loaded magnetic frameworks to photonic crystal for the improvement of photothermal heating effect in SERS. RSC Adv 2023; 13:5002-5012. [PMID: 36762088 PMCID: PMC9907568 DOI: 10.1039/d2ra07262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The combination of plasmonic metals and photonic crystal (PC) structure is considered to have potential for further enhancement of the surface-enhanced Raman scattering (SERS) effect in comparison with conventional metal SERS substrates. Many studies have suggested that SERS signals probably suffer from an often-neglected effect of strong surface plasmon resonance (SPR)-induced photothermal heating during SERS detection. Herein, we have discovered that the photothermal heating problem arises in a traditional hybrid substrate that is prepared by doping plasmonic Au nanoparticles (NPs) into the voids of an opal PC (Au-PC). This happens mainly because excess Au agglomerates formed by non-uniformly distributed Au NPs can cause a strong SPR effect under laser illumination. To fully address this issue, we have employed an improved hybrid substrate that is fabricated by substituting Au NPs in Au-PC with an Au-loaded magnetic framework (AuMF). The AuMF can effectively prevent the aggregation of Au NPs and ensure sufficient hot spots for SERS. This novel substrate prepared by doping AuMFs into a PC (AuMF-PC) was free of strong photothermal heating and showed high SERS intensity and reproducibility of the SERS signal compared with Au-PC. For practical applications, we have demonstrated AuMF-PC as an appropriate candidate for the SERS assay of the trace thiol pesticide thiram, and it enables recycling and reuse to achieve low cost.
Collapse
Affiliation(s)
- Tianxing Wang
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Panpan Xiao
- School of Electronics and Information Technology, Sun Yat-sen UniversityGuangzhou 510006China
| | - Li Ye
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Pengcheng Zhu
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Lin Zhuang
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
17
|
Zhang X, Xie X, Zhang L, Chen Z, Huang Y. Plasmon-driven catalytic reactions in optoplasmonic sandwich hybrid structure. APPLIED OPTICS 2023; 62:506-510. [PMID: 36630253 DOI: 10.1364/ao.480494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
As an interesting phenomenon in the field of surface enhanced Raman spectroscopy (SERS), the plasmon-driven catalytic reaction (PDSC) induced by plasmonic hot electrons has great value in the research of novel properties of surface plasmons and accuracy of SERS applications. In this work, an optoplasmonic sandwich hybrid structure is proposed for studying PDSC of p-aminothiophenol (PATP) molecules, which is composed of Au film, metal organic frameworks (MOFs) nanoparticles, zeolithic imidazolate (ZIF-8), and single S i O 2 microsphere (Au f i l m@M O F s@S i O 2). In order to analyze the novel, to the best of our knowledge, phenomenon of the PDSC in this micro-nano structure, the hot electron generation in the MOF without the plasmonic core is carried out by combining the plasmonic enhancement of gold film with the light concentration of microspheres. Experimental data show that the PDSC reactions is dependent on the size of the MOFs nanoparticle and the size of the S i O 2 microsphere, which is confirmed by the electromagnetic field simulation of the finite-difference time-domain method (FDTD). Our work not only strengthens the understanding of surface plasmon in optoplasmonic hybrid structures but also has broad application prospects in the SERS and plasmon-driven catalytic fields.
Collapse
|
18
|
Chen S, Fan J, Lv M, Hua C, Liang G, Zhang S. Internal Standard Assisted Surface-Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging Hydrogen Sulfide in Living Cells. Anal Chem 2022; 94:14675-14681. [PMID: 36222749 DOI: 10.1021/acs.analchem.2c02961] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2S), as the third endogenous gasotransmitter, is closely associated with various physiological and pathological processes, whereas many aspects of its functions remain unclear. Effective tools for the accurate detection of H2S in living organisms are urgently needed. We herein reported an internal standard assisted surface-enhanced Raman scattering (SERS) nanoprobe for ratiometric detection of H2S in vitro and in living cells based on the reduction of nitros with H2S. This nanoprobe consists of an internal standard (4-mercaptobenzonitrile, MPBN) embedded core-molecule-shell Au nanoflower (Au@MPBN@Au) as the high plasmonic active SERS substrate and the 4-nitrothiophenol (4-NTP) molecule immobilized on the surface as the H2S recognition unit. With the addition of H2S, the nitros peak (1329 cm-1) decreased. Meanwhile, three obvious new peaks appeared at 1139, 1387, and 1433 cm-1, which were related to the vibration of the dimerized product 4,4'-dimercaptoazobisbenzene (DMAB) of 4-aminothiophenol (4-ATP). However, the peak intensity at 2223 cm-1 derived from MPBN was not influenced by the outer environment. Thus, the H2S level was able to be determined based on the ratio of two peak intensities (I1139/I2223) with a detection limit as low as 0.24 μM. Notably, we have proved that SERS nanoprobe Au@MPBN@Au@4-NTP could ratiometrically image both the endogenous and exogenous H2S in living cells. We anticipate that Au@MPBN@Au@4-NTP could be applied for the study of H2S-related physiological function in the future.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China.,Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jiayi Fan
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Mengya Lv
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Chenfeng Hua
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, 2 Fengyang Street, Zhengzhou 450001, China
| | - Gaolin Liang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Shusheng Zhang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
19
|
Wu Z, Wang Y, Wang Y, Zhang K, Lai Y. Robust and reliable detection of malondialdehyde in biological samples via microprobe-triggered surface-enhanced Raman spectroscopy. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Phi Van T, Nguy TP, Truong LTN. A highly sensitive impedimetric sensor based on a MIP biomimetic for the detection of enrofloxacin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2195-2203. [PMID: 35612347 DOI: 10.1039/d2ay00192f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The benefits of molecularly imprinted polymer (MIP) technology in creating artificial receptors to replace natural counterparts have piqued the interest of numerous researchers in recent years. We propose a biomimetic enrofloxacin-MIP for enrofloxacin (ENRO) antigen detection using gold nanoparticles (AuNPs) and MIP methodologies in this study. A self-assembled monomer layer of aminothiophenol was used to immobilize a pre-formed complex of the anti-enrofloxacin monoclonal antibody and enrofloxacin antigen onto the surface of an AuNP coated screen-printed carbon ink electrode (SPCE). The poly-(aminothiophenol) layer thickness was adjusted to entrap and restrict enrofloxacin antigens near the surface. The imprinting and removal of the enrofloxacin antigen in the MIP film were strongly validated by the Raman spectra. The final mAb-MIP sensor had better sensitivity (302 Ω mL ng-1) and a better detection limit (0.05 ng mL-1) than self-assembled monolayer (SAM)-based immunosensors, which had 102 Ω mL ng-1 and 0.1 ng mL-1, respectively.
