1
|
Umeyama D, Iimura S. Ligand-Directed Valence Band Engineering in Pb 2+ Hybrid Crystals: Achieving Dispersive Bands and Shallow Valence Band Maximum. J Am Chem Soc 2024; 146:33964-33972. [PMID: 39563089 DOI: 10.1021/jacs.4c12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
While crystalline hybrid solids hold great potential as novel semiconductors, most semiconductive hybrids utilize transition metal ions, which inherently limit carrier mobility due to the small band dispersion derived from the d orbitals. The filled s orbitals of post-transition metal ions offer the potential to design dispersed valence bands, but a method to translate the local structure design of these metal ions to valence band engineering is still in development. This study focuses on Pb2+-containing hybrid crystals, developing a simple strategy to control the Pb2+ coordination geometry through the molecular design of azole ligands. By preprogramming the coordination number of Pb2+ with azolate ligands, we succeeded in obtaining an isotropic coordination environment at a higher coordination number, resulting in a dispersed valence band and shallow valence band maximum while having a wide band gap. Detailed analysis of the band structures reveals that the energy levels and symmetry of the molecular orbitals of the anions play important roles in realizing these antinomic properties. This ligand-directed approach achieves both isotropy and covalency in the coordination bond by exploiting the diversity of the molecular orbitals. Our findings provide a foundation for future design strategies to optimize electronic structures in hybrid materials, advancing their application in semiconductive devices.
Collapse
Affiliation(s)
- Daiki Umeyama
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Soshi Iimura
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
2
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
3
|
Sakurai T, Tanabe T, Iguchi H, Li Z, Matsuda W, Tsutsui Y, Seki S, Matsuda R, Shinokubo H. An n-type semiconducting diazaporphyrin-based hydrogen-bonded organic framework. Chem Sci 2024; 15:12922-12927. [PMID: 39148781 PMCID: PMC11323323 DOI: 10.1039/d4sc03455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Significant effort has been devoted to the development of materials that combine high electrical conductivity and permanent porosity. This paper discloses a diazaporphyrin-based hydrogen-bonded organic framework (HOF) with porosity and n-type semiconductivity. A 5,15-diazaporphyrin Ni(ii) complex with carboxyphenyl groups at the meso positions afforded a HOF due to hydrogen-bonding interactions between the carboxy groups and meso-nitrogen atoms. The thermal and chemical stabilities of the HOF were examined using powder X-ray diffraction analysis, and the charge-carrier mobility was determined to be 2.0 × 10-7 m2 V-1 s-1 using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method. An analogous diazaporphyrin, which does not form a HOF, exhibited mobility that was 20 times lower. The results presented herein highlight the crucial role of hydrogen-bonding networks in achieving conductive pathways that can tolerate thermal perturbation.
Collapse
Affiliation(s)
- Takahiro Sakurai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Tappei Tanabe
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroaki Iguchi
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhuowei Li
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryotaro Matsuda
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
4
|
Xie Y, Zhang T, Wang B, Wang W. The Application of Metal-Organic Frameworks in Water Treatment and Their Large-Scale Preparation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1972. [PMID: 38730779 PMCID: PMC11084628 DOI: 10.3390/ma17091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.
Collapse
Affiliation(s)
- Yuhang Xie
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Wu Y, Qi Q, Peng T, Yu J, Ma X, Sun Y, Wang Y, Hu X, Yuan Y, Qin H. In Situ Flash Synthesis of Ultra-High-Performance Metal Oxide Anode through Shunting Current-Based Electrothermal Shock. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16152-16163. [PMID: 38502964 DOI: 10.1021/acsami.3c19174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The synthesis of anode materials plays an important role in determining the production efficiency, cost, and performance of lithium-ion batteries (LIBs). However, a low-cost, high-speed, scalable manufacturing process of the anode with the desired structural feature for practical technology adoption remains elusive. In this study, we propose a novel method called in situ flash shunt-electrothermal shock (SETS) which is controllable, fast, and energy-saving for synthesizing metal oxide-based materials. By using the example of direct electrothermal decomposition of ZIF-67 precursor loaded onto copper foil support, we achieve rapid (0.1-0.3 s) pyrolysis and generate porous hollow cubic structure material consisting of carbon-coated ultrasmall (10-15 nm) subcrystalline CoO/Co nanoparticles with controllable morphology. It was shown that CoO/Co@N-C exhibits prominent electrochemical performance with a high reversible capacity up to 1503.7 mA h g-1 after 150 cycles at 0.2 A g-1and stable capacities up to 434.1 mA h g-1 after 400 cycles at a high current density of 6 A g-1. This fabrication technique integrates the synthesis of active materials and the formation of electrode sheets into one process, thus simplifying the preparation of electrodes. Due to the simplicity and scalability of this process, it can be envisaged to apply it to the synthesis of metal oxide-based materials and to achieve large-scale production in a nanomanufacturing process.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Qi Qi
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Tianlang Peng
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Junjie Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Xinyu Ma
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Yizhuo Sun
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Yanling Wang
- College of Information Engineering & Art Design, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, P. R. China
| | - Xiaoshi Hu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yongjun Yuan
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Haiying Qin
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
6
|
Saha R, Gupta K, Gómez García CJ. Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study. CRYSTAL GROWTH & DESIGN 2024; 24:2235-2265. [PMID: 38463618 PMCID: PMC10921413 DOI: 10.1021/acs.cgd.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| | - Kajal Gupta
- Department
of Chemistry, Nistarini College, Purulia, 723101, WB India
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
7
|
Wachholz Junior D, Hryniewicz BM, Tatsuo Kubota L. Advanced Hybrid materials in electrochemical sensors: Combining MOFs and conducting polymers for environmental monitoring. CHEMOSPHERE 2024; 352:141479. [PMID: 38367874 DOI: 10.1016/j.chemosphere.2024.141479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The integration of conducting polymers (CPs) with metal-organic frameworks (MOFs) has arisen as a dynamic and innovative approach to overcome some intrinsic limitations of both materials, representing a transformative method to address the pressing need for high-performance environmental monitoring tools. MOFs, with their intricate structures and versatile functional groups, provide tuneable porosity and an extensive surface area, facilitating the selective adsorption of target analytes. Conversely, CPs, characterized by their exceptional electrical conductivity and redox properties, serve as proficient signal transducers. By combining these two materials, a novel class of hybrid materials emerges, capitalizing on the unique attributes of both components. These MOF/CP hybrids exhibit heightened sensitivity, selectivity, and adaptability, making them primordial in detecting and quantifying environmental contaminants. This review examines the synergy between MOFs and CPs, highlighting recent advancements, challenges, and prospects, thus offering a promising solution for developing advanced functional materials with tailored properties and multifunctionality to be applied in electrochemical sensors for environmental monitoring.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Bruna M Hryniewicz
