1
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
2
|
Zhu Y, Peng BJ, Kumar S, Stover L, Chang JY, Lyu J, Zhang T, Schrecke S, Azizov D, Russell DH, Fang L, Laganowsky A. Polyamine detergents tailored for native mass spectrometry studies of membrane proteins. Nat Commun 2023; 14:5676. [PMID: 37709761 PMCID: PMC10502129 DOI: 10.1038/s41467-023-41429-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Native mass spectrometry (MS) is a powerful technique for interrogating membrane protein complexes and their interactions with other molecules. A key aspect of the technique is the ability to preserve native-like structures and noncovalent interactions, which can be challenging depending on the choice of detergent. Different strategies have been employed to reduce charge on protein complexes to minimize activation and preserve non-covalent interactions. Here, we report the synthesis of a class of polyamine detergents tailored for native MS studies of membrane proteins. These detergents, a series of spermine covalently attached to various alkyl tails, are exceptional charge-reducing molecules, exhibiting a ten-fold enhanced potency over spermine. Addition of polyamine detergents to proteins solubilized in maltoside detergents results in improved, charge-reduced native mass spectra and reduced dissociation of subunits. Polyamine detergents open new opportunities to investigate membrane proteins in different detergent environments that have thwarted previous native MS studies.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Bo-Ji Peng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Djavdat Azizov
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Ion mobility-mass spectrometry reveals the role of peripheral myelin protein dimers in peripheral neuropathy. Proc Natl Acad Sci U S A 2021; 118:2015331118. [PMID: 33893233 DOI: 10.1073/pnas.2015331118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripheral myelin protein (PMP22) is an integral membrane protein that traffics inefficiently even in wild-type (WT) form, with only 20% of the WT protein reaching its final plasma membrane destination in myelinating Schwann cells. Misfolding of PMP22 has been identified as a key factor in multiple peripheral neuropathies, including Charcot-Marie-Tooth disease and Dejerine-Sottas syndrome. While biophysical analyses of disease-associated PMP22 mutants show altered protein stabilities, leading to reduced surface trafficking and loss of PMP22 function, it remains unclear how destabilization of PMP22 mutations causes mistrafficking. Here, native ion mobility-mass spectrometry (IM-MS) is used to compare the gas phase stabilities and abundances for an array of mutant PM22 complexes. We find key differences in the PMP22 mutant stabilities and propensities to form homodimeric complexes. Of particular note, we observe that severely destabilized forms of PMP22 exhibit a higher propensity to dimerize than WT PMP22. Furthermore, we employ lipid raft-mimicking SCOR bicelles to study PMP22 mutants, and find that the differences in dimer abundances are amplified in this medium when compared to micelle-based data, with disease mutants exhibiting up to 4 times more dimer than WT when liberated from SCOR bicelles. We combine our findings with previous cellular data to propose that the formation of PMP22 dimers from destabilized monomers is a key element of PMP22 mistrafficking.
Collapse
|
5
|
Sahin C, Österlund N, Leppert A, Johansson J, Marklund EG, Benesch JLP, Ilag LL, Allison TM, Landreh M. Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chem Commun (Camb) 2021; 57:1450-1453. [PMID: 33439171 DOI: 10.1039/d0cc08135c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although native mass spectrometry is widely applied to monitor chemical or thermal protein denaturation, it is not clear to what extent it can inform about alkali-induced unfolding. Here, we probe the relationship between solution- and gas-phase structures of proteins under alkaline conditions. Native ion mobility-mass spectrometry reveals that globular proteins are destabilized rather than globally unfolded, which is supported by solution studies, providing detailed insights into alkali-induced unfolding events. Our results pave the way for new applications of MS to monitor structures and interactions of proteins at high pH.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden. and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen N, 2200, Denmark
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, 751 23, Sweden
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden.