Collapse
Affiliation(s)
- Toan Phi Van
- School of Engineering Physics, Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hai Ba Trung dist., Hanoi, Vietnam.
| | - Tin Phan Nguy
- Vietnam-Korea Institute of Science and Technology, 304, 113 Tran Duy Hung, Cau Giay dist., Hanoi, Vietnam
| | - Lien T N Truong
- School of Engineering Physics, Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hai Ba Trung dist., Hanoi, Vietnam.
- Vietnam-Korea Institute of Science and Technology, 304, 113 Tran Duy Hung, Cau Giay dist., Hanoi, Vietnam
| |
Collapse
|
21
|
Tatar AS, Farcău C, Vulpoi A, Boca S, Astilean S. Development and evaluation of a gold nanourchin (GNU)-based sandwich architecture for SERS immunosensing in liquid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121069. [PMID: 35231760 DOI: 10.1016/j.saa.2022.121069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nanosensors represent a class of emerging promising nanotools that can be used for the rapid, sensitive and specific detection of relevant molecules such as biomarkers of cancer or other diseases. The sensing platforms that rely on the exceptional physical properties of colloidal gold nanoparticles have gained a special attraction and various architectural designs were proposed with the aim of rapid and real-time detection, identification and monitoring of the capturing events. Moreover, biomarker sensing in liquid samples allows a more facile implementation of the nanosensors by circumventing the need for invasive practices such as biopsies, in favor of non-invasive investigations with potential for use as point-of-care assays. Herein, we propose a sandwich-type surface enhanced Raman scattering (SERS) immuno-nanosensor which is aimed for detecting and quantifying Carcinoembryonic antigen-related cell adhesion molecule 5 (CEA-CAM5), a protein involved in intercellular adhesion and signaling pathways that acts as a tumor marker in several types of cancer. For constructing the proposed system, colloidal gold nano spheres (GNS) and gold nano-urchins (GNU) were chemically synthesized, labeled with SERS active molecules, conjugated with polymers, functionalized with antibodies as capturing substrates and tested in two different sensing configurations: pairs of GNUs-GNUs and GNUs-GNSs. When the target antigen is present in the analyte solution, nanoparticle bridging occurs and a subsequent amplification of the characteristic Raman signal of the label molecule appears due to the formation of hot-spots in interparticle gaps. The capability of observing small analyte concentrations in liquid samples with an easy-to-handle portable Raman device makes the proposed system feasible for rapid, non-invasive and cost-effective clinical or laboratory use.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Cosmin Farcău
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| | - Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
22
|
Qu S, Guan J, Cai D, Wang Q, Wang X, Song W, Ji W. An Electrochromic Ag-Decorated WO 3-x Film with Adjustable Defect States for Electrochemical Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2022; 12:nano12101637. [PMID: 35630860 PMCID: PMC9146956 DOI: 10.3390/nano12101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Electrochemical surface-enhanced Raman scattering (EC-SERS) spectroscopy is an ultrasensitive spectro-electrochemistry technique that provides mechanistic and dynamic information on electrochemical interfaces at the molecular level. However, the plasmon-mediated photocatalysis hinders the intrinsic electrochemical behavior of molecules at electrochemical interfaces. This work aimed to develop a facile method for constructing a reliable EC-SERS substrate that can be used to study the molecular dynamics at electrochemical interfaces. Herein, a novel Ag-WO3-x electrochromic heterostructure was synthesized for EC-SERS. Especially, the use of electrochromic WO3-x film suppresses the influence of hot-electrons-induced catalysis while offering a reliable SERS effect. Based on this finding, the real electrochemical behavior of p-aminothiophenol (PATP) on Ag nanoparticles (NPs) surface was revealed for the first time. We are confident that metal-semiconductor electrochromic heterostructures could be developed into reliable substrates for EC-SERS analysis. Furthermore, the results obtained in this work provide new insights not only into the chemical mechanism of SERS, but also into the hot-electron transfer mechanism in metal-semiconductor heterostructures.
Collapse
Affiliation(s)
- Siqi Qu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Jing Guan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Dongqi Cai
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Qianshuo Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Xiuyun Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
- Correspondence: (X.W.); (W.S.); (W.J.)