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| |
Collapse
|
8
|
Shoaib Ahmad Shah S, Altaf Nazir M, Mahmood A, Sohail M, Ur Rehman A, Khurram Tufail M, Najam T, Sufyan Javed M, Eldin SM, Rezaur Rahman M, Rahman MM. Synthesis of Electrical Conductive Metal-Organic Frameworks for Electrochemical Applications. CHEM REC 2024; 24:e202300141. [PMID: 37724006 DOI: 10.1002/tcr.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | | | - Tayyaba Najam
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Sciences and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Sayed M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) &, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
9
|
Dutta B, Ahmed F, Mir MH. Coordination polymers: a promising candidate for photo-responsive electronic device application. Dalton Trans 2023; 52:17084-17098. [PMID: 37916313 DOI: 10.1039/d3dt02768f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The design and synthesis of electrically conductive coordination polymers (CPs) are of special interest due to their applications in the fabrication of many environmentally benign emerging technologies, such as molecular wires, photovoltaic cells, light emitting diodes (LEDs), field effect transistors (FETs) and Schottky barrier diodes (SBDs). Owing to their structural flexibility, easy functionality and adjustable energy levels, CPs are promising candidates for providing a better pathway for superior charge transport. Again, the utilization of visible light as an external stimulus to control and manoeuvre the electrical properties of the CPs is exceptionally motivating for the development of many optoelectronic devices, such as photodetectors, photo-switches, photodiodes and chemiresistive sensors. The applications of such materials in devices will solve questions regarding the energy crisis and environmental concerns. This study provides an overview of the recent advances in the development of photo-responsive CPs and the possibility of their application in developing optoelectronic devices. In this regard, a thorough literature survey was performed and the studies related to the fabrication of photosensitive conducting CPs for applications in optoelectronic devices are listed.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Faruk Ahmed
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Department of Chemistry, Saheed Nurul Islam Mahavidyalaya, Tentulia, West Bengal 743286, India
| | | |
Collapse
|
10
|
Zhang S, Zhang W, Yadav A, Baker J, Saha S. From a Collapse-Prone, Insulating Ni-MOF-74 Analogue to Crystalline, Porous, and Electrically Conducting PEDOT@MOF Composites. Inorg Chem 2023; 62:18999-19005. [PMID: 37934947 DOI: 10.1021/acs.inorgchem.3c02647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Electrically conductive porous metal-organic frameworks (MOFs) show great promise in helping advance electronics and clean energy technologies. However, large porosity usually hinders long-range charge transport, an essential criterion of electrical conductivity, underscoring the need for new strategies to combine these two opposing features and realize their diverse potentials. All previous strategies to boost the conductivity of porous MOFs by introducing redox-complementary guest molecules, conducting polymers, and metal nanoparticles have led to a significant loss of frameworks' porosity and surface areas, which could be otherwise exploited to capture additional guests in electrocatalysis and chemiresistive sensing applications. Herein, we demonstrate for the first time that the in situ oxidative polymerization of preloaded 3,4-ethylenedioxythiophene (EDOT) monomers into the polyethylenedioxythiophene (PEDOT) polymer inside the hexagonal cavities of an intrinsically insulating Ni2(NDISA) MOF-74 analogue (NDISA = naphthalenediimide N,N-disalicylate), which easily collapses and becomes amorphous upon drying, simultaneously enhanced the crystallinity, porosity, and electrical conductivity of the resulting PEDOT@Ni2(NDISA) composites. At lower PEDOT loading (∼22 wt %), not only did the Brunauer-Emmett-Teller surface area of the PEDOT@Ni2(NDISA) composite (926 m2/g) more than double from that of evacuated pristine Ni2(NDISA) (387 m2/g), but also its electrical conductivity (1.1 × 10-5 S/cm) soared 105 times from that of the pristine MOF, demonstrating unprecedented dual benefits of our strategy. At higher PEDOT loading (≥33 wt %), the electrical conductivity of Ni2(NDISA)⊃PEDOT composites further increased modestly (10-4 S/cm), but their porosity dropped precipitously as large amounts of PEDOT filled up the hexagonal MOF channels. Thus, our work presents a simple new strategy to simultaneously boost the structural stability, porosity, and electrical conductivity of intrinsically insulating and collapse-prone MOFs by introducing small amounts of conducting polymers that can not only reinforce the MOF scaffolds and prevent them from collapsing but also help create a much coveted non-native property by providing charge carriers and charge transport pathways.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Weikang Zhang
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Yadav
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jacob Baker
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sourav Saha
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
11
|
Yu YH, Lin XY, Teng KL, Lai WF, Hu CC, Tsai CH, Liu CP, Lee HL, Su CH, Liu YH, Lu KL, Chien SY. Synthesis of Two-Dimensional (Cu-S) n Metal-Organic Framework Nanosheets Applied as Peroxidase Mimics for Detection of Glutathione. Inorg Chem 2023; 62:17126-17135. [PMID: 37819788 PMCID: PMC10598880 DOI: 10.1021/acs.inorgchem.3c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/13/2023]
Abstract
Facilely synthesized peroxidase-like nanozymes with high catalytic activity and stability may serve as effective biocatalysts. The present study synthesizes peroxidase-like nanozymes with multinuclear active sites using two-dimensional (2D) metal-organic framework (MOF) nanosheets and evaluates them for their practical applications. A simple method involving a one-pot bottom-up reflux reaction is developed for the mass synthesis of (Cu-S)n MOF 2D nanosheets, significantly increasing production quantity and reducing reaction time compared to traditional autoclave methods. The (Cu-S)n MOF 2D nanosheets with the unique coordination of Cu(I) stabilized in Cu-based MOFs demonstrate impressive activity in mimicking natural peroxidase. The active sites of the peroxidase-like activity of (Cu-S)n MOF 2D nanosheets were predominantly verified as Cu(I) rather than Cu(II) of other Cu-based MOFs. The cost-effective and long-term stability of (Cu-S)n MOF 2D nanosheets make them suitable for practical applications. Furthermore, the inhibition of the peroxidase-like activity of (Cu-S)n MOF nanosheets by glutathione (GSH) could provide a simple strategy for colorimetric detection of GSH against other amino acids. This work remarkably extends the utilization of (Cu-S)n MOF 2D nanosheets in biosensing, revealing the potential for 2D (Cu-S)n MOFs.