| |
Collapse
|
6
|
Fantin SM, Huang H, Sanders CR, Ruotolo BT. Collision-Induced Unfolding Differentiates Functional Variants of the KCNQ1 Voltage Sensor Domain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2348-2355. [PMID: 32960579 PMCID: PMC8106873 DOI: 10.1021/jasms.0c00288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The KCNQ1 voltage-gated potassium channel regulates the repolarization of cardiac cells, and a plurality of point mutations in its voltage-sensing domain (VSD) are associated with toxic gain or loss of pore function, resulting in disease. As is the case with many disease-associated membrane proteins, there are hundreds of human variants of interest identified for KCNQ1; however, a significant portion of these variants have not been characterized in relation to their functional and disease associations. Additionally, as the VSD consists of four transmembrane helices, studies into dynamic structural differences among KCNQ1 VSD variants are hindered by the current limitations and deficits in the high-resolution structure determination of membrane proteins. Here, we use native ion mobility-mass spectrometry and collision-induced unfolding (CIU) to address the need for a high throughput-compatible method for the structural characterization of membrane protein variants of unknown significance using the KCNQ1 VSD as a model system. We perform CIU on wild-type and three mutant KCNQ1 VSD forms associated with the toxic gain or loss of function and show through both automated feature detection and comprehensive difference analysis of the CIU data sets that the variants are clearly grouped by function and disease association. We also construct a classification scheme based on the CIU data sets, which is able to differentiate the variant functional groups and classify a recently characterized variant to its correct grouping. Further, we probe the stability of the KCNQ1 VSD variants when liberated from C12E8 micelles at pH 8.0 and find preliminary evidence that the R231C mutation associated with the gain of the pore function is destabilized relative to the wild-type and loss of function variants.
Collapse
Affiliation(s)
- Sarah M. Fantin
- University of Michigan Department of Chemistry, Ann Arbor, Michigan 48109, United States
| | - Hui Huang
- Vanderbilt University, Department of Biochemistry, Nashville, Tennessee 37232, United States
| | - Charles R. Sanders
- Vanderbilt University, Department of Biochemistry, Nashville, Tennessee 37232, United States
| | - Brandon T. Ruotolo
- University of Michigan Department of Chemistry, Ann Arbor, Michigan 48109, United States
- Corresponding Author:
| |
Collapse
|
7
|
Urner LH, Liko I, Yen HY, Hoi KK, Bolla JR, Gault J, Almeida FG, Schweder MP, Shutin D, Ehrmann S, Haag R, Robinson CV, Pagel K. Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors. Nat Commun 2020; 11:564. [PMID: 31992701 PMCID: PMC6987200 DOI: 10.1038/s41467-020-14424-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
Detergents enable the purification of membrane proteins and are indispensable reagents in structural biology. Even though a large variety of detergents have been developed in the last century, the challenge remains to identify guidelines that allow fine-tuning of detergents for individual applications in membrane protein research. Addressing this challenge, here we introduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS) reveals that the modular OGD architecture offers the ability to control protein purification and to preserve interactions with native membrane lipids during purification. In addition to a broad range of bacterial membrane proteins, OGDs also enable the purification and analysis of a functional G-protein coupled receptor (GPCR). Moreover, given the modular design of these detergents, we anticipate fine-tuning of their properties for specific applications in structural biology. Seen from a broader perspective, this represents a significant advance for the investigation of membrane proteins and their interactions with lipids. Detergents are indispensable reagents in membrane protein structural biology. Here, L. H. Urner and co-workers introduce oligoglycerol detergents (OGDs) and use native mass spectrometry to show how interactions of membrane proteins with native membrane lipids can be preserved during purification.