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
- Correspondence: (X.W.); (W.S.); (W.J.)
| | - Wei Ji
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
- Correspondence: (X.W.); (W.S.); (W.J.)
| |
Collapse
|
23
|
Chen K, Wang H. Plasmon-Driven Oxidative Coupling of Aniline-Derivative Adsorbates: A Comparative Study of para-Ethynylaniline and para-Mercaptoaniline. J Chem Phys 2022; 156:204705. [DOI: 10.1063/5.0094890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmon-driven photocatalysis has emerged as a paradigm-shifting approach, based upon which the energy of photons can be judiciously harnessed to trigger interfacial molecular transformations on metallic nanostructure surfaces in a regioselective manner with nanoscale precision. Over the past decade, the formation of aromatic azo compounds through plasmon-driven oxidative coupling of thiolated aniline-derivative adsorbates has become a testbed for developing detailed mechanistic understanding of plasmon-mediated photochemistry. Such photocatalytic bimolecular coupling reactions may occur not only between thiolated aniline-derivative adsorbates but between their nonthiolated analogues as well. How the nonthiolated adsorbates behave differently from their thiolated counterparts during the plasmon-driven coupling reactions, however, remains largely unexplored. Here, we systematically compare an alkynylated aniline-derivative, para-ethynylaniline, to its thiolated counterpart, para-mercaptoaniline, in terms of their adsorption conformations, structural flexibility, photochemical reactivity, and transforming kinetics on Ag nanophotocatalyst surfaces. We employ surface-enhanced Raman scattering as an in situ spectroscopic tool to track the detailed structural evolution of the transforming molecular adsorbates in real time during the plasmon-driven coupling reactions. Rigorous analysis of the spectroscopic results, further aided by density functional theory calculations, lays an insightful knowledge foundation that enables us to elucidate how the alteration of the chemical nature of metal-adsorbate interactions profoundly influences the transforming behaviors of the molecular adsorbates during plasmon-driven photocatalytic reactions.
Collapse
Affiliation(s)
- Kexun Chen
- University of South Carolina Department of Chemistry and Biochemistry, United States of America
| | - Hui Wang
- Chemistry and Biochemistry, University of South Carolina Department of Chemistry and Biochemistry, United States of America
| |
Collapse
|
24
|
da Silva AGM, Rodrigues TS, Wang J, Camargo PHC. Plasmonic catalysis with designer nanoparticles. Chem Commun (Camb) 2022; 58:2055-2074. [PMID: 35044391 DOI: 10.1039/d1cc03779j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Catalysis is central to a more sustainable future and a circular economy. If the energy required to drive catalytic processes could be harvested directly from sunlight, the possibility of replacing contemporary processes based on terrestrial fuels by the conversion of light into chemical energy could become a step closer to reality. Plasmonic catalysis is currently at the forefront of photocatalysis, enabling one to overcome the limitations of "classical" wide bandgap semiconductors for solar-driven chemistry. Plasmonic catalysis enables the acceleration and control of a variety of molecular transformations due to the localized surface plasmon resonance (LSPR) excitation. Studies in this area have often focused on the fundamental understanding of plasmonic catalysis and the demonstration of plasmonic catalytic activities towards different reactions. In this feature article, we discuss recent contributions from our group in this field by employing plasmonic nanoparticles (NPs) with controllable features as model systems to gain insights into structure-performance relationships in plasmonic catalysis. We start by discussing the effect of size, shape, and composition in plasmonic NPs over their activities towards LSPR-mediated molecular transformations. Then, we focus on the effect of metal support interactions over activities, reaction selectivity, and reaction pathways. Next, we shift to the control over the structure in hollow NPs and nanorattles. Inspired by the findings from these model systems, we demonstrate a design-driven strategy for the development of plasmonic catalysts based on plasmonic-catalytic multicomponent NPs for two types of molecular transformations: the selective hydrogenation of phenylacetylene and the oxygen evolution reaction. Finally, future directions, challenges, and perspectives in the field of plasmonic catalysis with designer NPs are discussed. We believe that the examples and concepts presented herein may inspire work and progress in plasmonic catalysis encompassing the design of plasmonic multicomponent materials, new strategies to control reaction selectivity, and the unraveling of stability and reaction mechanisms.
Collapse
Affiliation(s)
- Anderson G M da Silva
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 - Gávea 22453-900, Rio de Janeiro, RJ, Brazil
| | - Thenner S Rodrigues
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro, Av. Horácio Macedo, 2030, 21.941-972, Rio de Janeiro, RJ, Brazil
| | - Jiale Wang
- College of Science, Donghua University, Shanghai 201620, P. R. China
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland.
| |
Collapse
|
25
|
Shao F, Zheng L, Lan J, Zenobi R. Nanoscale Chemical Imaging of Coadsorbed Thiolate Self-Assembled Monolayers on Au(111) by Tip-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:1645-1653. [DOI: 10.1021/acs.analchem.1c03968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Liqing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
26
|
Detection strategies for superoxide anion: A review. Talanta 2022; 236:122892. [PMID: 34635271 DOI: 10.1016/j.talanta.2021.122892] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. Superoxide anion (O2-.), one kind of ROS, is the single-electron reduction product of oxygen molecules, which mainly exists in plants and animals, and is closely related to many inflammatory diseases. In the field of biomedicine, with the deepening understanding of superoxide anion, more and more detection methods have been developed. This review mainly introduces the detection techniques for superoxide anion in recent years.
