1
|
Rzycki M, Drabik D. Multifaceted Activity of Fabimycin: Insights from Molecular Dynamics Studies on Bacterial Membrane Models. J Chem Inf Model 2024; 64:4204-4217. [PMID: 38733348 PMCID: PMC11134499 DOI: 10.1021/acs.jcim.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
2
|
Roudsari G, Lbadaoui-Darvas M, Welti A, Nenes A, Laaksonen A. The molecular scale mechanism of deposition ice nucleation on silver iodide. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:243-251. [PMID: 38371604 PMCID: PMC10867811 DOI: 10.1039/d3ea00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024]
Abstract
Heterogeneous ice nucleation is a ubiquitous process in the natural and built environment. Deposition ice nucleation, i.e. heterogeneous ice nucleation that - according to the traditional view - occurs in a subsaturated water vapor environment and in the absence of supercooled water on the solid, ice-forming surface, is among the most important ice formation processes in high-altitude cirrus and mixed-phase clouds. Despite its importance, very little is known about the mechanism of deposition ice nucleation at the microscopic level. This study puts forward an adsorption-based mechanism for deposition ice nucleation through results from a combination of atomistic simulations, experiments and theoretical modelling. One of the most potent laboratory surrogates of ice nucleating particles, silver iodide, is used as a substrate for the simulations. We find that water initially adsorbs in clusters which merge and grow over time to form layers of supercooled water. Ice nucleation on silver iodide requires at minimum the adsorption of 4 molecular layers of water. Guided by the simulations we propose the following fundamental freezing steps: (1) Water molecules adsorb on the surface, forming nanodroplets. (2) The supercooled water nanodroplets merge into a continuous multilayer when they grow to about 3 molecular layers thick. (3) The layer continues to grow until the critical thickness for freezing is reached. (4) The critical ice cluster continues to grow.
Collapse
Affiliation(s)
| | - Mária Lbadaoui-Darvas
- Laboratory of Atmospheric Processes and their Impacts, ENAC, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT) 26504 Patras Greece
| | - André Welti
- Finnish Meteorological Institute FI-00101 Helsinki Finland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, ENAC, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT) 26504 Patras Greece
| | - Ari Laaksonen
- Finnish Meteorological Institute FI-00101 Helsinki Finland
- Department of Applied Physics, University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
3
|
Rózsa ZB, Hantal G, Szőri M, Fábián B, Jedlovszky P. Understanding the Molecular Mechanism of Anesthesia: Effect of General Anesthetics and Structurally Similar Non-Anesthetics on the Properties of Lipid Membranes. J Phys Chem B 2023; 127:6078-6090. [PMID: 37368412 PMCID: PMC11404830 DOI: 10.1021/acs.jpcb.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
General anesthesia can be caused by various, chemically very different molecules, while several other molecules, many of which are structurally rather similar to them, do not exhibit anesthetic effects at all. To understand the origin of this difference and shed some light on the molecular mechanism of general anesthesia, we report here molecular dynamics simulations of the neat dipalmitoylphosphatidylcholine (DPPC) membrane as well as DPPC membranes containing the anesthetics diethyl ether and chloroform and the structurally similar non-anesthetics n-pentane and carbon tetrachloride, respectively. To also account for the pressure reversal of anesthesia, these simulations are performed both at 1 bar and at 600 bar. Our results indicate that all solutes considered prefer to stay both in the middle of the membrane and close to the boundary of the hydrocarbon domain, at the vicinity of the crowded region of the polar headgroups. However, this latter preference is considerably stronger for the (weakly polar) anesthetics than for the (apolar) non-anesthetics. Anesthetics staying in this outer preferred position increase the lateral separation between the lipid molecules, giving rise to a decrease of the lateral density. The lower lateral density leads to an increased mobility of the DPPC molecules, a decreased order of their tails, an increase of the free volume around this outer preferred position, and a decrease of the lateral pressure at the hydrocarbon side of the apolar/polar interface, a change that might well be in a causal relation with the occurrence of the anesthetic effect. All these changes are clearly reverted by the increase of pressure. Furthermore, non-anesthetics occur in this outer preferred position in a considerably smaller concentration and hence either induce such changes in a much weaker form or do not induce them at all.