Collapse
Affiliation(s)
- Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.,Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.,OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Hsin-Yung Yen
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.,OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Kin-Kuan Hoi
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Jani Reddy Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Fernando Gonçalves Almeida
- OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Marc-Philip Schweder
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Denis Shutin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Svenja Ehrmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany. .,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| |
Collapse
|
8
|
Fantin SM, Parson KF, Niu S, Liu J, Polasky DA, Dixit SM, Ferguson-Miller SM, Ruotolo BT. Collision Induced Unfolding Classifies Ligands Bound to the Integral Membrane Translocator Protein. Anal Chem 2019; 91:15469-15476. [PMID: 31743004 DOI: 10.1021/acs.analchem.9b03208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane proteins represent most current therapeutic targets, yet remain understudied due to their insolubility in aqueous solvents and generally low yields during purification and expression. Ion mobility-mass spectrometry and collision induced unfolding experiments have recently garnered attention as methods capable of directly detecting and quantifying ligand binding within a wide range of membrane protein systems. Despite prior success, ionized surfactant often creates chemical noise patterns resulting in significant challenges surrounding the study of small membrane protein-ligand complexes. Here, we present a new data analysis workflow that overcomes such chemical noise and then utilize this approach to quantify and classify ligand binding associated with the 36 kDa dimer of translocator protein (TSPO). Following our denoising protocol, we detect separate gas-phase unfolding signatures for lipid and protoporphyrin TSPO binders, molecular classes that likely interact with separate regions of the protein surface. Further, a detailed classification analysis reveals that lipid alkyl chain saturation levels can be detected within our gas-phase protein unfolding data. We combine these data and classification schemes with mass spectra acquired directly from liquid-liquid extracts to propose an identity for a previously unknown endogenous TSPO ligand.
Collapse
Affiliation(s)
- Sarah M Fantin
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Kristine F Parson
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Shuai Niu
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Daniel A Polasky
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sugyan M Dixit
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Shelagh M Ferguson-Miller
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Brandon T Ruotolo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
9
|
Urner LH, Maier YB, Haag R, Pagel K. Exploring the Potential of Dendritic Oligoglycerol Detergents for Protein Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:174-180. [PMID: 30276626 PMCID: PMC6318253 DOI: 10.1007/s13361-018-2063-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The ability to design detergents that are suitable for protein analysis by mass spectrometry (MS) represents an on-going challenge in the field of native MS. Desirable detergent characteristics include charge-reducing properties and low gas-phase stabilities of complexes formed with proteins. In this work, the gas-phase properties of oligoglycerol detergents (OGDs) are optimized by fine tuning of their molecular structure. Furthermore, a tandem mass spectrometry (MS/MS) approach is presented that estimates the gas-phase properties of detergents simply by studying the dissociation behaviour of protein-detergent complexes (PDCs) formed with the soluble protein β-lactoglobulin (BLG). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Leonhard H Urner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Yasmine B Maier
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany.
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
10
|
Bongiorno D, Calabrese V, Ceraulo L, Indelicato S, Turco Liveri V. Entrapment of amino acids in gas phase surfactant assemblies: The case of tryptophan confined in positively charged (1R,2S)-dodecyl (2-hydroxy-1-methyl-2-phenylethyl) dimethylammonium bromide aggregates. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:681-688. [PMID: 28732132 DOI: 10.1002/jms.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The ability of positively charged aggregates of the surfactant (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) to incorporate D-tryptophan or L-tryptophan in the gas phase has been investigated by electrospray ion mobility mass spectrometry (ESI-IM-MS). Strongly impacted by the pH of the electrosprayed solutions, both protonated (T+ ) and deprotonated (T- ) tryptophan are effectively included into the aggregates, whereas, tryptophan in zwitterionic (T0 ) form is practically absent in singly charged DMEB aggregates but can be found in multiply charged ones. The ability to incorporate tryptophan increases with the aggregation number and charge state of aggregates. More than 1 tryptophan species can be entrapped (aggregates including up to 5 tryptophan are observed). Collision induced dissociation experiments performed on the positively singly charged DMEB hexamer containing 1 T- show that at low collision energies the loss of a DMEB molecule is preferred with respect to the loss of the DMEB cation plus T- species which, in turn, is preferred with respect to the loss of mere tryptophan, suggesting that the deprotonated amino acid is preferentially located in proximity of a DMEB head group and with the ionic moiety pointing towards the core of the aggregate. The analysis of the collision cross sections (CCS) of bare and tryptophan containing aggregates allowed evaluating the contributions of tryptophan and bromide ions to the total aggregate CCS. No significant discrimination between D-tryptophan and L-tryptophan by the chiral DMEB aggregates has been evidenced by mass spectra data, CID experiments, and CCS values.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, via Archirafi 26, 90123, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