Collapse
|
27
|
Pal S, Paul S, Chattopadhyay A. Enhanced solid-state plasmon catalyzed oxidation and SERS signal in the presence of transition metal cations at the surface of gold nanostructures. Phys Chem Chem Phys 2021; 23:21808-21816. [PMID: 34550121 DOI: 10.1039/d1cp02931b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of several metal cations (Mn2+, Co2+, Ni2+, Cu2+ and Zn2+) on the photochemical conversion of 4-aminothiophenol (4-ATP) into 4,4'-dimercaptoazobenzene (DMAB) is probed using surface enhanced Raman scattering (SERS). The coupling reaction is carried out on the surface of Au nanoparticles and Au nanorods using 532 nm and 632.8 nm laser excitations, respectively, in the absence and presence of metal cations. Here, we report that DMAB formation on the surface of Au nanostructures - when carried out in the solid state - is augmented significantly (by a factor of 1.98 to 4.07 and 3.34 to 5.74 for Au nanoparticle and Au nanorod substrates, respectively, and depending on the metal). Furthermore, the SERS signal is also markedly enhanced. Thus, the results underpin a new way of carrying out a photochemical reaction with a higher yield along with a higher SERS signal.
Collapse
Affiliation(s)
- Srimanta Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India.
| | - Sujay Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India.
| | - Arun Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
28
|
Shiu YJ, Hayashi M, Lai YH, Jeng US. Revealing the effects of molecular orientations on the azo-coupling reaction of nitro compounds driven by surface plasmonic resonances. Phys Chem Chem Phys 2021; 23:21748-21756. [PMID: 34549758 DOI: 10.1039/d1cp03041h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recent report on the azo coupling of 4-nitrobenzo-15-crown-ether (4NB15C) and 4-nitrothiophenol (4NTP) indicated that the reaction barrier could be reduced greatly with surface plasmonic effects on silver dendritic nanostructures in aqueous solution. Accordingly, an azo coupling reaction mechanism was proposed based on one or two SERS peaks. Toward a profound understanding of this azo coupling reaction mechanism, it is crucial to scrutinize the origin of the full SERS spectrum. Here, we construct a molecular model consisting of 4NTP and 4NB15C on an Ag7 cluster that simulates a silver dendritic nanostructure, and investigate the SERS spectra of the azo coupling of these two molecules. We propose five different adsorption sites and 13 different orientations of 4NTP on the Ag7 cluster and optimize the geometries of the five configurations. With each optimized configuration of 4NTP adsorbed on Ag7, we further consider the azo coupling product with a 4NB15C molecule and simulate the corresponding Raman spectra. Comparing the measured Raman spectra and model analysis, we conclude that the azo coupling reaction depends decisively on a parallel molecular orientation of the adsorbed 4NTP relative to the facets of Ag7, the orientation of which further directs the subsequent reaction for the product of 4NB15C-4NTP.
Collapse
Affiliation(s)
- Ying-Jen Shiu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ying-Huang Lai
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan. .,Chemical Engineering Department, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
29
|
Ba J, Han Y, Zhang X, Zhang L, Hui S, Huang Z, Yang W. Au Nanoflowers for Catalyzing and In Situ Surface-Enhanced Raman Spectroscopy Monitoring of the Dimerization of p-Aminothiophenol. ACS OMEGA 2021; 6:25720-25728. [PMID: 34632228 PMCID: PMC8495860 DOI: 10.1021/acsomega.1c03933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, we demonstrated a facile approach for fabrication of Au nanoflowers (Au NFs) using an amino-containing organosilane, 3-aminopropyltriethoxysilane (APTES), as a shape-directing agent. In this approach, the morphology of the Au particles evolved from sphere-like to flower-like with increasing the concentration of APTES, accompanied by a red shift in the localized surface plasmon resonance peak from 520 to 685 nm. It was identified that the addition of APTES is profitable to direct the preferential growth of the (111) plane of face-centered cubic gold and promote the formation of anisotropic Au NFs. The as-prepared Au NFs, with APTES on their surface, presented effective catalytic and surface-enhanced Raman scattering (SERS) performances, as evidenced by their applications in catalyzing the dimerization of p-aminothiophenol and monitoring the reaction process via in situ SERS analysis.