Collapse
Affiliation(s)
- Zsófia B Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
4
|
In vitro and in vivo evaluation of a lidocaine loaded polymer nanoparticle formulation co-loaded with lidocaine for local anesthetics effect. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Himbert S, Zhang L, Alsop RJ, Cristiglio V, Fragneto G, Rheinstädter MC. Anesthetics significantly increase the amount of intramembrane water in lipid membranes. SOFT MATTER 2020; 16:9674-9682. [PMID: 32869047 DOI: 10.1039/d0sm01271h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The potency of anesthesia was directly linked to the partitioning of the drug molecules in cell membranes by Meyer and Overton. Many molecules interact with lipid bilayers and lead to structural and functional changes. It remains an open question which change in membrane properties is responsible for a potential anesthetic effect or if anesthetics act by binding to direct targets. We studied the effect of ethanol, diethyl ether and isoflurane on the water distribution in lipid bilayers by combining all-atom molecular dynamics simulations and neutron diffraction experiments. The simulations show strong membrane-drug interactions with partitioning coefficients of 38%, 92% and 100% for ethanol, diethyl ether and isoflurane, respectively, and provide evidence for an increased water partitioning in the membrane core. The amount of intramembrane water molecules was experimentally determined by selectively deuterium labeling lipids, anesthetic drug and water molecules in neutron diffraction experiments. Four additional water molecules per lipid were observed in the presence of ethanol. Diethyl ether and isoflurane were found to significantly increase the amount of intramembrane water by 25% (8 water molecules). This increase in intramembrane water may contribute to the non-specific interactions between anesthetics and lipid membranes.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, ABB-241, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
Ramadurai S, Sarangi NK, Maher S, MacConnell N, Bond AM, McDaid D, Flynn D, Keyes TE. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8095-8109. [PMID: 31120755 DOI: 10.1021/acs.langmuir.9b01028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability. We used an MSLB herein to interrogate drug-membrane interactions across seven drugs from different classes, including nonsteroidal anti-inflammatories: ibuprofen (Ibu) and diclofenac (Dic); antibiotics: rifampicin (Rif), levofloxacin (Levo), and pefloxacin (Pef); and bisphosphonates: alendronate (Ale) and clodronate (Clo). Fluorescence lifetime correlation spectroscopy (FLCS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the impact of drug on 1,2-dioleyl- sn-glycerophosphocholine and binary bilayers over physiologically relevant drug concentrations. Although FLCS data revealed Ibu, Levo, Pef, Ale, and Clo had no impact on lipid lateral mobility, EIS, which is more sensitive to membrane structural change, indicated modest but significant decreases to membrane resistivity consistent with adsorption but weak penetration of drugs at the membrane. Ale and Clo, evaluated at pH 5.25, did not impact the impedance of the membrane except at concentrations exceeding 4 mM. Conversely, Dic and Rif dramatically altered bilayer fluidity, suggesting their translocation through the bilayer, and EIS data showed that resistivity of the membrane decreased substantially with increasing drug concentration. Capacitance changes to the bilayer in most cases were insignificant. Using a Langmuir-Freundlich model to fit the EIS data, we propose Rsat as an empirical value that reflects permeation. Overall, the data indicate that Ibu, Levo, and Pef adsorb at the interface of the lipid membrane but Dic and Rif interact strongly, permeating the membrane core modifying the water/ion permeability of the bilayer structure. These observations are discussed in the context of previously reported data on drug permeability and log P.
Collapse
Affiliation(s)
- Sivaramakrishnan Ramadurai
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Sean Maher
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nicola MacConnell
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Alan M Bond
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | | | | | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|
7
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
8
|
Hantal G, Fábián B, Sega M, Jójárt B, Jedlovszky P. Effect of general anesthetics on the properties of lipid membranes of various compositions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:594-609. [PMID: 30571949 DOI: 10.1016/j.bbamem.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Computer simulations of four lipid membranes of different compositions, namely neat DPPC and PSM, and equimolar DPPC-cholesterol and PSM-cholesterol mixtures, are performed in the presence and absence of the general anesthetics diethylether and sevoflurane both at 1 and 600 bar. The results are analyzed in order to identify membrane properties that are potentially related to the molecular mechanism of anesthesia, namely that change in the same way in any membrane with any anesthetics, and change oppositely with increasing pressure. We find that the lateral lipid density satisfies both criteria: it is decreased by anesthetics and increased by pressure. This anesthetic-induced swelling is attributed to only those anesthetic molecules that are located close to the boundary of the apolar phase. This lateral expansion is found to lead to increased lateral mobility of the lipids, an effect often thought to be related to general anesthesia; to an increased fraction of the free volume around the outer preferred position of anesthetics; and to the decrease of the lateral pressure in the nearby range of the ester and amide groups, a region into which anesthetic molecules already cannot penetrate. All these changes are reverted by the increase of pressure. Another important finding of this study is that cholesterol has an opposite effect on the membrane properties than anesthetics, and, correspondingly, these changes are less marked in the presence of cholesterol. Therefore, changes in the membrane that can lead to general anesthesia are expected to occur in the membrane domains of low cholesterol content.