11
|
Ishii K, Zhou M, Uchiyama S. Native mass spectrometry for understanding dynamic protein complex. Biochim Biophys Acta Gen Subj 2017; 1862:275-286. [PMID: 28965879 DOI: 10.1016/j.bbagen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Bongiorno D, Indelicato S, Ceraulo L, Perricone U, Calabrese V, Almerico AM, Turco Liveri V, Tutone M. Micelles of the chiral biocompatible surfactant (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB): molecular dynamics and fragmentation patterns in the gas phase. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1158-1168. [PMID: 28444908 DOI: 10.1002/rcm.7888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/07/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE The study of self-assembly processes of surfactant molecules in the gas phase is of great interest for several theoretical and technological reasons related to their possible exploitation as drug carriers, protein shields and cleaning agents in the gas phase. METHODS The stability and fragmentation patterns of singly and multiply charged (either positively or negatively) aggregates of the surfactant (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethyl ammonium bromide (DMEB) in the gas phase have been studied by ion mobility mass spectrometry and tandem mass spectrometry. Molecular dynamics (MD) simulations of positively and negatively singly and multiply charged DMEB aggregates have been performed to obtain structural and energetics information. Finally, in order to ascertain some clues on the DMEB growth mechanism, quantum mechanics calculations were carried out. RESULTS It has been evidenced that positively and negatively singly charged aggregates at low collision energy decompose preferentially by loss of only one DMEB molecule. Increasing the collision energy, the loss of neutrals becomes increasingly abundant. Multiply charged DMEB aggregates are unstable and decompose forming singly charged monomers or dimers. MD simulations show reverse micelle-like structures with polar heads somewhat segregated into the aggregate interior. Finally, a good correlation between experimental and calculated collisional cross sections (CCS) was found. CONCLUSIONS The fragmentation pathways of DMEB charged species evidenced for singly charged aggregates exhibit features similar to that of other detergent aggregates, but multiply charged aggregates showed a system-specific behavior. QM calculations on the optimized structures (21+ , 31+ , 11- and 21- ) indicate that the most determinant interactions are due to an OH---Br hydrogen bonding that is also involved in the link between monomeric DMEB units. The MD models gave CCS values in good agreement with experimental ones, evidenced by a less strict reverse micelle-like structure and a reasonably spread bromine anion distribution Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David Bongiorno
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| | - Serena Indelicato
- Università degli studi di Palermo, Dipartimento di Scienze della Terra e del Mare, (DISTEM), via Archirafi 26, 90123, Palermo, Italy
| | - Leopoldo Ceraulo
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| | - Ugo Perricone
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| | - Valentina Calabrese
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| | - Anna Maria Almerico
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| | - Vincenzo Turco Liveri
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| | - Marco Tutone
- Università degli studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
13
|
Zilkenat S, Grin I, Wagner S. Stoichiometry determination of macromolecular membrane protein complexes. Biol Chem 2017; 398:155-164. [PMID: 27664774 DOI: 10.1515/hsz-2016-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Gaining knowledge of the structural makeup of protein complexes is critical to advance our understanding of their formation and functions. This task is particularly challenging for transmembrane protein complexes, and grows ever more imposing with increasing size of these large macromolecular structures. The last 10 years have seen a steep increase in solved high-resolution membrane protein structures due to both new and improved methods in the field, but still most structures of large transmembrane complexes remain elusive. An important first step towards the structure elucidation of these difficult complexes is the determination of their stoichiometry, which we discuss in this review. Knowing the stoichiometry of complex components not only answers unresolved structural questions and is relevant for understanding the molecular mechanisms of macromolecular machines but also supports further attempts to obtain high-resolution structures by providing constraints for structure calculations.