Collapse
Affiliation(s)
- Jingwen Ba
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Yandong Han
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Zhang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Lijuan Zhang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Shuhan Hui
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenzhen Huang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Wang L, Womiloju AA, Höppener C, Schubert US, Hoeppener S. On the stability of microwave-fabricated SERS substrates - chemical and morphological considerations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:541-551. [PMID: 34194890 PMCID: PMC8204127 DOI: 10.3762/bjnano.12.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The stability of surface-enhanced Raman spectroscopy (SERS) substrates in different organic solvents and different buffer solutions was investigated. SERS substrates were fabricated by a microwave-assisted synthesis approach and the morphological as well as chemical changes of the SERS substrates were studied. It was demonstrated that the SERS substrates treated with methanol, ethanol, or N,N-dimethylformamide (DMF) were comparable and showed overall good stability and did not show severe morphological changes or a strong decrease in their Raman activity. Toluene treatment resulted in a strong decrease in the Raman activity whereas dimethyl sulfoxide (DMSO) treatment completely preserved or even slightly improved the Raman enhancement capabilities. SERS substrates immersed into phosphate-buffered saline (PBS) solutions were observed to be rather instable in low and neutral pH buffer solutions. Other buffer systems showed less severe influences on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application of different organic solvents and buffer solutions.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Aisha Adebola Womiloju
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christiane Höppener
- Leibniz-Institut of Photonic Technology e.V. (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| | - Ulrich Sigmar Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
31
|
Yang L, Ren Z, Zhang M, Song Y, Li P, Qiu Y, Deng P, Li Z. Three-dimensional porous SERS powder for sensitive liquid and gas detections fabricated by engineering dense "hot spots" on silica aerogel. NANOSCALE ADVANCES 2021; 3:1012-1018. [PMID: 36133286 PMCID: PMC9418486 DOI: 10.1039/d0na00849d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 06/16/2023]
Abstract
A three-dimensional porous SERS powder material, Ag nanoparticles-engineered-silica aerogel, was developed. Utilizing an in situ chemical reduction strategy, Ag nanoparticles were densely assembled on porous aerogel structures, thus forming three-dimensional "hot spots" distribution with intrinsic large specific surface area and high porosity. These features can effectively enrich the analytes on the metal surface and provide huge near field enhancement. Highly sensitive and homogeneous SERS detections were achieved not only on the conventional liquid analytes but also on gas with the enhancement factor up to ∼108 and relative standard deviation as small as ∼13%. Robust calibration curves were obtained from the SERS data, which demonstrates the potential for the quantification analysis. Moreover, the powder shows extraordinary SERS stability than the conventional Ag nanostructures, which makes long term storage and convenient usage feasible. With all of these advantages, the porous SERS powder material can be extended to on-site SERS "nose" applications such as liquid and gas detections for chemical analysis, environmental monitoring, and anti-terrorism.
Collapse
Affiliation(s)
- Longkun Yang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Zhifang Ren
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Meng Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Yanli Song
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Pan Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
- Beijing Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology Beijing 100089 P. R. China
| | - Yun Qiu
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Pingye Deng
- Beijing Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology Beijing 100089 P. R. China
| | - Zhipeng Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| |
Collapse
|
32
|
Zhang Z, Kneipp J. Ligand-Supported Hot Electron Harvesting: Revisiting the pH-Responsive Surface-Enhanced Raman Scattering Spectrum of p-Aminothiophenol. J Phys Chem Lett 2021; 12:1542-1547. [PMID: 33534593 DOI: 10.1021/acs.jpclett.0c03732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discussion of the surface-enhanced Raman scattering (SERS) spectra of p-aminothiophenol (PATP) and of its photocatalytic reaction product 4,4'-dimercaptoazobenzene (DMAB) is important for understanding plasmon-supported spectroscopy and catalysis. Here, SERS spectra indicate that DMAB forms also in a nonphotocatalytic reaction on silver nanoparticles. Spectra measured at low pH, in the presence of the acids HCl, H2SO4, HNO3, and H3PO4, show that DMAB is reduced to PATP when both protons and chloride ions are present. Moreover, the successful reduction of DMAB in the presence of other, halide and nonhalide, ligands suggests a central role of these species in the reduction. As discussed, the ligands increase the efficiency of hot-electron harvesting. The pH-associated reversibility of the SERS spectrum of PATP is established as an observation of the DMAB dimer at high pH and of PATP as a product of its hot-electron reduction at low pH, in the presence of the appropriate ligand.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
33
|
Peng X, Li D, Li Y, Xing H, Deng W. Plasmonic tunable Ag-coated gold nanorod arrays as reusable SERS substrates for multiplexed antibiotics detection. J Mater Chem B 2021; 9:1123-1130. [PMID: 33427845 DOI: 10.1039/d0tb02540b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotic contaminants in aqueous media pose a serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly and in situ electrochemical reduction method is utilized to tailor silver nanoparticles (AgNPs)-coated GNRs (AgNPs/GNRs) large-scale vertical arrays. These AgNPs/GNRs arrays exhibit outstanding surface-enhanced Raman scattering (SERS) activities because of abundant Raman hot-spots among the adjacent AgNPs and GNRs, but also excellent stability and reproducibility due to the close-packed arrayed nanostructure. These remarkable features validate this arrayed substrate for high-sensitivity 4-aminothiophenol analysis with a detection limit of 0.35 pM and self-cleaning via electrochemical stripping of the adsorbed analytes and AgNPs from the GNRs arrays, therefore realizing renewable SERS applications. Moreover, the distinct SERS performance of AgNPs/GNRs arrays is verified via the analysis of multiplexed antibiotics at tens of picomolar level and no apparent changes of SERS activities are observed when recyclability is explored. The result demonstrates that the proposed AgNPs/GNRs arrays provide a novel strategy for avoiding conventional, disposable SERS substrates, as well as expanding SERS applications for simultaneous sensing and stripping of environmental contaminants.