Collapse
Affiliation(s)
- György Hantal
- Faculty of Physics, University of Vienna, Sensengasse 8/9, A-1090 Vienna, Austria
| | - Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary; Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon, France
| | - Marcello Sega
- Faculty of Physics, University of Vienna, Sensengasse 8/9, A-1090 Vienna, Austria
| | - Balázs Jójárt
- Institute of Food Engineering, University of Szeged, Moszkvai krt 5-7, H-6725 Szeged, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary.
| |
Collapse
|
9
|
Arvayo-Zatarain JA, Favela-Rosales F, Contreras-Aburto C, Urrutia-Bañuelos E, Maldonado A. Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes. J Mol Model 2018; 25:4. [PMID: 30554281 DOI: 10.1007/s00894-018-3890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022]
Abstract
We report results of a molecular dynamics simulation study of the effect of one general anesthetic, halothane, on some properties of mixed DPPC/DPPE phospholipid membranes. This is a suitable model for the study of simple, two-phospholipid membrane systems. From the simulation runs, we determined several membrane properties for five different molecular proportions of DPPC/DPPE. The effect of halothane on the studied membrane properties (area per lipid molecule, density of membrane, order parameter, etc.) was rather small. The distribution of halothane is not uniform through the bilayer thickness. Instead, there is a maximum of anesthetic concentration around 1.2 nm from the center of the membrane. The anesthetic molecule is located close to the phospholipid headgroups. The position of the halothane density maximum depends slightly on the DPPC/DPPE molar proportion. Snapshots taken over the plane of the membrane, as well as calculated two-dimensional radial distribution functions show that the anesthetic has no preference for either phospholipid (DPPC or DPPE). Our results indicate that this anesthetic molecule has only small effects on DPPC/DPPE mixed membranes. In addition, halothane displays no preferential location around DPPC or DPPE. This is probably due to the hydrophobic nature of halothane and to the fact that the chosen phospholipids have the same hydrophobic tails.
Collapse
Affiliation(s)
| | - Fernando Favela-Rosales
- Departamento de Investigación, Instituto Tecnológico Superior Zacatecas Occidente, Ave. Tecnológico 2000, 99102, Sombrerete, Zacatecas, Mexico
| | - Claudio Contreras-Aburto
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata km 8, 29050, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Efrain Urrutia-Bañuelos
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Luis Encinas s/n, 83000, Hermosillo, Sonora, Mexico
| | - Amir Maldonado
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas s/n, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
10
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
11
|
Niga P, Hansson-Mille PM, Swerin A, Claesson PM, Schoelkopf J, Gane PAC, Bergendal E, Tummino A, Campbell RA, Magnus Johnson C. Interactions between model cell membranes and the neuroactive drug propofol. J Colloid Interface Sci 2018; 526:230-243. [PMID: 29734090 DOI: 10.1016/j.jcis.2018.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Vibrational sum frequency spectroscopy (VSFS) complemented by surface pressure isotherm and neutron reflectometry (NR) experiments were employed to investigate the interactions between propofol, a small amphiphilic molecule that currently is the most common general anaesthetic drug, and phospholipid monolayers. A series of biologically relevant saturated phospholipids of varying chain length from C18 to C14 were spread on either pure water or propofol (2,6-bis(1-methylethyl)phenol) solution in a Langmuir trough, and the change in the molecular structure of the film, induced by the interaction with propofol, was studied with respect to the surface pressure. The results from the surface pressure isotherm experiments revealed that propofol, as long as it remains at the interface, enhances the fluidity of the phospholipid monolayer. The VSF spectra demonstrate that for each phospholipid the amount of propofol in the monolayer region decreases with increasing surface pressure. Such squeeze out is in contrast to the enhanced interactions that can be exhibited by more complex amphiphilic molecules such as peptides. At surface pressures of 22-25 mN m-1, which are relevant for biological cell membranes, most of the propofol has been expelled from the monolayer, especially in the case of the C16 and C18 phospholipids that adopt a liquid condensed phase packing of its alkyl tails. At lower surface pressures of 5 mN m-1, the effect of propofol on the structure of the alkyl tails is enhanced when the phospholipids are present in a liquid expanded phase. Specifically, for the C16 phospholipid, NR data reveal that propofol is located exclusively in the head group region, which is rationalized in the context of previous studies. The results imply a non-homogeneous distribution of propofol in the plane of real cell membranes, which is an inference that requires urgent testing and may help to explain why such low concentration of the drug are required to induce general anaesthesia.