Collapse
Affiliation(s)
- Yuan-Hsiang Yu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Xiao-Yuan Lin
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kun-Ling Teng
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Fan Lai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Chi Hu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Hsuan Tsai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Ching-Ping Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hui-Ling Lee
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Cing-Huei Su
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Hsiang Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kuang-Lieh Lu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Su-Ying Chien
- Instrumentation
Center, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
12
|
Shrivastav V, Mansi, Gupta B, Dubey P, Deep A, Nogala W, Shrivastav V, Sundriyal S. Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities. Adv Colloid Interface Sci 2023; 318:102967. [PMID: 37523999 DOI: 10.1016/j.cis.2023.102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Establishing green and reliable energy resources is very important to counteract the carbon footprints and negative impact of non-renewable energy resources. Metal-organic frameworks (MOFs) are a class of porous material finding numerous applications due to their exceptional qualities, such as high surface area, low density, superior structural flexibility, and stability. Recently, increased attention has been paid to surface mounted MOFs (SURMOFs), which is nothing but thin film of MOF, as a new category in nanotechnology having unique properties compared to bulk MOFs. With the advancement of material growth and synthesis technologies, the fine tunability of film thickness, consistency, size, and geometry with a wide range of MOF complexes is possible. In this review, we recapitulate various synthesis approaches of SURMOFs including epitaxial synthesis approach, direct solvothermal method, Langmuir-Blodgett LBL deposition, Inkjet printing technique and others and then correlated the synthesis-structure-property relationship in terms of energy storage and conversion applications. Further the critical assessment and current problems of SURMOFs have been briefly discussed to explore the future opportunities in SURMOFs for energy storage and conversion applications.
Collapse
Affiliation(s)
| | - Mansi
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India
| | - Bhavana Gupta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India
| | - Akash Deep
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vishal Shrivastav
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Shashank Sundriyal
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic,.
| |
Collapse
|
13
|
Zheng X, Drummer MC, He H, Rayder TM, Niklas J, Weingartz NP, Bolotin IL, Singh V, Kramar BV, Chen LX, Hupp JT, Poluektov OG, Farha OK, Zapol P, Glusac KD. Photoreactive Carbon Dioxide Capture by a Zirconium-Nanographene Metal-Organic Framework. J Phys Chem Lett 2023; 14:4334-4341. [PMID: 37133894 DOI: 10.1021/acs.jpclett.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mechanism of photochemical CO2 reduction to formate by PCN-136, a Zr-based metal-organic framework (MOF) that incorporates light-harvesting nanographene ligands, has been investigated using steady-state and time-resolved spectroscopy and density functional theory (DFT) calculations. The catalysis was found to proceed via a "photoreactive capture" mechanism, where Zr-based nodes serve to capture CO2 in the form of Zr-bicarbonates, while the nanographene ligands have a dual role of absorbing light and storing one-electron equivalents for catalysis. We also find that the process occurs via a "two-for-one" route, where a single photon initiates a cascade of electron/hydrogen atom transfers from the sacrificial donor to the CO2-bound MOF. The mechanistic findings obtained here illustrate several advantages of MOF-based architectures in molecular photocatalyst engineering and provide insights on ways to achieve high formate selectivity.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Matthew C Drummer
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haiying He
- Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana 46383, United States
| | - Thomas M Rayder
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Igor L Bolotin
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Varun Singh
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter Zapol
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
14
|
Pramanik S, Jana S, Das K, Pathak S, Ortega-Castro J, Frontera A, Mukhopadhyay S. Crystallographic Aspects, Photophysical Properties, and Theoretical Survey of Tetrachlorometallates of Group 12 Metals [Zn(II), Cd(II), and Hg(II)] with a Triply Protonated 2,4,6-Tris(2-pyridyl)-1,3,5-triazine Ligand. Inorg Chem 2023; 62:7220-7234. [PMID: 37130352 DOI: 10.1021/acs.inorgchem.2c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zn(II) (complex 1), Cd(II) (complex 2), and Hg(II) (complex 3) complexes have been synthesized using a triply protonated tptz (H3tptz3+) ligand and characterized mainly by single-crystal X-ray analysis. The general formula of all of the complexes is (H3tptz)3+·Cl-·[MCl4]2-·nH2O (where n = 1, 1.5, and 1.5 for complexes 1, 2, and 3, respectively). The crystallographic analysis reveals that the anion···π, anion···π+, and several hydrogen bonding interactions play a fundamental role in the stabilization of the self-assembled architectures that in turn help to enhance the dimensionality of all of the complexes. In addition, Hirshfeld surfaces and fingerprint plots have been deployed here to visualize the similarities and differences in hydrogen bonding interactions in 1-3, which are very important in forming supramolecular architectures. A density functional theory (DFT) study has been used to analyze and rationalize the supramolecular interactions by using molecular electrostatic potential (MEP) surfaces and combined QTAIM/NCI plots. Then, the device parameters for the complexes (1-3) have been thoroughly investigated by fabricating a Schottky barrier diode (SBD) on an indium tin oxide (ITO) substrate. It has been observed that the device made from complex 2 is superior to those from complexes 1 and 3, which has been explained in terms of band gaps, differences in the electronegativities of the central metal atoms, and the better supramolecular interactions involved. Finally, theoretical calculations have also been performed to analyze the experimental differences in band gaps as well as electrical conductivities observed for all of the complexes. Henceforth, the present work combined supramolecular, photophysical, and theoretical studies regarding group 12 metals in a single frame.
Collapse
Affiliation(s)
- Samit Pramanik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sumanta Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Kinsuk Das
- Department of Chemistry, Chandernagore College, Hooghly, West Bengal 712136, India
| | - Sudipta Pathak
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal 721657, India
| | - Joaquin Ortega-Castro
- Department of Chemistry, Universitat de les IllesBalears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les IllesBalears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | | |
Collapse
|
15
|
Wang L, Sarkar A, Grocke GL, Laorenza DW, Cheng B, Ritchhart A, Filatov AS, Patel SN, Gagliardi L, Anderson JS. Broad Electronic Modulation of Two-Dimensional Metal-Organic Frameworks over Four Distinct Redox States. J Am Chem Soc 2023. [PMID: 37018716 DOI: 10.1021/jacs.3c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Two-dimensional (2D) inorganic materials have emerged as exciting platforms for (opto)electronic, thermoelectric, magnetic, and energy storage applications. However, electronic redox tuning of these materials can be difficult. Instead, 2D metal-organic frameworks (MOFs) offer the possibility of electronic tuning through stoichiometric redox changes, with several examples featuring one to two redox events per formula unit. Here, we demonstrate that this principle can be extended over a far greater span with the isolation of four discrete redox states in the 2D MOFs LixFe3(THT)2 (x = 0-3, THT = triphenylenehexathiol). This redox modulation results in 10,000-fold greater conductivity, p- to n-type carrier switching, and modulation of antiferromagnetic coupling. Physical characterization suggests that changes in carrier density drive these trends with relatively constant charge transport activation energies and mobilities. This series illustrates that 2D MOFs are uniquely redox flexible, making them an ideal materials platform for tunable and switchable applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arup Sarkar
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel William Laorenza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Baorui Cheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew Ritchhart
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Shafqat SS, Rizwan M, Batool M, Shafqat SR, Mustafa G, Rasheed T, Zafar MN. Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. CHEMOSPHERE 2023; 318:137920. [PMID: 36690256 DOI: 10.1016/j.chemosphere.2023.137920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/25/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Water bodies are being polluted rapidly by disposal of toxic chemicals with their huge entrance into drinking water supply chain. Among these pollutants, heavy metal ions (HMIs) are the most challenging one due to their non-biodegradability, toxicity, and ability to biologically hoard in ecological systems, thus posing a foremost danger to human health. This can be addressed by robust, sensitive, selective, and reliable sensing of metal ions which can be achieved by Metal organic frameworks (MOF) based electrochemical sensors. In the present era, MOFs have caught greater interest in a variety of applications including sensing of hazardous pollutants such as heavy metal ions. So, in this review article, types, synthesis and working mechanism of MOF based sensors is explained to give general overview with updated literature. First time, detailed study is done for sensing of metal ions such as chromium, mercury, zinc, copper, manganese, palladium, lead, iron, cadmium and lanthanide by MOFs based electrochemical sensors. The use of MOFs as electrochemical sensors has attractive success story along with some challenges of the area. Considering these challenges, we attempted to highlight the milestone achieved and shortcomings along with future prospective of the MOFs for employing it in electrochemical sensing devices for HMIs. Finally, challenges and future prospects have been discussed to promote the development of MOFs-based sensors in future.