Collapse
Affiliation(s)
- Xiaoya Peng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | | | | | | | | |
Collapse
|
34
|
A simple method to understand molecular conformation on surface-enhanced Raman scattering substrate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Devasenathipathy R, Rani KK, Liu J, Wu DY, Tian ZQ. Plasmon mediated photoelectrochemical transformations: The example of para-aminothiophenol. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Li Z, El-Khoury PZ, Kurouski D. Tip-enhanced Raman imaging of photocatalytic reactions on thermally-reshaped gold and gold–palladium microplates. Chem Commun (Camb) 2021; 57:891-894. [DOI: 10.1039/d0cc07060b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plasmonic/photocatalytic properties of thermally-reshaped walled gold–palladium microplates (WAu@PdMPs) have been explored by TERS.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics
- Texas A&M University
- College Station
- USA
| | | | - Dmitry Kurouski
- Department of Biochemistry and Biophysics
- Texas A&M University
- College Station
- USA
- The Institute for Quantum Science and Engineering
| |
Collapse
|
37
|
Xu J, Yun Q, Wang C, Li M, Cheng S, Ruan Q, Zhu X, Kan C. Gold nanobipyramid-embedded silver-platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions. NANOSCALE 2020; 12:23663-23672. [PMID: 33216083 DOI: 10.1039/d0nr03315d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal hollow nanostructures based on gold nanobipyramids (Au NBPs) are of great interest for the combination of tunable plasmonic resonances and excellent physicochemical properties. Based on the core-shell Au NBP@Ag nanorods with desired sizes, herein we reported the synthesis and growth mechanism of Au NBP-embedded AgPt hollow nanostructures with tunable thickness and size. The Au NBP@AgPt nanoframes were obtained at lower temperature, in which cetyltrimethylammonium bromine (CTAB) was applied as a capping agent to guide the deposition of Pt atoms on the edges and corners of Au NBPs@Ag nanorods. With the increase of reaction temperature, the Au NBP@AgPt nanoframes convert into nanocages due to the atomic migration to the surfaces. The surface plasmon resonance of the Au NBP@AgPt hollow nanostructure shifts from red to blue, which is ascribed to the changes in coverage area and location site of the AgPt alloy. When CTAB was replaced by cetyltrimethylammonium chloride (CTAC), Au NBP@AgPt nanocages dominate the product. The surface roughness and thickness of the nanocages can be controlled by the temperature and the amount of Pt precursor. Moreover, Au NBP@AgPt hollow nanostructures show excellent surface-enhanced Raman scattering and exhibit remarkable stability in harsh environments. Taking into account the advantages of the plasmonic property (Au NBPs), catalytic activity (Pt) and plasmon-enhanced signal (Ag), the Au NBP@AgPt hollow nanostructures are a promising candidate for technological applications in catalytic reactions.
Collapse
Affiliation(s)
- Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xi J, Yu Q. The development of lateral flow immunoassay strip tests based on surface enhanced Raman spectroscopy coupled with gold nanoparticles for the rapid detection of soybean allergen β-conglycinin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118640. [PMID: 32659701 DOI: 10.1016/j.saa.2020.118640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 05/21/2023]
Abstract
β-Conglycinin is an important storage protein in soybean, which can potentially cause food allergies in human. In this study, a sensitive mouse monoclonal antibody (3D11 mAb) with a high affinity was prepared, and sandwich lateral flow immunochromatographic detection strips were developed for the rapid detections of the soybean allergen β-conglycinin. The 3D11 mAb was combined with a rabbit polyclonal antibody in order to establish strips. The titer of 3D11 mAb was 1:2.56 × 105. The affinity constant of the 3D11 mAb was 9.6 × 109. The lowest detection limit with the naked eye of the double antibody sandwich strips was 1 μg/mL. In addition, chemical molecules p-aminothiophenol with colloidal gold were used as Raman enhancement signals in order to achieve quantitative detections of the β-conglycinin. It was determined in this study that the practical working range of the β-conglycinin concentrations was between 160 ng/mL and 100 μg/mL with the developed assay.
Collapse
Affiliation(s)
- Jun Xi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Qiurong Yu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
39
|
Shi S, Zhang Y, Ahn J, Qin D. Revitalizing silver nanocrystals as a redox catalyst by modifying their surface with an isocyanide-based compound. Chem Sci 2020; 11:11214-11223. [PMID: 34094362 PMCID: PMC8162456 DOI: 10.1039/d0sc04385k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
Silver is an excellent catalyst for oxidation reactions such as ethylene epoxidation, but it shows limited activity toward reduction reactions. Here we report a strategy to revitalize Ag nanocrystals as a redox catalyst for the production of an aromatic azo compound by modifying their surface with an isocyanide-based compound. We also leverage in situ fingerprint spectroscopy to acquire molecular insights into the reaction mechanism by probing the vibrational modes of all chemical species at the catalytic surface with surface-enhanced Raman spectroscopy. We establish that binding of isocyanide to Ag nanocrystals makes it possible for Ag to extract the oxygen atoms from the nitro-groups of nitroaromatics and then use these atoms to oxidize isocyanide to isocyanate. Concurrently, the coupling between two adjacent deoxygenated nitroaromatic molecules leads to the formation of an aromatic azo compound.
