1
|
Tang P, Zhang J, Li X, Yang F, Zhao Q, Ma J, Hu Z, Sun H, Wang XB, Sun Z, Yang Y. Cryogenic Photoelectron Spectroscopic and Theoretical Study of the Electronic and Geometric Structures of Undercoordinated Osmium Chloride Anions OsCl n- ( n = 3-5). J Phys Chem A 2024; 128:5500-5507. [PMID: 38968614 DOI: 10.1021/acs.jpca.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A series of anionic transition metal halides, OsCln- (n = 3-5), have been investigated using a newly developed, home-constructed, cryogenic anion cluster photoelectron spectroscopy. The target anionic species are generated through collision-induced dissociation in a two-stage ion funnel. The measured vertical detachment energies (VDEs) are 3.48, 4.54, and 4.81 eV for n = 3, 4, and 5, respectively. Density functional theory calculations at the B3LYP-D3(BJ)//aug-cc-pVTZ(-pp) level predict the lowest energy structures of the atomic form of OsCln- (n = 3-5) to be a quintet triangle, quartet square, and quintet square-based pyramid, respectively. The CCSD(T)-calculated VDEs and corresponding adiabatic detachment energies agree well with our experimental measurements. Analysis of the corresponding frontier molecular orbitals and charge density differences suggests that the d-orbitals of the transition metal Os play a primary role in the single-photon detachment processes, and the detached electrons originating from different molecular orbitals are distinguishable.
Collapse
Affiliation(s)
- Peng Tang
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Jian Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xueying Li
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Fan Yang
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Qixu Zhao
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Junyang Ma
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, and School of Physics and Electron Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Lan G, Song Q, Luan Y, Cheng Y. Targeted strategies to deliver boron agents across the blood-brain barrier for neutron capture therapy of brain tumors. Int J Pharm 2024; 650:123747. [PMID: 38151104 DOI: 10.1016/j.ijpharm.2023.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Boron neutron capture therapy (BNCT), as an innovative radiotherapy technology, has demonstrated remarkable outcomes when compared to conventional treatments in the management of recurrent and refractory brain tumors. However, in BNCT of brain tumors, the blood-brain barrier is a main stumbling block for restricting the transport of boron drugs to brain tumors, while the tumor targeting and retention of boron drugs also affect the BNCT effect. This review focuses on the recent development of strategies for delivering boron drugs crossing the blood-brain barrier and targeting brain tumors, providing new insights for the development of efficient boron drugs for the treatment of brain tumors.
Collapse
Affiliation(s)
- Gongde Lan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qingxu Song
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Dietz M, Arrowsmith M, Endres L, Paprocki V, Engels B, Braunschweig H. Synthesis and Reactivity of Highly Electron-Rich Zerovalent Group 10 Diborabenzene Pogo-Stick Complexes. J Am Chem Soc 2023; 145:22222-22231. [PMID: 37782897 DOI: 10.1021/jacs.3c08323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A cyclic alkyl(amino)carbene (CAAC)-stabilized 1,4-diborabenzene (DBB, 1) reacts with the group 10 precursor [Ni(CO)4] to yield the DBB pogo-stick complex [(η6-DBB)Ni(CO)] (2) as a dark-green crystalline solid. The IR-spectroscopic and X-ray crystallographic data of 2 highlight the strong π-donor properties of the DBB ligand. The reaction of 1 with [M(nbe)2] (M = Pd, Pt; nbe = norbornene) yields the unique zerovalent heavier group 10 arene pogo-stick complexes [(η6-DBB)M(nbe)] (3-M), isolated as dark-purple and black crystalline solids, respectively. 3-Pd and 3-Pt show strong near-IR (NIR) absorptions at 835 and 904 nm, respectively. Time-dependent density functional theory (TD-DFT) calculations show that these result from the S0→S1 excitation, which corresponds to a transfer of electron density from a metal d orbital aligned with the z direction (dxz or dyz) to a d orbital located in the xy plane (dxy or dx2-y2), with the redshift for 3-Pt resulting from the higher spin-orbit coupling (SOC). In complex 2, electron donation from the nickel center into the carbonyl 2π* orbital destabilizes the DBB···Ni interaction, resulting in an absorption at a higher energy. Complexes 2 and 3-M react with [Fe(CO)5] to yield the doubly CO-bridged M(0)→Fe(0) (M = Ni, Pd, Pt) metal-only Lewis pairs (MOLPs) 4-M as black (M = Ni, Pt) and dark-turquoise (M = Pd) crystalline solids. Furthermore, 3-Pt undergoes oxidative Sn-H addition with Ph3SnH to yield the corresponding Pt(II) stannyl hydride, [(η6-DBB)PtH(SnPh3)] (5).