Collapse
Affiliation(s)
- Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000, Lahore, Pakistan.
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, 54000, Lahore, Pakistan; Department of Chemistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Maria Batool
- Department of Chemistry, University of Gujrat, 50700, Gujrat, Pakistan
| | | | - Ghulam Mustafa
- Department of Chemistry, The University of Lahore, 54000, Lahore, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | | |
Collapse
|
17
|
Sindhu P, Ananthram KS, Jain A, Tarafder K, Ballav N. Charge-transfer interface of insulating metal-organic frameworks with metallic conduction. Nat Commun 2022; 13:7665. [PMID: 36509780 PMCID: PMC9744856 DOI: 10.1038/s41467-022-35429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Downsizing materials into hetero-structured thin film configurations is an important avenue to capture various interfacial phenomena. Metallic conduction at the interfaces of insulating transition metal oxides and organic molecules are notable examples, though, it remained elusive in the domain of coordination polymers including metal-organic frameworks (MOFs). MOFs are comprised of metal centers connected to organic linkers with an extended coordination geometry and potential void space. Poor orbitals overlap often makes these crystalline solids electrical insulators. Herein, we have fabricated hetero-structured thin film of a Mott and a band insulating MOFs via layer-by-layer method. Electrical transport measurements across the thin film evidenced an interfacial metallic conduction. The origin of such an unusual observation was understood by the first-principles density functional theory calculations; specifically, Bader charge analysis revealed significant accumulation and percolation of charge across the interface. We anticipate similar interfacial effects in other rationally designed hetero-structured thin films of MOFs.
Collapse
Affiliation(s)
- Pooja Sindhu
- grid.417959.70000 0004 1764 2413Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411 008 India
| | - K. S. Ananthram
- grid.444525.60000 0000 9398 3798Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025 India
| | - Anil Jain
- grid.418304.a0000 0001 0674 4228Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| | - Kartick Tarafder
- grid.444525.60000 0000 9398 3798Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore, 575 025 India
| | - Nirmalya Ballav
- grid.417959.70000 0004 1764 2413Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411 008 India
| |
Collapse
|
18
|
García A, Rodríguez B, Rosales M, Quintero YM, G. Saiz P, Reizabal A, Wuttke S, Celaya-Azcoaga L, Valverde A, Fernández de Luis R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4263. [PMID: 36500886 PMCID: PMC9738636 DOI: 10.3390/nano12234263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.
Collapse
Affiliation(s)
- Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
- Mining Engineering Department, Faculty of Physical and Mathematical Sciences (FCFM), Universidad de Chile, Av. Tupper 2069, Santiago 8370451, Chile
| | - Bárbara Rodríguez
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8320000, Chile;
| | - Maibelin Rosales
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Yurieth M. Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Paula G. Saiz
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Ander Reizabal
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Celaya-Azcoaga
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Valverde
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Roberto Fernández de Luis
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| |
Collapse
|
19
|
Wang L, Papoular RJ, Horwitz NE, Xie J, Sarkar A, Campisi D, Zhao N, Cheng B, Grocke GL, Ma T, Filatov AS, Gagliardi L, Anderson JS. Linker Redox Mediated Control of Morphology and Properties in Semiconducting Iron-Semiquinoid Coordination Polymers. Angew Chem Int Ed Engl 2022; 61:e202207834. [PMID: 36070987 PMCID: PMC9827883 DOI: 10.1002/anie.202207834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 01/12/2023]
Abstract
The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal-organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CP Fe5 (C6 O6 )3 , which is a fusion of 2D Fe-semiquinoid materials and 3D cubic Fex (C6 O6 )y materials, by using a different initial redox-state of the C6 O6 linker. The material displays high electrical conductivity (0.02 S cm-1 ), broad electronic transitions, promising thermoelectric behavior (S2 σ=7.0×10-9 W m-1 K-2 ), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox-active components in conducting CPs/MOFs can be a "pre-synthetic" strategy to carefully tune material topologies and properties in contrast to more commonly encountered post-synthetic modifications.
Collapse
Affiliation(s)
- Lei Wang
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | | | - Noah E. Horwitz
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Jiaze Xie
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Arup Sarkar
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Dario Campisi
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Norman Zhao
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Baorui Cheng
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Garrett L. Grocke
- Pritzker School of Molecular EngineeringUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Tengzhou Ma
- Pritzker School of Molecular EngineeringUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | | | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute and Chicago Center for Theoretical ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - John S. Anderson
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| |
Collapse
|
20
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Wang YC, Yen JH, Huang CW, Chang TE, Chen YL, Chen YH, Lin CY, Kung CW. Metal-Organic Framework-Derived Electrocatalysts Competent for the Conversion of Acrylonitrile to Adiponitrile. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35534-35544. [PMID: 35914191 DOI: 10.1021/acsami.2c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical conversion of acrylonitrile (AN) to produce adiponitrile (ADN), the raw material for the production of Nylon 66, has become a crucial process owing to the increasing market demand of Nylon 66. Although the metallic Pb or Cd electrodes are commonly used for this reaction, the use of electrocatalysts or electrodes modified with catalysts has been barely investigated. In this study, nanoporous and electrically conductive metal-organic framework (MOF)-derived materials composed of Pb, PbO, and carbon are synthesized by carbonizing a Pb-based MOF through thermal treatments, and these MOF-derived materials are served as electrocatalysts for the electrosynthesis of ADN. The crystallinity, morphology, elemental composition, porosity, electrical conductivity, and electrochemically active surface area of each MOF-derived material are investigated. Mass-transport-corrected Tafel analysis is used to probe the enhanced kinetics for the electrochemical reduction of AN occurring at the electrode modified with the MOF-derived material. Electrolytic experiments at various applied potentials are conducted to quantify the production rate and Faradaic efficiency toward ADN, and the result shows that the MOF-derived materials can act as electrocatalysts to initiate the electrochemical reduction of AN to produce ADN at a reduced overpotential. The optimal MOF-derived electrocatalyst can achieve a Faradaic efficiency of 67% toward ADN at an applied potential of -0.85 V versus reversible hydrogen electrode─a much lower overpotential compared to that typically required for this reaction without the use of catalysts. Findings here shed light on the design and development of advanced electrocatalysts to boost the performances for the electrosynthesis of ADN.