Collapse
|
14
|
Larriba-Andaluz C, Fernández-García J, Ewing MA, Hogan CJ, Clemmer DE. Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments. Phys Chem Chem Phys 2016; 17:15019-29. [PMID: 25988389 DOI: 10.1039/c5cp01017a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A pending issue in linking ion mobility measurements to ion structures is that the collisional cross section (CCS, the measured structural parameter in ion mobility spectrometry) of an ion is strongly dependent upon the manner in which gas molecules effectively impinge on and are reemitted from ion surfaces (when modeling ions as fixed structures). To directly examine the gas molecule impingement and reemission processes and their influence, we measured the CCSs of positively charged ions of room temperature ionic liquids 1-ethyl-3-methylimidazolium dicyanamide (EMIM-N(CN)2) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) in N2 using a differential mobility analyzer-mass spectrometer (DMA-MS) and in He using a drift tube mobility spectrometer-mass spectrometer (DT-MS). Cluster ions, generated via electrosprays, took the form (AB)N(A)z, spanning up to z = 20 and with masses greater than 100 kDa. As confirmed by molecular dynamics simulations, at the measurement temperature (∼300 K), such cluster ions took on globular conformations in the gas phase. Based upon their attained charge levels, in neither He nor N2 did the ion-induced dipole potential significantly influence gas molecule-ion collisions. Therefore, differences in the CCSs measured for ions in the two different gases could be primarily attributed to differences in gas molecule behavior upon collision with ions. Overwhelmingly, by comparison of predicted CCSs with selected input impingement-reemission laws to measurements, we find that in N2, gas molecules collide with ions diffusely--they are reemitted at random angles relative to the gas molecule incoming angle--and inelastically. Meanwhile, in He, gas molecules collide specularly and elastically and are emitted from ion surfaces at determined angles. The results can be rationalized on the basis of the momentum transferred per collision; in the case of He, individual gas molecule collisions minimally perturb the atoms within a cluster ion (internal motion), while in the case of N2, individual gas molecules have sufficiently large momentum to alter the internal motion in organic ions.
Collapse
Affiliation(s)
- Carlos Larriba-Andaluz
- University of Minnesota, Mechanical Engineering Department, 111 Church st. RM 2101A, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
15
|
Indelicato S, Bongiorno D, Ceraulo L, Calabrese V, Piazzese D, Napoli A, Mazzotti F, Avellone G, Di Stefano V, Turco Liveri V. Electrospray ion mobility mass spectrometry of positively and negatively charged (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide aggregates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:230-238. [PMID: 26661990 DOI: 10.1002/rcm.7422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Self-assembling processes of surfactants in the gas phase constitute a developing research field of interest since they allow information to be gained on the peculiar structural organization of these aggregates, on their ability to incorporate from small molecules up to proteins and on their possible use as carriers of drugs in the gas phase or as cleaning agents and exotic reaction media. METHODS The mass spectra of charged aggregates of the chiral surfactant (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) in the gas phase have been recorded using a Synapt G2-Si mass spectrometer in the positive and negative ion mode. For comparison purposes, the mass spectra of sodium bis(2-ethylhexyl)sulfosuccinate and sodium octane sulfonate aggregates have also been recorded under the same experimental conditions. The collisional cross sections of positively and negatively charged DMEB aggregates were obtained through an appropriate calibration of the measured drift times. RESULTS For all the surfactants investigated, it has been found that there is a lowest and a highest limit of the aggregation number at each charge state: no aggregates are found outside this range. Moreover, the occurrence at each aggregation number and extra charge of a unique value of drift time points toward aggregates whose conformations do not show discernible shape change in the experiment time scale. The analysis of the collisional cross sections emphasizes that the DMEB aggregates are nearly spherical clusters somewhat affected by the charge state and constituted by interlaced polar and apolar domains. CONCLUSIONS The analysis of all the experimental findings indicates that in the gas phase DMEB forms supramolecular aggregates characterized by an internal organization whose stability is triggered by the charge state. The comparison of the behavior of DMEB aggregates with that of sodium bis(2-ethylhexyl)sulfosuccinate and sodium octane sulfonate aggregates allows us to highlight the effects on the aggregate organization in gas phase due to nature of the head group and alkyl chain steric hindrance.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128, Palermo, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende, (CS)-Italy
| | - Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende, (CS)-Italy
| | - Giuseppe Avellone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| |
Collapse
|
16
|