Collapse
Affiliation(s)
- Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Valerie Paprocki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
4
|
Bashir M, Mantoo IA, Arjmand F, Tabassum S, Yousuf I. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord Chem Rev 2023; 487:215169. [DOI: 10.1016/j.ccr.2023.215169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
5
|
Hu G, Lv M, Guo B, Huang Y, Su Z, Qian Y, Xue X, Liu HK. Immunostimulation with chemotherapy of a ruthenium-arene complex via blockading CD47 signal in chronic myelogenous leukemia cells. J Inorg Biochem 2023; 243:112195. [PMID: 36996696 DOI: 10.1016/j.jinorgbio.2023.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Combination of novel immunomodulation and traditional chemotherapy has become a new tendency in cancer treatment. Increasing evidence suggests that blocking the "don't eat me" signal transmitted by the CD47 can promote the phagocytic ability of macrophages to cancer cells, which might be promising for improved cancer chemoimmunotherapy. In this work, we conjugated CPI-alkyne modified by Devimistat (CPI-613) with ruthenium-arene azide precursor Ru-N3 by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to construct Ru complex CPI-Ru. CPI-Ru exhibited satisfactory cytotoxicity towards the K562 cells while nearly non-toxic towards the normal HLF cells. CPI-Ru has been demonstrated to cause severe damage to mitochondria and DNA, ultimately inducing cancer cell death through the autophagic pathway. Moreover, CPI-Ru could significantly downregulate the expression of CD47 on the surface of K562 accompanied by the enhanced immune response by targeting the blockade of CD47. This work provides a new strategy for utilizing metal-based anticancer agents to block CD47 signal to achieve chemoimmunotherapy in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Guojing Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengdi Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Binglian Guo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuanlei Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Exploiting Blood Transport Proteins as Carborane Supramolecular Vehicles for Boron Neutron Capture Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111770. [PMID: 37299673 DOI: 10.3390/nano13111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Carboranes are promising agents for applications in boron neutron capture therapy (BNCT), but their hydrophobicity prevents their use in physiological environments. Here, by using reverse docking and molecular dynamics (MD) simulations, we identified blood transport proteins as candidate carriers of carboranes. Hemoglobin showed a higher binding affinity for carboranes than transthyretin and human serum albumin (HSA), which are well-known carborane-binding proteins. Myoglobin, ceruloplasmin, sex hormone-binding protein, lactoferrin, plasma retinol-binding protein, thyroxine-binding globulin, corticosteroid-binding globulin and afamin have a binding affinity comparable to transthyretin/HSA. The carborane@protein complexes are stable in water and characterized by favorable binding energy. The driving force in the carborane binding is represented by the formation of hydrophobic interactions with aliphatic amino acids and BH-π and CH-π interactions with aromatic amino acids. Dihydrogen bonds, classical hydrogen bonds and surfactant-like interactions also assist the binding. These results (i) identify the plasma proteins responsible for binding carborane upon their intravenous administration, and (ii) suggest an innovative formulation for carboranes based on the formation of a carborane@protein complex prior to the administration.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
7
|
Cytotoxicity Evaluation of Unmodified Paddlewheel Dirhodium(II,II)-Acetate/-Formamidinate Complexes and Their Axially Modified Low-Valent Metallodendrimers. Molecules 2023; 28:molecules28062671. [PMID: 36985643 PMCID: PMC10055960 DOI: 10.3390/molecules28062671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Two diphenyl formamidine ligands, four dirhodium(II,II) complexes, and three axially modified low-valent dirhodium(II,II) metallodendrimers were synthesized and evaluated as anticancer agents against the A2780, A2780cis, and OVCAR-3 human ovarian cancer cell lines. The dirhodium(II,II) complexes show moderate cytotoxic activity in the tested tumor cell lines, with acetate and methyl-substituted formamidinate compounds displaying increased cytotoxicity that is relative to cisplatin in the A2780cis cisplatin resistant cell line. Additionally, methyl- and fluoro-substituted formamidinate complexes showed comparable and increased cytotoxic activity in the OVCAR-3 cell line when compared to cisplatin. The low-valent metallodendrimers show some activity, but a general decrease in cytotoxicity was observed when compared to the precursor complexes in all but one case, which is where the more active acetate-derived metallodendrimer showed a lower IC50 value in the OVCAR-3 cell line in comparison with the dirhodium(II,II) tetraacetate.
Collapse
|
8
|
Sun F, Tan S, Cao HJ, Lu CS, Tu D, Poater J, Solà M, Yan H. Facile Construction of New Hybrid Conjugation via Boron Cage Extension. J Am Chem Soc 2023; 145:3577-3587. [PMID: 36744315 DOI: 10.1021/jacs.2c12526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.
Collapse
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. Int J Mol Sci 2023; 24:ijms24032332. [PMID: 36768659 PMCID: PMC9917151 DOI: 10.3390/ijms24032332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.