Collapse
Affiliation(s)
- Shi Shi
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Yadong Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Jaewan Ahn
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
40
|
Li Z, Wang R, Kurouski D. Nanoscale Photocatalytic Activity of Gold and Gold-Palladium Nanostructures Revealed by Tip-Enhanced Raman Spectroscopy. J Phys Chem Lett 2020; 11:5531-5537. [PMID: 32568534 DOI: 10.1021/acs.jpclett.0c01631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The new paradigm of solid-state catalysis is that coupling of plasmonic and catalytic metals can be used to achieve much higher catalytic efficiency relative to their counterparts. Chemical reactions on such bimetallic nanostructures are light-driven, which essentially enables "green catalysis" in organic synthesis. The catalytic efficiency of bimetallic platforms directly depends on their nanoscale structures, which remain poorly understood. We used tip-enhanced Raman spectroscopy (TERS) to investigate nanoscale plasmonic and photocatalytic properties of novel gold-palladium microplates (Au@PdMPs), along with their monometallic counterparts. We found that 4-nitrobenzenethiol (4-NBT) can be catalyzed to p,p'-dimercaptoazobisbenzene (DMAB) and 4-aminothiophenol (4-ATP) on Au@PdMPs, whereas monometallic AuMPs produce exclusively DMAB as a result of such photocatalytic reduction of 4-NBT. Using 4-NBT as a molecular reporter, we found that the efficiency of these catalytic reactions has strong correlation with the nanoscale structure of microplates. Coupling TERS to GC-MS, we also found that Au@PdMPs were capable of catalyzing the Suzuki-Miyaura coupling reaction.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Rui Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- The Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
41
|
Seo MJ, Ryu KR, Kim GW, Ha JW. Effect of chemisorbed thiophenols with an electron donating group on surface-enhanced Raman scattering of gold nanorods. Phys Chem Chem Phys 2020; 22:14832-14837. [PMID: 32579626 DOI: 10.1039/d0cp02708a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique to amplify the weak Raman scattering intensity by molecules chemisorbed on a metallic surface. Herein, we present the interfacial electronic effect of para-substituted aromatic thiophenols (TPs) with an electron donating group (EDG) on SERS of anisotropic gold nanorods (AuNRs) under resonant conditions. Probe molecules with an EDG showed great SERS enhancement in AuNRs at the resonant excitation wavelength. We found that the SERS enhancement with an EDG is caused by the formation of aggregates through intermolecular interactions among probe molecules, such as dimerization with hydrogen bonding via an amino group (-NH2) of p-aminothiophenol (p-ATP) and hydroxyl group (-OH) of p-mercaptophenol (p-MP), resulting in hot-spots between AuNRs. Furthermore, SERS having a stronger EDG (-NH2, p-ATP) with the Hammett constant of -0.66 exhibited greater enhancement than p-MP having hydroxyl (-OH) groups with the Hammett constant of -0.37. We found that the greater enhancement is ascribed to the temporary formation of a positively charged electron withdrawing group (-NH3+) in p-ATP, unlike p-MP, via the interaction of the lone pair of the amino group (-NH2) with ethanol. Therefore, this investigation provides new insightful experimental observations on SERS enhancement of probe molecules with an EDG.
Collapse
Affiliation(s)
- Min Jung Seo
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | - Kyeong Rim Ryu
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
| | - Geun Wan Kim
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea. and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, 44610, Republic of Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea. and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, 44610, Republic of Korea
| |
Collapse
|
42
|
Facile Synthesis of Porous Hexapod Ag@AgCl Dual Catalysts for In Situ SERS Monitoring of 4-Nitrothiophenol Reduction. Catalysts 2020. [DOI: 10.3390/catal10070746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Controllable morphological metal catalytic materials have always been a focus in research. In the previous work, hexapod AgCl was successfully synthesized. In this paper, hexapod Ag@AgCl microstructures with diverse Ag contents are prepared through NaBH4 reduction. They are characterized by scanning electron microscopy (SEM) and the element distribution is proved by an energy dispersive X-ray spectrometer (EDS). They are porous dendritic microstructures with a large specific surface area and a rough surface, which display high catalytic performance and surface-enhanced Raman spectroscopy (SERS) activity. Furthermore, the hexapod Ag@AgCl microstructure is devoted as a dual catalyst to monitor the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) in situ using SERS. Ultraviolet–visible (UV–Vis) spectroscopy was employed to evaluate the catalytic performance of the hexapod Ag@AgCl microstructures. The consequences show that the velocity of reaction became faster with a corresponding increase in silver content and the reaction mechanism was cleared. In addition to preparing a good catalyst, this work also promotes the combination of micro-nano materials and spectroscopy technology.
Collapse
|
43
|
Long Z, Liang Y, Feng L, Zhang H, Liu M, Xu T. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface. NANOSCALE 2020; 12:10809-10815. [PMID: 32392273 DOI: 10.1039/d0nr00288g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glucose detection using surface-enhanced Raman scattering (SERS) spectroscopy has aroused considerable attention due to its potential in the prevention and diagnosis of diabetes as a result of its unique molecular fingerprinting capability, ultrahigh sensitivity and minimal interference from water. Despite numerous solutions to improve the sensitivity of glucose detection, the development of a new SERS-based strategy to detect glucose with high sensitivity and low-cost is still required. In this study, we propose a simple and sensitive SERS-based plasmonic metasurface sensing platform for a glucose sandwich assay using self-assembled p-mercapto-phenylboronic acid (PMBA) monolayers on a gold nanodisk (Au-ND) metasurface and synthesized silver nanoparticles (Ag NPs) modified with a mixture of p-aminothiophenol (PATP) and PMBA. The localized near-field of the proposed plasmonic metasurface is markedly enhanced due to the coupling between the Au-ND and Ag NPs, which greatly improves detection sensitivity. The experimental results show that SERS signals of the glucose assay are significantly enhanced by more than 8-fold, in comparison with the SERS substrate of smooth Au films and Ag NPs. Moreover, the plasmonic metasurface-based glucose sandwich assay exhibits high selectivity and sensitivity for glucose over fructose and galactose. The developed plasmonic metasurface sensing platform shows enormous potential for highly sensitive and selective SERS-based glucose detection and opens a new avenue for scalable and cost-effective biosensing applications in the future.