Bongiorno D, Ceraulo L, Indelicato S, Turco Liveri V, Indelicato S. Charged supramolecular assemblies of surfactant molecules in gas phase. MASS SPECTROMETRY REVIEWS 2016; 35:170-187. [PMID: 26113001 DOI: 10.1002/mas.21476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to furnish a vivid picture of the structural and dynamic features of these aggregates. Thus, in this review, we will focus on the most important achievements gained in recent years by both these investigative tools.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Sergio Indelicato
- Core Laboratory of Quality control and Chemical Risk, Policlinico P. Giaccone, Università di Palermo, via del Vespro 129, I-90127, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| |
Collapse
|
17
|
Konijnenberg A, van Dyck JF, Kailing LL, Sobott F. Extending native mass spectrometry approaches to integral membrane proteins. Biol Chem 2015; 396:991-1002. [DOI: 10.1515/hsz-2015-0136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022]
Abstract
Abstract
Recent developments in native mass spectrometry and ion mobility have made it possible to analyze the composition and structure of membrane protein complexes in the gas-phase. In this short review we discuss the experimental strategies that allow to elucidate aspects of the dynamic structure of these important drug targets, such as the structural effects of lipid binding or detection of co-populated conformational and assembly states during gating on an ion channel. As native mass spectrometry relies on nano-electrospray of natively reconstituted proteins, a number of commonly used lipid- and detergent-based reconstitution systems have been evaluated for their compatibility with this approach, and parameters for the release of intact, native-like folded membrane proteins studied in the gas-phase. The strategy thus developed can be employed for the investigation of the subunit composition and stoichiometry, oligomeric state, conformational changes, and lipid and drug binding of integral membrane proteins.
Collapse
|
18
|
Borysik AJ. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations. Anal Chem 2015; 87:8970-6. [PMID: 26266526 DOI: 10.1021/acs.analchem.5b02172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.
Collapse
Affiliation(s)
- Antoni J Borysik
- Department of Chemistry, King's College London , Britannia House, London SE1 1DB, United Kingdom
| |
Collapse
|
19
|
Bechara C, Robinson CV. Different Modes of Lipid Binding to Membrane Proteins Probed by Mass Spectrometry. J Am Chem Soc 2015; 137:5240-7. [DOI: 10.1021/jacs.5b00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chérine Bechara
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
20
|
Longhi G, Fornili SL, Turco Liveri V. Structural organization of surfactant aggregates in vacuo: a molecular dynamics and well-tempered metadynamics study. Phys Chem Chem Phys 2015; 17:16512-8. [DOI: 10.1039/c5cp01926e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MD and well tempered metadynamics indicate that the structural organization of large surfactant aggregates in the gas phase and in the condensed apolar phase are different.
Collapse
Affiliation(s)
- Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale
- Università di Brescia
- 25123 Brescia
- Italy
- CNISM
| | - Sandro L. Fornili
- Dipartimento di Informatica
- Università di Milano
- 26013 Crema (CR)
- Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche
- Chimiche e Farmaceutiche “STEBICEF”
- Università degli Studi di Palermo
- Viale delle Scienze I
- 90128 Palermo
| |
Collapse
|
21
|
Calabrese AN, Watkinson TG, Henderson PJF, Radford SE, Ashcroft AE. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 2014; 87:1118-26. [PMID: 25495802 PMCID: PMC4636139 DOI: 10.1021/ac5037022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology and ‡School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Indelicato S, Bongiorno D, Turco Liveri V, Mele A, Panzeri W, Castiglione F, Ceraulo L. Self-assembly and intra-cluster reactions of erbium and ytterbium bis(2-ethylhexyl)sulfosuccinates in the gas phase. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2523-2530. [PMID: 25366399 DOI: 10.1002/rcm.7045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE The study of surfactant organization in vacuum allows surfactant-surfactant interaction to be unveiled in the absence of surrounding solvent molecules. Knowledge on their chemical-physical properties may also lead to the definition of more efficient gas-phase carriers, air-cleaning agents and nanoreactors. In addition, the presence of lanthanide-group ions adds unique photochemical properties to surfactants. METHODS The structural features, stability and fragmentation patterns of charged aggregates formed by lanthanide-functionalized surfactants, ytterbium and erbium bis(2-ethylhexyl)sulfosuccinate ((AOT)3Yb and (AOT)3Er), have been investigated by electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (ESI-MS/MS) and energy-resolved mass spectrometry (ER-MS). RESULTS The experimental data indicate that the self-assembling of (AOT)3Yb and (AOT)3Er in the gas phase leads to the formation of a wide range of singly charged aggregates differing in their aggregation number, relative abundance and stability. In addition to specific effects on aggregate organization due to the presence of lanthanide ions, ER-MS experiments show rearrangements and in-cage reactions activated by collision, eventually including alkyl chain intra-cluster migration. CONCLUSIONS Analysis of the experimental findings suggests that the observed chemical transformations occur within an organized supramolecular assembly rather than in a random association of components. The fragmentation pathways leading to the neutral loss of a fragment of nominal mass 534 Da, assigned as C28 H54 O7 S, from some positively charged aggregates has been rationalized.