Collapse
|
10
|
Gawrońska M, Kowalik M, Duch J, Kazimierczuk K, Makowski M. Sulfonamides with hydroxyphenyl moiety: Synthesis, structure, physicochemical properties, and ability to form complexes with Rh(III) ion. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Singh T, Kishan R, Kumar P. Solution behavior of half sandwich ruthenium(II) complexes ligated by sym N,N'-diarylthiourea: Structural aspects and temperature dependent NMR. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Xu R, Wu Y, Liu Z, Liu J, Liu X. Lysosomal Targeted Cyclometallic Iridium(Ⅲ) Salicylaldehyde-Coumarin Schiff Base Complexes and Anticancer Application. Front Chem 2022; 10:906954. [PMID: 35620650 PMCID: PMC9127163 DOI: 10.3389/fchem.2022.906954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Natural coumarin derivatives and cyclometallic iridium (Ⅲ) (IrⅢ) complexes have attracted much attention in the field of anticancer. In this study, six coumarin-modified cyclometallic IrⅢ salicylaldehyde Schiff base complexes ([(ppy)2Ir(O^N)]/[(ppy-CHO)2Ir(O^N)]) were designed and synthesized. Compared with coumarin and IrⅢ complex monomers, target complexes exhibited favorable cytotoxic activity toward A549 and BEAS-2B cells. These complexes could induce extensive apoptosis of A549 cell (late apoptosis), which was represented by the disturbance of cell cycle (G1-phase) and the accumulation of intracellular reactive oxygen species, exhibiting an anticancer mechanism of oxidation. With the help of suitable fluorescence of these complexes, no conflict with the probes, confocal detection confirmed that complexes showed an energy-dependent cellular uptake mechanism and triggered lysosome-mediated apoptosis in A549 cell line. Above all, our findings reveal the design of a lysosomal targeting cyclometallic IrⅢ Schiff base complexes and provide a new idea for the design of integrated drugs for diagnosis and treatment.
Collapse
Affiliation(s)
- Ruixi Xu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- *Correspondence: Xicheng Liu, ; Zhe Liu,
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- *Correspondence: Xicheng Liu, ; Zhe Liu,
| |
Collapse
|
13
|
Cao HJ, Wei X, Sun F, Zhang X, Lu C, Yan H. Metal-catalyzed B-H acylmethylation of pyridylcarboranes: access to carborane-fused indoliziniums and quinoliziniums. Chem Sci 2021; 12:15563-15571. [PMID: 35003585 PMCID: PMC8654026 DOI: 10.1039/d1sc05296a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-catalyzed mono-acylmethylation of pyridylcarboranes has been realized using α-carbonyl sulfoxonium ylides as a coupling partner. The reaction features high efficiency, excellent site-selectivity and good functional group tolerance. In the presence of pyridyl and enolizable acylmethyl groups, a post-coordination mode has been proposed and validated by in situ high resolution mass spectroscopy (HRMS) to rationalize the unique mono-substitution. Post-functionalization at the newly incorporated alkyl site provides additional utility of this method, including the construction of carborane-fused indoliziniums and quinoliziniums. We believe that these mono-alkylated carboranes, together with their post-functionalized derivatives, may find applications in luminescent materials and drug discovery in the near future.
Collapse
Affiliation(s)
- Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
14
|
Loreto D, Merlino A. The interaction of rhodium compounds with proteins: A structural overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Li H, Tang W, Ma Z. Theoretical calculation of regioselectivity and solvation effects on B-H activation of O-carborane guided by directing group. Dalton Trans 2021; 50:10291-10298. [PMID: 34254079 DOI: 10.1039/d1dt00810b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study focuses on uncovering the regioselectivity, directing group, ligand, and solvation effect in B-H activation, which was investigated by DFT calculations. The reaction mechanism was investigated in vacuum, and the advantageous reaction pathway and rate-determining step were determined. Furthermore, the solvation effects and the ligand that coordinated with Pd were studied. The results showed that in neutral and cationic pathways, the anion (OTf)/ligand (1,10-phenanthroline) exerted significant influence on the transition metal catalytic center Pd, thus affecting B-H activation at different sites. The solvation effects also exerted significant influence on the reaction. The greater the polarity of the solvent, the greater the influence on the energies of all stationary points.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Chemical Engineering and Technology (North Minzu University), State Ethnic Affairs Commission, Wenchang North Street 204th, Yinchuan 750021, P. R. China and Chemical Science and Engineering College, North Minzu University, Wenchang North Street 204th, Yinchuan 750021, P. R. China.