Collapse
Affiliation(s)
- Yi-Ching Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Jia-Hui Yen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chi-Wei Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Tzu-En Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - You-Liang Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yu-Hsiu Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
22
|
Rassu P, Ma X, Wang B. Engineering of catalytically active sites in photoactive metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Vicent-Morales M, Esteve-Rochina M, Calbo J, Ortí E, Vitórica-Yrezábal IJ, Mínguez Espallargas G. Semiconductor Porous Hydrogen-Bonded Organic Frameworks Based on Tetrathiafulvalene Derivatives. J Am Chem Soc 2022; 144:9074-9082. [PMID: 35575688 PMCID: PMC9136926 DOI: 10.1021/jacs.2c01957] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Herein, we report
on the use of tetrathiavulvalene-tetrabenzoic
acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded
organic frameworks (HOFs). By tuning the synthetic conditions, three
different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting
open structures (22, 15, and 27%, respectively) and suitable TTF stacking
for efficient orbital overlap. Whereas MUV-21 collapses
during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption
capacity of 1.91 and 1.71 mmol g–1, respectively,
at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively
charged TTF core and a negatively charged carboxylate group. First-principles
calculations predict the emergence of remarkable charge transport
by means of a through-space hopping mechanism fostered by an efficient
TTF π–π stacking and the spontaneous formation
of persistent charge carriers in the form of radical TTF•+ units. Transport measurements confirm the efficient charge transport
in zwitterionic MUV-20a and MUV-20b with
no need for postsynthetic treatment (e.g., electrochemical oxidation
or doping), demonstrating the semiconductor nature of these HOFs with
record experimental conductivities of 6.07 × 10–7 (MUV-20a) and 1.35 × 10–6 S
cm–1 (MUV-20b).
Collapse
Affiliation(s)
- María Vicent-Morales
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | - María Esteve-Rochina
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| | | | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, Paterna 46980, Spain
| |
Collapse
|
24
|
Afrin S, Khan MW, Haque E, Ren B, Ou JZ. Recent advances in the tuning of the organic framework materials - The selections of ligands, reaction conditions, and post-synthesis approaches. J Colloid Interface Sci 2022; 623:378-404. [PMID: 35594596 DOI: 10.1016/j.jcis.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Organic framework materials, particularly metal-organic frameworks (MOFs), graphene-organic frameworks (GOFs), and covalent organic frameworks (COFs), have led to the revolution across fields including catalysts, sensors, gas capture, and biology mainly owing to their ultra-high surface area-to-volume ratio, on-demand tunable crystal structures, and unique surface properties. While the wet chemistry routes have been the predominant synthesis approach, the crystal phase, morphological parameters, and physicochemical properties of organic framework materials are largely affected by various synthesis parameters and precursors. In this work, we specifically review the influences of synthesis parameters towards crystal structures and chemical compositions of organic framework materials, including selected ligand types and lengths, reaction temperature/solvent/reactant compositions, as well as post-synthesis modification approaches. More importantly, the subsequent impacts on the general electronic, mechanical, surface chemical, and thermal properties as well as the consequent variation in performances towards catalytic, desalination, gas sensing, and gas storage applications are critically discussed. Finally, the current challenges and prospects of organic framework materials are provided.
Collapse
Affiliation(s)
- Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
25
|
Zhang Q, Hong Y, Wang Y, Guo Y, Wang K, Wu H, Zhang C. Recent advances in pillar‐layered metal‐organic frameworks with interpenetrated and non‐interpenetrated topologies as supercapacitor electrodes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qichun Zhang
- City University of Hong Kong Department of Physics and Materials Science 83 Tat Chee Ave, Kowloon Tong 999077 Hong Kong HONG KONG
| | - Ye Hong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuting Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuxuan Guo
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R CHINA
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China CHINA
| |
Collapse
|
26
|
Shen CH, Chen YH, Wang YC, Chang TE, Chen YL, Kung CW. Probing the electronic and ionic transport in topologically distinct redox-active metal-organic frameworks in aqueous electrolytes. Phys Chem Chem Phys 2022; 24:9855-9865. [PMID: 35348567 DOI: 10.1039/d2cp00117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three topologically distinct zirconium-based metal-organic frameworks (Zr-MOFs) constructed from redox-innocent linkers, MOF-808, defective UiO-66, and CAU-24, are synthesized, and the spatially dispersed redox-active manganese sites are post-synthetically immobilized on the hexa-zirconium nodes of these Zr-MOFs. The crystallinity, morphology, porosity, manganese loading, and bulk electrical conductivity of each material are studied. The redox-hopping-based electrochemical reaction between the installed Mn(III) and Mn(IV) occurring within the thin films of these MOFs in aqueous electrolytes is investigated, in the presence of various concentrations of Na2SO4 in the electrolytes. Cyclic voltammetry is used to qualitatively study the redox-hopping process, and chronoamperometry is used to quantify the electrochemically active fractions of manganese sites within the MOF thin film as well as the values of apparent diffusivity for the redox-hopping process. By adjusting the concentration of Na2SO4 in the electrolyte, the rate-determining step for the redox-hopping process can be tuned from ionic transport to electronic transport, and the Mn-decorated MOF-808, which possesses the largest pore size, can achieve the highest value of apparent diffusivity. Findings here shed light on the selection of Zr-MOF as well as the choice of electrolyte concentration for the applications of MOFs in supercapacitors and electrocatalysis relying on such redox-hopping processes in aqueous electrolytes.
Collapse
Affiliation(s)
- Cheng-Hui Shen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Yu-Hsiu Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Yi-Ching Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Tzu-En Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - You-Liang Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
27
|
Kajal N, Singh V, Gupta R, Gautam S. Metal organic frameworks for electrochemical sensor applications: A review. ENVIRONMENTAL RESEARCH 2022; 204:112320. [PMID: 34740622 DOI: 10.1016/j.envres.2021.112320] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are broadly known as porous coordination polymers, synthesized by metal-based nodes and organic linkers. MOFs are used in various fields like catalysis, energy storage, sensors, drug delivery etc., due to their versatile properties (tailorable pore size, high surface area, and exposed active sites). This review presents a detailed discussion of MOFs as an electrochemical sensor and their enhancement in the selectivity and sensitivity of the sensor. These sensors are used for the detection of heavy metal ions like Cd2+, Pb2+, Hg2+, and Cu2+ from groundwater. Various types of organic pollutants are also detected from the water bodies using MOFs. Furthermore, electrochemical sensing of antibiotics, phenolic compounds, and pesticides has been explored. In addition to this, there is also a detailed discussion of metal nano-particles and metal-oxide based composites which can sense various compounds like glucose, amino acids, uric acid etc. The review will be helpful for young researchers, and an inspiration to future research as challenges and future opportunities of MOF-based electrochemical sensors are also reported.