Collapse
Affiliation(s)
- Serena Indelicato
- Department STEBICEF, University of Palermo, Via Archirafi n.32, I-90123, Palermo, Italy; CGA-UniNetLab, University of Palermo, Via F. Marini n.14, I-90128, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Ma X, Lai LB, Lai SM, Tanimoto A, Foster MP, Wysocki VH, Gopalan V. Uncovering the Stoichiometry of Pyrococcus furiosusRNase P, a Multi-Subunit Catalytic Ribonucleoprotein Complex, by Surface-Induced Dissociation and Ion Mobility Mass Spectrometry. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Ma X, Lai LB, Lai SM, Tanimoto A, Foster MP, Wysocki VH, Gopalan V. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry. Angew Chem Int Ed Engl 2014; 53:11483-7. [PMID: 25195671 DOI: 10.1002/anie.201405362] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/16/2014] [Indexed: 01/02/2023]
Abstract
We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.
Collapse
Affiliation(s)
- Xin Ma
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210 (USA)
| | | | | | | | | | | | | |
Collapse
|
25
|
Twenty years of gas phase structural biology. Structure 2014; 21:1541-50. [PMID: 24010713 DOI: 10.1016/j.str.2013.08.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023]
Abstract
Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20(th) anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology.
Collapse
|
26
|
Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 2014; 6:281-94. [DOI: 10.1038/nchem.1889] [Citation(s) in RCA: 655] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/11/2014] [Indexed: 02/07/2023]
|
27
|
Bongiorno D, Indelicato S, Giorgi G, Scarpella S, Liveri VT, Ceraulo L. Electrospray ion mobility mass spectrometry of positively charged sodium bis[2-ethythexyl)sulfosuccinate aggregates. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:169-175. [PMID: 24895777 DOI: 10.1255/ejms.1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Collision cross-sections (CCS) of positively singly and multiply charged aggregates of the surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) in the gas phase have been measured by quadrupole ion mobility time-of-flight mass spectrometry. Calibration of the observed drift times to the CCS of the AOTNa non-covalent aggregates was achieved by collecting, under the same experimental conditions, the drift times of a range of singly and multiply charged polyalanine peptides whose CCS had been obtained by conventional ion mobility spectrometry. Together with an obvious increase of the aggregate cross-section with the aggregation number, it was found that the aggregate cross-section increases with the charge state due to the sodium counterions steric effect and the augmented electrostatic repulsion. This finding is consistent with the result of a previous molecular dynamics study on positively charged AOTNa aggregates in the gas phase showing that, by increasing the charge state, the aggregates become progressively more oblate; implying a rise of their CCS. Moreover, the occurrence at each aggregation number and extra charge of a unique value of cross section points toward aggregates whose conformations do not show discernible shape change in the experiment time scale.