| | - Wanyong Tang
- Key Laboratory of Chemical Engineering and Technology (North Minzu University), State Ethnic Affairs Commission, Wenchang North Street 204th, Yinchuan 750021, P. R. China
| | - Zifan Ma
- Key Laboratory of Chemical Engineering and Technology (North Minzu University), State Ethnic Affairs Commission, Wenchang North Street 204th, Yinchuan 750021, P. R. China
| |
Collapse
|
16
|
Yuan RZ, Cui PF, Guo ST, Jin GX. Regioselective B(3)-H bond activation based on an o-carboranyl dithiocarboxylate ligand and its derivatives. Dalton Trans 2021; 50:1060-1068. [PMID: 33367445 DOI: 10.1039/d0dt03832f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we describe the synthesis of tetraphenylphosphonium o-carboranyl dithiocarboxylate (Ligand 1) and methyldithiocarboxyl-o-carborane (Ligand 2). The complexes [Cp*M(o-C2B10H11CS2)Cl] (M = Ir (3); Rh (4)) and [Cp*M(o-C2B10H11CS2)2] (M = Ir (5); Rh (6)) have been synthesized based on Ligand 1. The selective B-H bond activation of Ligand 2 has also been explored, leading to the synthesis of the B-H activated complex [Cp*Ir(o-C2B10H10CS2CH3)Cl] (7) and four of its substituted derivatives (8, 9, 10 and 11). All of these compounds have been characterised through single-crystal X-ray diffraction, NMR, IR spectroscopy and elemental analysis.
Collapse
Affiliation(s)
- Run-Ze Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
| | - Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
17
|
Xue X, Qian C, Tao Q, Dai Y, Lv M, Dong J, Su Z, Qian Y, Zhao J, Liu HK, Guo Z. Using bio-orthogonally catalyzed lethality strategy to generate mitochondria-targeting anti-tumor metallodrugs in vitro and in vivo. Natl Sci Rev 2020; 8:nwaa286. [PMID: 34691728 PMCID: PMC8433091 DOI: 10.1093/nsr/nwaa286] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
Synthetic lethality was proposed nearly a century ago by geneticists and recently applied to develop precision anti-cancer therapies. To exploit the synthetic lethality concept in the design of chemical anti-cancer agents, we developed a bio-orthogonally catalyzed lethality (BCL) strategy to generate targeting anti-tumor metallodrugs both in vitro and in vivo. Metallodrug Ru-rhein was generated from two non-toxic species Ru-N3 and rhein-alkyne via exclusive endogenous copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction without the need of an external copper catalyst. The non-toxic species Ru-arene complex Ru-N3 and rhein-alkyne were designed to perform this strategy, and the mitochondrial targeting product Ru-rhein was generated in high yield (>83%) and showed high anti-tumor efficacy in vitro. This BCL strategy achieved a remarkable tumor suppression effect on the tumor-bearing mice models. It is interesting that the combination of metal-arene complexes with rhein via CuAAC reaction could transform two non-toxic species into a targeting anti-cancer metallodrug both in vitro and in vivo, while the product Ru-rhein was non-toxic towards normal cells. This is the first example that exclusive endogenous copper was used to generate metal-based anti-cancer drugs for cancer treatment. The anti-cancer mechanism of Ru-rhein was studied and autophagy was induced by increased reactive oxygen species and mitochondrial damage. The generality of this BCL strategy was also studied and it could be extended to other metal complexes such as Os-arene and Ir-arene complexes. Compared with the traditional methods for cancer treatment, this work presented a new approach to generating targeting metallodrugs in vivo via the BCL strategy from non-toxic species in metal-based chemotherapy.