Collapse
Affiliation(s)
- Navdeep Kajal
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Vishavjeet Singh
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Ritu Gupta
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
28
|
Duan J, Goswami S, Hupp JT. Redox-Hopping-Based Charge Transport Mediated by Ru(II)-Polypyridyl Species Immobilized in a Mesoporous Metal-Organic Framework. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.828266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electronic charge transport through crystalline metal-organic frameworks (MOFs) can be accomplished by site-to-site electron (or hole) hopping, provided that redox-active sites, such as easily reducible or oxidizable MOF linkers, are present. If the framework itself is redox-inert, solvent-assisted ligand incorporation of redox-active moieties can serve to enable hopping-based charge transport. Here we have studied the redox hopping process within Ru-bpy@NU-1008, where Ru-bpy is a carboxylate-functionalized derivative, i.e., a node-ligating derivative, of the well-known chromophore Ru(2,2′-bipyridine)32+, and NU-1008 is a redox-inert MOF featuring hierarchical porosity and csq topology. Chronoamperometry experiments with electrode-supported thin films of Ru-bpy@NU-1008 show that charge transport is feasible through portions of the MOF, with other portions being inaccessible. Possible confounding features are the undersized c-pores that cross-connect 1D mesoporous channels, as ingress and egress of charge-compensating anions is believed to accompany the net oxidation of Ru(II) to Ru(III) and the reduction of Ru(III) to Ru(II). Phenomenologically, transport through the electroactive portion of the films is diffusion-like, with the magnitude of the apparent diffusion coefficient being 6 × 10−12 cm2/s.
Collapse
|
29
|
Wang M, Kong L, Lu X, Wu CML. Can Charge-Modulated Metal-Organic Frameworks Achieve High-Performance CO 2 Capture and Separation over H 2 , N 2 , and CH 4 ? CHEMSUSCHEM 2022; 15:e202101674. [PMID: 34873862 DOI: 10.1002/cssc.202101674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/06/2021] [Indexed: 06/13/2023]
Abstract
CO2 capture and separation by using charge-modulated adsorbent materials is a promising strategy to reduce CO2 emissions. Herein, three TM-HAB (TM=Co, Ni, and Cu; HAB=hexa-aminobenzene) metal-organic frameworks (MOFs) were evaluated as charge-modulated CO2 capture and separation materials by using density functional theory and grand canonical Monte Carlo simulations. The results showed that each TM-HAB presented a high electrical conductivity and structural stability when injecting charges. The CO2 adsorption energy increased from 0.211 to 2.091 eV on Co-HAB, 0.262 to 2.119 eV on Ni-HAB, and 0.904 to 2.803 eV on Cu-HAB, respectively, with the increase in charge state from 0.0 to 3.0 e- . Co-HAB and Ni-HAB were better charge-modulated CO2 capture materials with less structure deformation based on energy decomposition analyses. The kinetic process demonstrated that considerably low energy consumptions of 0.911 and 1.589 GJ ton-1 CO2 were observed for a complete adsorption-desorption cycle on Co-HAB and Ni-HAB. All charged MOFs, especially Co-HAB and Ni-HAB, exhibited higher CO2 adsorption energies and adsorption capacities than those of H2 , N2 , and CH4 , thereby exhibiting high CO2 selectivities. Interaction analysis confirmed that the injecting charges had a more pronounced enhancement in the coulombic interactions between CO2 and MOFs. The results of this work highlight Co-HAB and Ni-HAB as promising charge-modulated CO2 capture and separation materials with controllable CO2 capture, high selectivity, and low energy consumption.
Collapse
Affiliation(s)
- Maohuai Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lingyan Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
30
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Deng X, Zheng SL, Zhong YH, Hu J, Chung LH, He J. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Huelsenbeck L, Jung S, Herrera Del Valle R, Balachandran PV, Giri G. Accelerated HKUST-1 Thin-Film Property Optimization Using Active Learning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61827-61837. [PMID: 34913674 DOI: 10.1021/acsami.1c20788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flow-coating method termed solution shearing has been shown to grow large-area thin films with no void spaces. Attaining full coverage is one of the key prerequisites for the adoption of any metal-organic framework (MOF) thin film for a variety of practical applications, including separation, membranes and sensors. However, the solution-shearing process has multiple discrete and continuous parameters that can be varied, including the metal ion and linker concentrations, solvents, substrate temperature, coating speed, and the number of coating passes. Optimization of these parameters for full coverage is a time-consuming and daunting process due to vast parameter space. Here, we incorporate an active learning approach into the solution-sheared HKUST-1 thin-film-processing parameters to control the coverage and extend the approach to gain control over the thickness. The understanding of high-quality MOF thin-film formation using solution shearing is improved by correlating the processing parameter sets and their corresponding film coverage. A large area and fully covered HKUST-1 thin film with a minimized thickness of 2.2 μm is fabricated by using guidance from active learning. To confirm full coverage, a redox-active molecule, called 7,7,8,8-tetracyanoquinodimethane (TCNQ), is incorporated along with the HKUST-1 thin film. The TCNQ@HKUST-1 thin film with a minimized thickness has the same order of magnitude of electrical conductivity as that of the TCNQ@HKUST-1 thin film created previously while reducing the film thickness by 60%. We show that active learning has the potential to rapidly navigate the vast processing space in multicomponent systems, especially when experiments are expensive and traditional computational models are not readily available for process optimization.
Collapse
Affiliation(s)
- Luke Huelsenbeck
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sangeun Jung
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Roberto Herrera Del Valle
- Department of Material Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Prasanna V Balachandran
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
33
|
Kukkar P, Kim KH, Kukkar D, Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
|
35
|
Koo JY, Oh J, Hyun G, Choi HC, Song I, Yoon SM. Anisotropic Electrical Conductivity of a Single-Crystalline Oxo-Bridged Cr 4IIIMo 2VI Heterometallic Complex. Inorg Chem 2021; 60:13262-13268. [PMID: 34375084 DOI: 10.1021/acs.inorgchem.1c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new oxo-bridged chromium-molybdenum heterometallic complex, O-CrMoHC ([Cr4(MoO4)2O2(OAc)4(DMF)4]·2DMF), was synthesized by using a simple solvothermal reaction. In this complex, the octahedrally coordinated Cr(III) and tetrahedrally coordinated Mo(VI) metal centers are bridged by oxo ligands. O-CrMoHC has in-plane π-conjugation systems, which are interconnected by noncoordinating DMF molecules. The crystals show anisotropic conductivity with respect to the crystal planes, and theoretical calculations were used to study their origins. The O-CrMoHC single crystals exhibited that a relatively high electrical conductivity with an average value of 5.37 × 10-7 S/cm was observed along the [01-1] direction, but the current level was very low along the [100] direction. This is the first report of anisotropic conductivity observed in the single crystal of a monomeric heterometallic complex.