Collapse
Affiliation(s)
- Petru Niga
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden.
| | - Petra M Hansson-Mille
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden
| | - Agne Swerin
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Per M Claesson
- RISE - Research Institute of Sweden, Bioscience and Materials - Surface, Process and Formulation Box 5607, SE-114 28 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | | | - Patrick A C Gane
- Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland; Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, P.O. Box 16300, FI-00076 Aalto, Helsinki, Finland
| | - Erik Bergendal
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Andrea Tummino
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France; Eötvös Loránd University, Budapest 112, P.O. Box 32, H-1518, Hungary
| | | | - C Magnus Johnson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
12
|
Pérez-Camacho MI, Ruiz-Suárez JC. Propagation of a thermo-mechanical perturbation on a lipid membrane. SOFT MATTER 2017; 13:6555-6561. [PMID: 28895965 DOI: 10.1039/c7sm00978j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The propagation of sound waves on lipid monolayers supported on water has been previously studied during the melting transition. Since changes in volume, area, and compressibility in lipid membranes have biological relevance, the observed sound propagation is of paramount importance. However, it is unknown what would occur on a lipid bilayer, which is a more approximate model of a cell membrane. With the aim to answer this relevant question, we built an experimental setup to assemble long artificial lipid membranes. We found that if these membranes are heated in order to force local melting, a thermo-mechanical perturbation propagates a long distance. Our findings may support the existence of solitary waves, postulated to explain the propagation of isentropic signals together with the action potential in neurons.
Collapse
Affiliation(s)
- M I Pérez-Camacho
- CINVESTAV-Monterrey, Autopista Nueva al Aeropuerto Km. 9.5, Apodaca, Nuevo León 66600, Mexico.
| | | |
Collapse
|
13
|
Fábián B, Sega M, Voloshin VP, Medvedev NN, Jedlovszky P. Lateral Pressure Profile and Free Volume Properties in Phospholipid Membranes Containing Anesthetics. J Phys Chem B 2017; 121:2814-2824. [DOI: 10.1021/acs.jpcb.7b00990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Balázs Fábián
- Department of Inorganic
and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon, France
| | - Marcello Sega
- Faculty of
Physics, University of Vienna, Sensengasse 8/9, A-1090 Vienna, Austria
| | - Vladimir P. Voloshin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolai N. Medvedev
- Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
- MTA-BME Research Group of Technical Analytical Chemistry, Szent Gellért tér
4, H-1111 Budapest, Hungary
- Laboratory of Interfaces and Nanosize Systems,
Institute of Chemistry, Eötvös Loránd University, Pázmány Peter Stny 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
14
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
15
|
Awoonor-Williams E, Rowley CN. Molecular simulation of nonfacilitated membrane permeation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1672-87. [PMID: 26706099 DOI: 10.1016/j.bbamem.2015.12.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
This is a review. Non-electrolytic compounds typically cross cell membranes by passive diffusion. The rate of permeation is dependent on the chemical properties of the solute and the composition of the lipid bilayer membrane. Predicting the permeability coefficient of a solute is important in pharmaceutical chemistry and toxicology. Molecular simulation has proven to be a valuable tool for modeling permeation of solutes through a lipid bilayer. In particular, the solubility-diffusion model has allowed for the quantitative calculation of permeability coefficients. The underlying theory and computational methods used to calculate membrane permeability are reviewed. We also discuss applications of these methods to examine the permeability of solutes and the effect of membrane composition on permeability. The application of coarse grain and polarizable models is discussed. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Ernest Awoonor-Williams
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7 Canada
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7 Canada.
| |
Collapse
|
16
|
Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations. Sci Rep 2015; 5:17235. [PMID: 26601882 PMCID: PMC4658558 DOI: 10.1038/srep17235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane’s lateral expansion and lipid tail disorder. It may contribute to xenon’s strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia.