Collapse
Affiliation(s)
- Xuling Xue
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Chenggen Qian
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Tao
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yuanxin Dai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengdi Lv
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jingwen Dong
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi Su
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Ke Liu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Liu X, Shao M, Liang C, Guo J, Wang G, Yuan XA, Jing Z, Tian L, Liu Z. Preparation and Bioactivity of Iridium(III) Phenanthroline Complexes with Halide Ions and Pyridine Leaving Groups. Chembiochem 2020; 22:557-564. [PMID: 32964620 DOI: 10.1002/cbic.202000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/20/2020] [Indexed: 12/15/2022]
Abstract
A series of half-sandwich structural iridium(III) phenanthroline (Phen) complexes with halide ions (Cl- , Br- , I- ) and pyridine leaving groups ([(η5 -CpX )Ir(Phen)Z](PF6 )n , Cpx : electron-rich cyclopentadienyl group, Z: leaving group) have been prepared. Target complexes, especially the Cpxbiph (biphenyl-substituted cyclopentadienyl)-based one, showed favourable anticancer activity against human lung cancer (A549) cells; the best one (Ir8) was almost five times that of cisplatin under the same conditions. Compared with complexes involving halide ion leaving groups, the pyridine-based one did not display hydrolysis but effectively caused lysosomal damage, leading to accumulation in the cytosol, inducing an increase in the level of intracellular reactive oxygen species and apoptosis; this indicated an anticancer mechanism of oxidation. Additionally, these complexes could bind to serum albumin through a static quenching mechanism. The data highlight the potential value of half-sandwich iridium(III) phenanthroline complexes as anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Congcong Liang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Jinghang Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Guangxuan Wang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Zhihong Jing
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Phar maceutical Intermediates and, Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining Shi, Qufu, 273165, P. R. China
| |
Collapse
|
19
|
Meng T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Cyclometalated Ir(III)-8-oxychinolin complexes acting as red-colored probes for specific mitochondrial imaging and anticancer drugs. Eur J Med Chem 2020; 192:112192. [PMID: 32146374 DOI: 10.1016/j.ejmech.2020.112192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
A new class of luminescent IrIII antitumor agents, namely, [Ir(CP1)(PY1)2] (Ir-1), [Ir(CP1)(PY2)2] (Ir-2), [Ir(CP1)(PY4)2] (Ir-3), [Ir(CP2)(PY1)2] (Ir-4), [Ir(CP2)(PY4)2] (Ir-5), [Ir(CP3)(PY1)2]⋅CH3OH (Ir-6), [Ir(CP4)(PY4)2]⋅CH3OH (Ir-7), [Ir(CP5)(PY2)2] (Ir-8), [Ir(CP5)(PY4)2]⋅CH3OH (Ir-9), [Ir(CP6)(PY1)2] (Ir-10), [Ir(CP6)(PY2)2]⋅CH3OH (Ir-11), [Ir(CP6)(PY3)2] (Ir-12), [Ir(CP6)(PY41)2] (Ir-13), and [Ir(CP7)(PY1)2] (Ir-14), supported by 8-oxychinolin derivatives and 1-phenylpyrazole ligands was prepared. Compared with SK-OV-3/DDP and HL-7702 cells, the Ir-1-Ir-14 compounds exhibited half maximal inhibitory concentration (IC50) values within the high nanomolar range (50 nM-10.99 μM) in HeLa cells. In addition, Ir-1 and Ir-3 accumulated and stained the mitochondrial inner membrane of HeLa cells with high selectivity and exhibited a high antineoplastic activity in the entire cervical HeLa cells, with IC50 values of 1.22 ± 0.36 μM and 0.05 ± 0.04 μM, respectively. This phenomenon induced mitochondrial dysfunction, suggesting that these cyclometalated IrIII complexes can be potentially used in biomedical imaging and Ir(III)-based anticancer drugs. Furthermore, the high cytotoxicity activity of Ir-3 is correlated with the 1-phenylpyrazole (H-PY4) secondary ligands in the luminescent IrIII antitumor complex.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
20
|
Timofeev SV, Prikaznova EA, Zhidkova OB, Druzina AA, Starikova ZA, Suponitsky KY, Godovikov IA, Sivaev IB, Bregadze VI. Tungsten carbonyl σ-complexes with C-thioethers based on 9-Me 3N-7,8-C 2B 9H 11. NEW J CHEM 2020. [DOI: 10.1039/d0nj03212c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complexation of tungsten carbonyl moieties with C- and C,C-methylthio-derivatives of charge-compensated nido-carborane.
Collapse
Affiliation(s)
- Sergey V. Timofeev
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Elena A. Prikaznova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Zoya A. Starikova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Kyrill Y. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry
| | - Ivan A. Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Igor B. Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
21
|
Liu C, Liu X, Ge X, Wang Q, Zhang L, Shang W, Zhang Y, Yuan XA, Tian L, Liu Z, You J. Fluorescent iridium(iii) coumarin-salicylaldehyde Schiff base compounds as lysosome-targeted antitumor agents. Dalton Trans 2020; 49:5988-5998. [DOI: 10.1039/d0dt00627k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent iridium(iii) coumarin-salicylaldehyde Schiff base antitumor compounds change the ROS and ΔΨm, induce lysosomal damage, and lead to apoptosis.