Collapse
Affiliation(s)
- Jin Young Koo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang-si, Korea 37673
| | - Jongwon Oh
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538.,Wonkang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538
| | - Gyeongeun Hyun
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538.,Wonkang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang-si, Korea 37673
| | - Intek Song
- Department of Applied Chemistry, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea 36729
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538.,Wonkang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538
| |
Collapse
|
36
|
|
37
|
Nath A, Asha KS, Mandal S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry 2021; 27:11482-11538. [PMID: 33857340 DOI: 10.1002/chem.202100610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.
Collapse
Affiliation(s)
- Akashdeep Nath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - K S Asha
- School of Chemistry and Biochemistry, M. S. Ramaiah College of Arts Science and Commerce, Bangaluru, 560054, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
38
|
Ke F, Zhou C, Zheng M, Li H, Bao J, Zhu C, Song Y, Xu WW, Zhu M. The alloying-induced electrical conductivity of metal-chalcogenolate nanowires. Chem Commun (Camb) 2021; 57:8774-8777. [PMID: 34378573 DOI: 10.1039/d1cc01849c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alloying is one of the most effective strategies to change the properties of inorganic-organic hybrid materials, but there are few reports of the alloying of one-dimensional nanowires with precise atomic structure due to the difficulties in obtaining the single crystals of nanowires themselves. Herein, we describe the synthesis and characterization of an alloyed one-dimensional Ag-Cu nanowire [Ag2.5Cu1.5(S-Adm)4]n. Compared with the unalloyed [Ag4(S-Adm)4]n, our novel alloyed nanowire exhibits good conductivity, and its resistivity (as a powder) was determined to be 107 Ω m by impedance analysis-consistent with that of a semiconductor. Accordingly, based on these properties combined with its excellent thermal stability and high-yielding, gram-scale synthesis, [Ag2.5Cu1.5(S-Adm)4]n is proposed for electronic-device applications.
Collapse
Affiliation(s)
- Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Qian W, Xu S, Zhang X, Li C, Yang W, Bowen CR, Yang Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. NANO-MICRO LETTERS 2021; 13:156. [PMID: 34264418 PMCID: PMC8282827 DOI: 10.1007/s40820-021-00681-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Suwen Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Xiaoming Zhang
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315016, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
40
|
Molecular Dye-Sensitized Photocatalysis with Metal-Organic Framework and Metal Oxide Colloids for Fuel Production. ENERGIES 2021. [DOI: 10.3390/en14144260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Colloidal dye-sensitized photocatalysis is a promising route toward efficient solar fuel production by merging properties of catalysis, support, light absorption, and electron mediation in one. Metal-organic frameworks (MOFs) are host materials with modular building principles allowing scaffold property tailoring. Herein, we combine these two fields and compare porous Zr-based MOFs UiO-66-NH2(Zr) and UiO-66(Zr) to monoclinic ZrO2 as model colloid hosts with co-immobilized molecular carbon dioxide reduction photocatalyst fac-ReBr(CO)3(4,4′-dcbpy) (dcbpy = dicarboxy-2,2′-bipyridine) and photosensitizer Ru(bpy)2(5,5′-dcbpy)Cl2 (bpy = 2,2′-bipyridine). These host-guest systems demonstrate selective CO2-to-CO reduction in acetonitrile in presence of an electron donor under visible light irradiation, with turnover numbers (TONs) increasing from ZrO2, to UiO-66, and to UiO-66-NH2 in turn. This is attributed to MOF hosts facilitating electron hopping and enhanced CO2 uptake due to their innate porosity. Both of these phenomena are pronounced for UiO-66-NH2(Zr), yielding TONs of 450 which are 2.5 times higher than under MOF-free homogeneous conditions, highlighting synergistic effects between supramolecular photosystem components in dye-sensitized MOFs.
Collapse
|
41
|
Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213915] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Humayun M, Pi W, Yuan Y, Shu L, Cao J, Khan A, Zheng Z, Fu Q, Tian Y, Luo W. A rational design of g-C 3N 4-based ternary composite for highly efficient H 2 generation and 2,4-DCP degradation. J Colloid Interface Sci 2021; 599:484-496. [PMID: 33964694 DOI: 10.1016/j.jcis.2021.04.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 10/25/2022]
Abstract
In this work, g-C3N4 based ternary composite (CeO2/CN/NH2-MIL-101(Fe)) has been fabricated via hydrothermal and wet-chemical methods. The composite showed superior photoactivities for H2O reduction to produce H2 and 2,4-dichlorophenol (2,4-DCP) degradation. The amount of H2 evolved over the composite under visible and UV-visible irradiations is 147.4 µmol·g-1·h-1 and 556.2 µmol·g-1·h-1, respectively. Further, the photocatalyst degraded 87% of 2,4-DCP in 2 hrs under visible light irradiations. The improved photoactivities are accredited to the synergistic-effects caused by the proper band alignment with close interfacial contact of the three components that significantly promoted charge transfer and separation. The 2,4-DCP degradation over the composite is dominated by OH radical rather than h+ and O2- as investigated by scavenger trapping experiments. This is further supported by the electron para-magnetic resonance (EPR) study. This work provides new directions for the development of g-C3N4 based highly efficient ternary composite materials for clean energy generation and pollution control.
Collapse
Affiliation(s)
- Muhammad Humayun
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wenbo Pi
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yang Yuan
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lang Shu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Junhao Cao
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Zhiping Zheng
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiuyun Fu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yahui Tian
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Luo
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
43
|
Dou Q, Wu N, Yuan H, Shin KH, Tang Y, Mitlin D, Park HS. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem Soc Rev 2021; 50:6734-6789. [PMID: 33955977 DOI: 10.1039/d0cs00721h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li+ and Na+. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices. The operating principles and types of dual-ion and whole-anion storage in electrochemical and hybrid capacitors are addressed along with the classification, thermodynamic and kinetic aspects, and associated interfaces of anion storage materials in various aqueous and non-aqueous electrolytes. The charge storage mechanism, structure-property correlation, and electrochemical features of anion storage materials are comprehensively discussed. The recent progress in emerging anion storage materials is also discussed, focusing on high-performance applications, such as dual-ion- and whole-anion-storing electrochemical capacitors in a symmetric or hybrid manner, and functional applications including micro- and flexible capacitors, desalination, and salinity cells. Finally, we present our perspective on the current impediments and future directions in this field.
Collapse
Affiliation(s)
- Qingyun Dou
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea.
| | | | | | | | | | | | | |
Collapse
|
44
|
Shen CH, Chuang CH, Gu YJ, Ho WH, Song YD, Chen YC, Wang YC, Kung CW. Cerium-Based Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16418-16426. [PMID: 33818075 DOI: 10.1021/acsami.1c02038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, nanocrystals of a cerium-based metal-organic framework (Ce-MOF), Ce-MOF-808, are directly grown on the surface of carboxylic acid-functionalized carbon nanotubes (CNTs) by a facile one-step solvothermal synthesis method. Ce-MOF-CNT nanocomposites with various Ce-MOF-to-CNT ratios are synthesized, and their crystallinity, morphology, porosity, and electrical conductivity are examined. The redox-hopping and electrochemical behaviors of the pristine Ce-MOF in aqueous electrolytes are investigated, suggesting that the pristine Ce-MOF is electrochemically active but possesses a limited charge-transport behavior. As a demonstration, all the Ce-MOF, CNT, and nanocomposites are used as active materials for application in aqueous-based supercapacitors. The capacitive performance of the CNT can be significantly boosted with the help of redox-active Ce-MOF-808 nanocrystals.