Collapse
Affiliation(s)
- Zhongwen Long
- National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | |
Collapse
|
44
|
Huang Y, Liu W, Wang D, Gong Z, Fan M. Evaluation of the intrinsic pH sensing performance of surface-enhanced Raman scattering pH probes. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Huang YF, Wang W, Guo HY, Zhan C, Duan S, Zhan D, Wu DY, Ren B, Tian ZQ. Microphotoelectrochemical Surface-Enhanced Raman Spectroscopy: Toward Bridging Hot-Electron Transfer with a Molecular Reaction. J Am Chem Soc 2020; 142:8483-8489. [DOI: 10.1021/jacs.0c02523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi-Fan Huang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Wang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong-Yu Guo
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chao Zhan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sai Duan
- MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dongping Zhan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
46
|
Zhong H, Chen J, Chen J, Tao R, Jiang J, Hu Y, Xu J, Zhang T, Liao J. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied via in situ electrochemical surface-enhanced Raman spectroscopy. Phys Chem Chem Phys 2020; 22:23482-23490. [DOI: 10.1039/d0cp01733g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Plasmon-induced hot holes and electrons play different roles in the PATP coupling reaction, resulting in two different catalytic reaction paths.
Collapse
Affiliation(s)
- Hang Zhong
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Jinfan Chen
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Ran Tao
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Jiaolai Jiang
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang 621907
- China
| | - Yi Hu
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Jingsong Xu
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Tianzhu Zhang
- Science and Technology on Surface Physics and Chemistry Laboratory
- Jiangyou 621908
- China
| | - Junsheng Liao
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang 621907
- China
| |
Collapse
|
47
|
Queffélec C, Forato F, Bujoli B, Knight DA, Fonda E, Humbert B. Investigation of copper oxidation states in plasmonic nanomaterials by XAS and Raman spectroscopy. Phys Chem Chem Phys 2020; 22:2193-2199. [DOI: 10.1039/c9cp06478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A shell-isolated nanoparticle enhanced surface Raman technique and XANES for detection of copper(ii) or copper(i) plasmonic-nanocatalysts.
Collapse
Affiliation(s)
| | | | - Bruno Bujoli
- Université de Nantes
- CNRS
- CEISAM
- UMR 6230
- F-44000 Nantes
| | - D. Andrew Knight
- Department of Biomedical & Chemical Engineering & Sciences
- Florida Institute of Technology
- Melbourne
- USA
| | - Emiliano Fonda
- Synchrotron SOLEIL
- L’ormes des merisiers
- Gif-Sur-Yvette Cedex
- France
| | - Bernard Humbert
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
48
|
Rubira RJG, Camacho SA, Martin CS, Mejía-Salazar JR, Reyes Gómez F, da Silva RR, de Oliveira Junior ON, Alessio P, Constantino CJL. Designing Silver Nanoparticles for Detecting Levodopa (3,4-Dihydroxyphenylalanine, L-Dopa) Using Surface-Enhanced Raman Scattering (SERS). SENSORS (BASEL, SWITZERLAND) 2019; 20:E15. [PMID: 31861443 PMCID: PMC6982777 DOI: 10.3390/s20010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023]
Abstract
Detection of the drug Levodopa (3,4-dihydroxyphenylalanine, L-Dopa) is essential for the medical treatment of several neural disorders, including Parkinson's disease. In this paper, we employed surface-enhanced Raman scattering (SERS) with three shapes of silver nanoparticles (nanostars, AgNS; nanospheres, AgNP; and nanoplates, AgNPL) to detect L-Dopa in the nanoparticle dispersions. The sensitivity of the L-Dopa SERS signal depended on both nanoparticle shape and L-Dopa concentration. The adsorption mechanisms of L-Dopa on the nanoparticles inferred from a detailed analysis of the Raman spectra allowed us to determine the chemical groups involved. For instance, at concentrations below/equivalent to the limit found in human plasma (between 10-7-10-8 mol/L), L-Dopa adsorbs on AgNP through its ring, while at 10-5-10-6 mol/L adsorption is driven by the amino group. At even higher concentrations, above 10-4 mol/L, L-Dopa polymerization predominates. Therefore, our results show that adsorption depends on both the type of Ag nanoparticles (shape and chemical groups surrounding the Ag surface) and the L-Dopa concentration. The overall strategy based on SERS is a step forward to the design of nanostructures to detect analytes of clinical interest with high specificity and at varied concentration ranges.
Collapse
Affiliation(s)
- Rafael Jesus Gonçalves Rubira
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| | - Sabrina Alessio Camacho
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900 SP, Brazil;
| | - Cibely Silva Martin
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| | | | - Faustino Reyes Gómez
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970 SP, Brazil; (F.R.G.); (R.R.d.S.)
| | - Robson Rosa da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970 SP, Brazil; (F.R.G.); (R.R.d.S.)
| | | | - Priscila Alessio
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| | - Carlos José Leopoldo Constantino
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente 19060-900 SP, Brazil; (C.S.M.); (P.A.); (C.J.L.C.)
| |
Collapse
|
49
|
Das A, Maiti N, Dhayagude AC, Pathak AK, Chadha R, Neogy S, Kapoor S. A study of light induced surface reactions of sildenafil citrate on hybrid AgCl/Ag nanoparticle dimers by surface enhanced Raman scattering and pulse radiolysis techniques. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|