Collapse
|
22
|
Biedulska M, Chylewska A, Nidzworski D. Comparative solution equilibria studies of complex formation between Ir(III) ion and antituberculosis drug analogues: Spectroscopic, potentiometric and conductometric approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Purkait K, Ruturaj, Mukherjee A, Gupta A. ATP7B Binds Ruthenium(II) p-Cymene Half-Sandwich Complexes: Role of Steric Hindrance and Ru-I Coordination in Rescuing the Sequestration. Inorg Chem 2019; 58:15659-15670. [PMID: 31657924 DOI: 10.1021/acs.inorgchem.9b02780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ruthenium(II/III) complexes are predicted to be efficient alternatives to platinum drug-resistant cancers but have never been investigated for sequestration and efflux by Cu-ATPases (ATP7A or ATP7B) overexpressed in resistant cancer cells, although a major cause of platinum drug resistance is found to be sequestration of platinum chemotherapeutic agents by thiol donors glutathione (GSH) or the Cys-X-X-Cys (CXXC) motifs in the Cu-ATPases in cytosol. Here, we show for the first time that ATP7B efficiently sequesters ruthenium(II) η6-p-cymene complexes. We present seven complexes, [RuII(η6-p-cym)(L)X](PF6) (1-7; L = L1-L3, X = Cl, Br, and I), out of which two resists deactivation by the cellular thiol, glutathione (GSH). The results show that Ru-I coordination and a moderate steric factor increase resistance to GSH and the CXXC motif. RuII-I-coordinated 3 and 7 showed resistance to sequestration by ATP7B. 3 displays highest resistance against GSH and does not trigger ATP7B trafficking in the liver cancer cell line. It escapes ATP7B-mediated sequestration and triggers apoptosis. Thus, with a suitable bidentate ligand and iodido leaving group, RuII(η6-p-cym) complexes may display strong kinetic inertness to inhibit the ATP7B detoxification pathway. Inductively coupled plasma mass spectrometry data show higher retention of 3 and 7 inside the cell with time compared to 4, supporting ATP7B-mediated sequestration.
Collapse
|
24
|
Buades AB, Arderiu VS, Maxwell L, Amoza M, Choquesillo-Lazarte D, Aliaga-Alcalde N, Viñas C, Teixidor F, Ruiz E. Slow-spin relaxation of a low-spin S = 1/2 Fe III carborane complex. Chem Commun (Camb) 2019; 55:3825-3828. [PMID: 30869690 DOI: 10.1039/c9cc01123d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this communication, we report the first evidence of slow-spin relaxation of a low-spin FeIII carborane complex. Iron S = 1/2 complexes showing such behaviour are particularly appealing as qubit candidates because they fulfil some of the main requirements to reach long decoherence times, such as moderate magnetic anisotropy, small spin, metal element mainly with zero-nuclear spin and furthermore, large versatility to introduce chemical modifications.
Collapse
Affiliation(s)
- Ana B Buades
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
26
|
|
27
|
Anticancer and antibacterial activity in vitro evaluation of iridium(III) polypyridyl complexes. J Biol Inorg Chem 2018; 24:151-169. [PMID: 30564887 DOI: 10.1007/s00775-018-1635-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Three iridium(III) polypyridyl complexes [Ir(ppy)2(PYTA)](PF6) (1) (ppy = 2-phenylpyridine), [Ir(bzq)2(PYTA)](PF6) (2) (bzq = benzo[h]quinolone) and [Ir(piq)2(PYTA)](PF6) (3) (piq = 1-phenylisoquinoline, PYTA = 2,4-diamino-6-(2'-pyridyl)-1,3,5-triazine) were synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR. The cytotoxic activity of the complexes toward cancer SGC-7901, Eca-109, A549, HeLa, HepG2, BEL-7402 and normal LO2 cell lines was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complex 3 shows the most effective on inhibiting the above cell growth among these complexes. The complexes locate at the lysosomes and mitochondria. AO/EB, Annex V and PI and comet assays indicate that the complexes can induce apoptosis in SGC-7901 cells. Intracellular ROS and mitochondrial membrane potential were examined under fluorescence microscopy. The results demonstrate that the complexes increase the intracellular ROS levels and induce a decrease in the mitochondrial membrane potential. The complexes can enhance intracellular Ca2+ concentration and cause a release of cytochrome c. The autophagy was studied using MDC staining and western blot. Complexes 1-3 can effectively inhibit the cell invasion with a concentration-dependent manner. Additionally, the complexes target tubules and inhibit the polymerization of tubules. The antimicrobial activity of the complexes against S. aureus, E. coli, Salmonella and L. monocytogenes was explored. The mechanism shows that the complexes induce apoptosis in SGC-7901 cells through ROS-mediated lysosomal-mitochondrial, targeting tubules and damage DNA pathways. Three iridium(III) complexes [Ir(N-C)2(PYTA)](PF6) (N-C = ppy, 1; bzq, 2; piq, 3) were synthesized and characterized. The anticancer activity of the complexes against SGC-7901 cells was studied by apoptosis, comet assay, autophagy, ROS, mitochondrial membrane potential, intracellular Ca2+ levels, release of cytochrome c, tubules and western blot analysis. The antibacterial activity in vitro was also assayed.