Collapse
Affiliation(s)
- Cheng-Hui Shen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yu-Juan Gu
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wei Huan Ho
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yi-Da Song
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yi-Ching Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
45
|
Shao B, Chen H, Cui C, Li J, Gonge R. Research Progress on Improvement of Conductivity of MOFs and Their Application in Bionsensors: A Review. CHEM LETT 2021. [DOI: 10.1246/cl.200808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bin Shao
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Hongshuo Chen
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Chuanjin Cui
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Jing Li
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| | - Ruikun Gonge
- Department of Electrical Engineering, North China University of Science and Technology, 21 Bohai Road, Tangshan, HeBei, P. R. China
| |
Collapse
|
46
|
Jung S, Huelsenbeck L, Hu Q, Robinson S, Giri G. Conductive, Large-Area, and Continuous 7,7,8,8-Tetracyanoquinodimethane@HKUST-1 Thin Films Fabricated Using Solution Shearing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10202-10209. [PMID: 33605712 DOI: 10.1021/acsami.1c00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most metal-organic frameworks (MOFs) have an insulating nature due to their porosity and redox-inactive organic components. The electrical conductivity of the prototypical MOF, HKUST-1, can be tuned by infiltrating a small-molecule organic semiconductor, 7,7,8,8-tetracyanoquinodimethane (TCNQ), into the HKUST-1 pores, creating TCNQ@HKUST-1. However, current processes of creating TCNQ@HKUST-1 films have many roadblocks such as slow crystallization rates, which limit high throughput production, and the formation of Cu(TCNQ) as a byproduct, which affects the electrical conductivity and degrades the chemical structure of HKUST-1. In this work, we show that HKUST-1 films can be rapidly synthesized over large areas with consistent thickness and no pinholes via a meniscus-guided coating technique called solution shearing. The subsequent pore activation process and TCNQ impregnation can be completed via solvent exchange to minimize the formation of the Cu(TCNQ) byproduct, and we obtain an increase in electrical conductivity of the solution-sheared TCNQ@HKUST-1 thin films of over 7 orders of magnitude, reaching a maximum value of 2.42 × 10-2 S m-1 when TCNQ is incorporated for 10 days. The conductivity of solution-sheared TCNQ@HKUST-1 is higher compared to films formed by high-pressure pelletization of TCNQ@HKUST-1. We show that solution shearing can produce large-area thin films rapidly and reduce the formation of grain boundaries better than pelletization, allowing for large-area electronics with both charge transport and porosity for applications as sensors and electronics.
Collapse
Affiliation(s)
- Sangeun Jung
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Luke Huelsenbeck
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Qikun Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sean Robinson
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
47
|
Song YD, Ho WH, Chen YC, Li JH, Wang YS, Gu YJ, Chuang CH, Kung CW. Selective Formation of Polyaniline Confined in the Nanopores of a Metal-Organic Framework for Supercapacitors. Chemistry 2021; 27:3560-3567. [PMID: 33166095 DOI: 10.1002/chem.202004516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/10/2022]
Abstract
In this study, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal-organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2 , is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS). Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.
Collapse
Affiliation(s)
- Yi-Da Song
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Wei Huan Ho
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Jun-Hong Li
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yi-Sen Wang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Yu-Juan Gu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| |
Collapse
|
48
|
Mohammadnezhad F, Kampouri S, Wolff SK, Xu Y, Feyzi M, Lee JH, Ji X, Stylianou KC. Tuning the Optoelectronic Properties of Hybrid Functionalized MIL-125-NH 2 for Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5044-5051. [PMID: 33464033 DOI: 10.1021/acsami.0c19345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metal-organic frameworks (MOFs) constructed with mixed ligands have shown great promise in the generation of materials with improved sorption, optical, and electronic properties. With an experimental, spectroscopic, and computational approach, herein, we investigated how the incorporation of different functionalized ligands within the structure of MIL-125-NH2 affects its performance in photocatalytic water reduction. We found that multiligand incorporation within the MOF structure has an impact on the light absorption spectrum and the electronic structure. These combined modifications improve the photocatalytic performance of MIL-125-NH2, thereby increasing the rate of hydrogen evolution reaction. Of the four nanoparticle/MOF photocatalytic systems tested, we showed that the Pt/MIL-125-NH2/(OH)2 system (Pt nanoparticle plus MIL-125-NH2 with amino and dihydroxyl functionalized ligands) outperforms its counterpart Pt/MIL-125-NH2 system, attributed to the enhanced p-π conjugation between the lone pairs of O atoms and their aromatic ligands resulting in a red-shifted absorption spectrum and greater spatial distribution of electron density.
Collapse
Affiliation(s)
- Farrokh Mohammadnezhad
- Department of Nano Chemistry, Faculty of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Poly-technique Fédérale de Lausanne (EPFL Valais), Rue de l'industrie 17, 1951 Sion, Switzerland
| | - Stavroula Kampouri
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Poly-technique Fédérale de Lausanne (EPFL Valais), Rue de l'industrie 17, 1951 Sion, Switzerland
| | - Samuel K Wolff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Yunkai Xu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Mostafa Feyzi
- Department of Nano Chemistry, Faculty of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran
- Department of Physical Chemistry, Faculty of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kyriakos C Stylianou
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Poly-technique Fédérale de Lausanne (EPFL Valais), Rue de l'industrie 17, 1951 Sion, Switzerland
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
49
|
Design and Synthesis of Conductive Metal‐Organic Frameworks and Their Composites for Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202001418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Li C, Zhang L, Chen J, Li X, Sun J, Zhu J, Wang X, Fu Y. Recent development and applications of electrical conductive MOFs. NANOSCALE 2021; 13:485-509. [PMID: 33404574 DOI: 10.1039/d0nr06396g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as attractive materials for energy and environmental-related applications owing to their structural, chemical and functional diversity over the last two decades. It is known that the poor carrier mobility and low electrical conductivity of ordinary MOFs severely limit their utility in practical applications. In the past 10 years, several MOF materials with high carrier mobility and outstanding electrical conductivity have received a worldwide upsurge of research interest and many techniques and strategies have been used to synthesize such MOFs. In this critical review, we provide an overview of the significant advances in the development of conductive MOFs reported until now. Their theoretical and synthetic design strategies, conductive mechanisms, electrical transport measurements, and applications are systematically summarized and discussed. In addition, we will also give some discussions on challenges and perspectives in this exciting field.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China. and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, China.
| | - Lili Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, China.
| | - Jiaqi Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China. and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, China.
| | - Xuelian Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|