Collapse
|
17
|
Moskovitz Y, Yang H. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers. SOFT MATTER 2015; 11:2125-2138. [PMID: 25612767 DOI: 10.1039/c4sm02667e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of the gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor, while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar order parameter patterns for both DOPC acyl chains, which are opposite of the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the 'critical volume' hypothesis of anaesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1-100 bar could be associated with the possible manifestation of neurological tremors at the atomic scale. The non-immobiliser neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing the monolayer undulation rate, which indicates that enhanced diffusivity rather than atomic size is the key factor.
Collapse
Affiliation(s)
- Yevgeny Moskovitz
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37130, USA
| | | |
Collapse
|
18
|
Fábián B, Darvas M, Picaud S, Sega M, Jedlovszky P. The effect of anaesthetics on the properties of a lipid membrane in the biologically relevant phase: a computer simulation study. Phys Chem Chem Phys 2015; 17:14750-60. [DOI: 10.1039/c5cp00851d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phospholipid membranes containing four different general anaesthetic molecules are simulated in the biologically relevant Lα phase at atmospheric and high pressures.
Collapse
Affiliation(s)
- Balázs Fábián
- Laboratory of Interfaces and Nanosize Systems
- Institute of Chemistry
- Eötvös Loránd University
- H-1117 Budapest
- Hungary
| | - Mária Darvas
- SISSA
- Sector of Molecular and Statistical Biophysics
- 34136 Trieste
- Italy
| | - Sylvain Picaud
- Institut UTINAM (CNRS UMR 6213)
- Université de Franche-Comté
- F-25030 Besançon
- France
| | - Marcello Sega
- Institut für Computergestützte Biologische Chemie
- University of Vienna
- A-1090 Vienna
- Austria
| | - Pál Jedlovszky
- Laboratory of Interfaces and Nanosize Systems
- Institute of Chemistry
- Eötvös Loránd University
- H-1117 Budapest
- Hungary
| |
Collapse
|
19
|
Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1594-618. [PMID: 24374314 DOI: 10.1016/j.bbamem.2013.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Abstract
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bruno Maresca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Felix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Burcin Gungor
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Phillip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| |
Collapse
|
20
|
Panahi A, Feig M. Dynamic Heterogeneous Dielectric Generalized Born (DHDGB): An implicit membrane model with a dynamically varying bilayer thickness. J Chem Theory Comput 2013; 9:1709-1719. [PMID: 23585740 PMCID: PMC3622271 DOI: 10.1021/ct300975k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An extension to the heterogeneous dielectric generalized Born (HDGB) implicit membrane formalism is presented to allow dynamic membrane deformations in response to membrane-inserted biomolecules during molecular dynamic simulations. The flexible membrane is implemented through additional degrees of freedom that represent the membrane deformation at the contact points of a membrane-inserted solute with the membrane. The extra degrees of freedom determine the dielectric and non-polar solvation free energy profiles that are used to obtain the solvation free energy in the presence of the membrane and are used to calculate membrane deformation free energies according to an elastic membrane model. With the dynamic HDGB (DHDGB) model the membrane is able to deform in response to the insertion of charged molecules thereby avoiding the overestimation of insertion free energies with static membrane models. The DHDGB model also allows the membrane to respond to the insertion of membrane-spanning solutes with hydrophobic mismatch. The model is tested with the membrane insertion of amino acid side chain analogs, arginine-containing helices, the WALP23 peptide, and the gramicidin A channel.
Collapse
Affiliation(s)
- Afra Panahi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Michael Feig
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
21
|
Booker RD, Sum AK. Biophysical changes induced by xenon on phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1347-56. [PMID: 23376329 DOI: 10.1016/j.bbamem.2013.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/28/2012] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
Abstract
Structural and dynamic changes in cell membrane properties induced by xenon, a volatile anesthetic molecule, may affect the function of membrane-mediated proteins, providing a hypothesis for the mechanism of general anesthetic action. Here, we use molecular dynamics simulation and differential scanning calorimetry to examine the biophysical and thermodynamic effects of xenon on model lipid membranes. Our results indicate that xenon atoms preferentially localize in the hydrophobic core of the lipid bilayer, inducing substantial increases in the area per lipid and bilayer thickness. Xenon depresses the membrane gel-liquid crystalline phase transition temperature, increasing membrane fluidity and lipid head group spacing, while inducing net local ordering effects in a small region of the lipid carbon tails and modulating the bilayer lateral pressure profile. Our results are consistent with a role for nonspecific, lipid bilayer-mediated mechanisms in producing xenon's general anesthetic action.
Collapse
Affiliation(s)
- Ryan D Booker
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | |
Collapse
|