Collapse
|
28
|
Delavault A, Fronczek FR, Xu W, Srivastava RS. Ionic η5-Cp-Ruthenium (II) complexes as potential anticancer agents. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Kong D, Guo L, Tian M, Zhang S, Tian Z, Yang H, Tian Y, Liu Z. Lysosome-targeted potent half-sandwich iridium(III) α-diimine antitumor complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deliang Kong
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Lihua Guo
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Meng Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Shumiao Zhang
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhenzhen Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Huayun Yang
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Ye Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| |
Collapse
|
30
|
Guo ST, Cui PF, Gao Y, Jin GX. Regioselective B-H/C-H activation and metal-metal bond formation induced by half-sandwich metals complexes at hydroxy-substituted o-carboranes. Dalton Trans 2018; 47:13641-13646. [PMID: 30207352 DOI: 10.1039/c8dt03104e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A binuclear iridium complex, (Cp2*Ir2(CH2O)C2B10H8) (6), with a unique metal-metal bond has been synthesized and fully characterized. Importantly, this complex is constructed via selective C-H and B(3)-H bond activation on the carborane precursor. Additionally, when the proligand (2-pyridine)(o-carboranyl)methanol ligand was combined with a half-sandwich iridium complex, selective B(6)-H bond activation or metal-carbon bond formation can be induced by the use of different bases. And the rhodium complex constructed from (2-pyridine)(o-carboranyl)methanol ligand containing a metal-carbon bond has been obtained and fully characterized.
Collapse
Affiliation(s)
- Shu-Ting Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
31
|
Gao Y, Cui PF, Aznarez F, Jin GX. Iridium-Induced Regioselective B−H and C−C Activations at Azo-Substitutedo-Carboranes. Chemistry 2018; 24:10357-10363. [DOI: 10.1002/chem.201801381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Francisco Aznarez
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| |
Collapse
|
32
|
Cyclopentadienyl molybdenum(II) compounds bearing carboxylic acid functional group. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Guan R, Chen Y, Zeng L, Rees TW, Jin C, Huang J, Chen ZS, Ji L, Chao H. Oncosis-inducing cyclometalated iridium(iii) complexes. Chem Sci 2018; 9:5183-5190. [PMID: 29997872 PMCID: PMC6000986 DOI: 10.1039/c8sc01142g] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
Oncosis is a non-apoptotic form of programmed cell death (PCD), which differs from apoptosis in both morphological changes and inner pathways, and might hold the key to defeating a major obstacle in cancer therapy - drug-resistance, which is often a result of the intrinsic apoptosis resistance of tumours. However, despite the fact that the term "oncosis" was coined and used much earlier than apoptosis, little effort has been made to discover new drugs which can initiate this form of cell death, in comparison to drugs inducing apoptosis or any other type of PCD. So herein, we present the synthesis of a series of mitochondria-targeting cyclometalated Ir(iii) complexes, which activated the oncosis-specific protein porimin and calpain in cisplatin-resistant cell line A549R, and determined their cytotoxicity against a wide range of drug-resistant cancer types. To the best of our knowledge, these complexes are the very first metallo-components to induce oncosis in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule , School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
34
|
|
35
|
Kong Y, Chen F, Su Z, Qian Y, Wang FX, Wang X, Zhao J, Mao ZW, Liu HK. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands. J Inorg Biochem 2018; 182:194-199. [DOI: 10.1016/j.jinorgbio.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/09/2018] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
36
|
Zhang X, Yan H. Pd(ii)-catalyzed synthesis of bifunctionalized carboranes via cage B-H activation of 1-CH 2NH 2- o-carboranes. Chem Sci 2018; 9:3964-3969. [PMID: 29780529 PMCID: PMC5941203 DOI: 10.1039/c8sc01154k] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Aminoalkyl carboranes are anticipated to be valuable synthons toward the synthesis of bifunctionalized carboranes. However, direct cage boron derivation of these carborane derivatives has not been solved. Herein, the reversible conversion of catalytically infeasible o-carboranyl methylamines (1-CH2NH2-o-carboranes) into bidentate imines initiates Pd-mediated cage B-H activation. As a result, an amine coordinated bicyclic Pd(ii) complex (3) has been isolated and proven to be the catalytically active intermediate for highly site-selective B-H diarylation of o-carboranyl methylamines. Using glyoxylic acid as an inexpensive and commercially available transient directing reagent, a wide range of cage B(4,5)-diarylated free primary o-carboranyl methylamines were prepared in good to excellent yields with the avoidance of the pre-installation and removal of a directing group. This method provides easy access to cage boron functionalized o-carboranyl methylamines with potential for application in pharmaceuticals.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Pharmaceutical Sciences , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China .