Collapse
|
28
|
Ouyang H, Larriba-Andaluz C, Oberreit DR, Hogan CJ. The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1833-1847. [PMID: 24026975 DOI: 10.1007/s13361-013-0724-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
To date, most collision cross section (CCS) predictions have invoked gas molecule impingement-reemission rules in which specular and elastic scattering of spherical gas molecules from rigid polyatomic surfaces are assumed. Although such predictions have been shown to agree well with CCSs measured in helium bath gas, a number of studies reveal that these predictions do not agree with CCSs for ions in diatomic gases, namely, air and molecular nitrogen. To further examine the validity of specular-elastic versus diffuse-inelastic scattering models, we measured the CCSs of positively charged metal iodide cluster ions of the form [MI]n[M(+)]z, where M = Na, K, Rb, or Cs, n = 1 - 25, and z = 1 - 2. Measurements were made in air via differential mobility analysis mass spectrometry (DMA-MS). The CCSs measured are compared with specular-elastic as well as diffuse-inelastic scattering model predictions with candidate ion structures determined from density functional theory. It is found that predictions from diffuse-inelastic collision models agree well (within 5%) with measurements from sodium iodide cluster ions, while specular-elastic collision model predictions are in better agreement with cesium iodide cluster ion measurements. The agreement with diffuse-inelastic and specular-elastic predictions decreases and increases, respectively, with increasing cation mass. However, even when diffuse-inelastic cluster ion predictions disagree with measurements, the disagreement is of a near-constant factor for all ions, indicating that a simple linear rescaling collapses predictions to measurements. Conversely, rescaling cannot be used to collapse specular-elastic predictions to measurements; hence, although the precise impingement reemission rules remain ambiguous, they are not specular-elastic.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | | | |
Collapse
|
29
|
Santambrogio C, Sperandeo P, Villa R, Sobott F, Polissi A, Grandori R. LptA assembles into rod-like oligomers involving disorder-to-order transitions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1593-1602. [PMID: 23897621 DOI: 10.1007/s13361-013-0687-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
LptA is a periplasmic protein involved in the transport of lipopolysaccharide (LPS) from the inner membrane (IM) to the outer membrane (OM) of Gram-negative bacteria. Growing evidence supports a model in which LptA assembles into oligomers, forming a physical bridge connecting IM and OM. This work investigates assembly and architecture of LptA oligomers. Circular dichroism and "native" electrospray-ionization ion-mobility mass spectrometry (ESI-IM-MS) are employed to test concentration dependence of LptA structural features and to analyze the morphology of higher-order aggregates. The results show that LptA progressively assembles into rod-like oligomers without fixed stoichiometry, and grows by an n + 1 mechanism up to at least the pentamer. The oligomerization process induces disorder-to-order transitions in the polypeptide chain. Comparison with crystallographic and computational data suggests that these conformational changes likely involve short disordered regions at the N- and C-termini of monomeric LptA. The protein response to thermal denaturation displays strong concentration dependence, indicating that oligomerization increases protein stability. LptA conformational stability can also be enhanced by in vitro LPS binding. The genesis of these fibrillar structures could be relevant for the correct transport of LPS across the bacterial periplasm.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Borysik AJ, Hewitt DJ, Robinson CV. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J Am Chem Soc 2013; 135:6078-83. [PMID: 23521660 DOI: 10.1021/ja401736v] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have suggested that detergents can protect the structure of membrane proteins during their transition from solution to the gas-phase. Here we provide mechanistic insights into this process by interrogating the structures of membrane protein-detergent assemblies in the gas-phase using ion mobility mass spectrometry. We show a clear correlation between the population of native-like protein conformations and the degree of detergent attachment to the protein in the gas-phase. Interrogation of these protein-detergent assemblies, by tandem mass spectrometry, enables us to define the mechanism by which detergents preserve native-like protein conformations in a solvent free environment. We show that the release of detergent is more central to the survival of these conformations than the physical presence of detergent bound to the protein. We propose that detergent release competes with structural collapse for the internal energy of the ion and permits the observation of transient native-like membrane protein conformations that are otherwise lost to structural rearrangement in the gas-phase.
Collapse
Affiliation(s)
- Antoni J Borysik
- Chemistry Research Laboratory, South Parks Road, University of Oxford, Oxford OX1 3QY, United Kingdom
| | | | | |
Collapse
|
31
|
Larriba C, Hogan CJ. Ion Mobilities in Diatomic Gases: Measurement versus Prediction with Non-Specular Scattering Models. J Phys Chem A 2013; 117:3887-901. [DOI: 10.1021/jp312432z] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Carlos Larriba
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455,
United States
| |
Collapse
|
32
|
Coupling electrospray corona discharge, charge reduction and ion mobility mass spectrometry: From peptides to large macromolecular protein complexes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12127-013-0120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|