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China .
| |
Collapse
|
37
|
Chen F, Romero-Canelón I, Soldevila-Barreda JJ, Song JI, Coverdale JPC, Clarkson GJ, Kasparkova J, Habtemariam A, Wills M, Brabec V, Sadler PJ. Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts. Organometallics 2018; 37:1555-1566. [PMID: 29887657 PMCID: PMC5989272 DOI: 10.1021/acs.organomet.8b00132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/14/2022]
Abstract
![]()
We report the synthesis
and characterization of four neutral organometallic
tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl
(Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl
(Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit
moderate antiproliferative activity toward human ovarian, lung, hepatocellular,
and breast cancer cell lines. Complex 2 in particular
exhibits a low cross-resistance with cisplatin. The complexes show
potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution
(310 K, pH 7). Substituents on the chelated ligand decreased the turnover
frequency in the order Nb > Tf > Ts > Ms. An enhancement
of antiproliferative
activity (up to 22%) was observed on coadministration with nontoxic
concentrations of sodium formate (0.5–2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not
to be the target, as little binding to calf thymus DNA or bacterial
plasmid DNA was observed. In addition, complex 2 reacts
rapidly with glutathione (GSH), which might hamper transfer hydrogenation
reactions in cells. Complex 2 induced a dose-dependent
G1 cell cycle arrest after 24 h exposure in A2780 human
ovarian cancer cells while promoting an increase in reactive oxygen
species (ROS), which is likely to contribute to its antiproliferative
activity.
Collapse
Affiliation(s)
- Feng Chen
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.,School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Ji-Inn Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - James P C Coverdale
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
38
|
Petrini A, Pettinari R, Marchetti F, Pettinari C, Therrien B, Galindo AN, Scopelliti R, Riedel T, Dyson PJ. Cytotoxic Half-Sandwich Rh(III) and Ir(III) β-Diketonates. Inorg Chem 2018; 56:13600-13612. [PMID: 29053264 DOI: 10.1021/acs.inorgchem.7b02356] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of half-sandwich pentamethylcyclopentadienyl rhodium(III) and iridium(III) complexes [Cp*M(DBM/HDB/AVB)Cl] and [Cp*M(DBM/HDB/AVB)(PTA)][SO3CF3], where Cp* = pentamethylcyclopentadienyl, the proligands DBMH = dibenzoylmethane, HDBH = o-hydroxydibenzoylmethane, AVBH = avobenzone, and PTA = 1,3,5-triaza-7-phosphaadamantane, is reported. All the complexes were characterized by IR, 1H and 13C NMR spectroscopy, electrospray ionization mass spectrometry, elemental analysis, and DFT calculations. Five of the complexes have also been characterized in the solid-state by X-ray crystallography. The cytotoxicity of the complexes has been evaluated against human ovarian A2780 and A2780cisR cell lines and, with the only exception of complexes 1 and 2 that display a negligible cytotoxicity, exhibit moderate cytotoxicity toward both cancer cell lines. However, the complexes do not show cancer cell selectivity with respect to human embryonic kidney HEK293 cells.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel , Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Agustı N Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla , Aptdo 1203, 41071 Sevilla, Spain
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Tina Riedel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Liu HK, Kostrhunova H, Habtemariam A, Kong Y, Deeth RJ, Brabec V, Sadler PJ. "Head-to-head" double-hamburger-like structure of di-ruthenated d(GpG) adducts of mono-functional Ru-arene anticancer complexes. Dalton Trans 2018; 45:18676-18688. [PMID: 27830851 DOI: 10.1039/c6dt03356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Guanine bases in DNA are targets for some Ru-arene anticancer complexes. We have investigated the structure of the novel di-ruthenated d(GpG) adduct Ru2-GpG (where Ru = {(η6-biphenyl)-Ru(en)}2+ (1')) in aqueous solution. 2D NMR results indicate that there are two conformers, supported by modeling studies. The major conformer I is a novel double-hamburger-like structure with a "head-to-head" (HH) base arrangement involving hydrophobic interactions between neighboring arene rings, the first example of a HH d(GpG) adduct constructed by weak interactions. Hence there are significant differences compared to Pt-d(GpG) adducts formed by cisplatin. There is no obviously rigid bending for the major conformer I. The minor conformer II of Ru2-GpG has a back-to-back structure, with two ruthenated guanine bases flipped away from each other. 19-23 base-pair oligodeoxyribonucleotides containing central TGGT sequences di-ruthenated by 1 show no directional bending, only slightly distorted di-ruthenated duplexes, consistent with the NMR data for conformer I. The structural differences and similarities of d(GpG) residues which are di-ruthenated or cross-linked by platination are discussed in the context of the biological activity of these metal complexes.
Collapse
Affiliation(s)
- Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Yaqiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
40
|
Tripathy SK, van der Meer M, Sahoo A, Laha P, Dehury N, Plebst S, Sarkar B, Samanta K, Patra S. A dinuclear [{(p-cym)Ru(II)Cl}2(μ-bpytz˙(-))](+) complex bridged by a radical anion: synthesis, spectroelectrochemical, EPR and theoretical investigation (bpytz = 3,6-bis(3,5-dimethylpyrazolyl)1,2,4,5-tetrazine; p-cym = p-cymene). Dalton Trans 2018; 45:12532-8. [PMID: 27435992 DOI: 10.1039/c6dt01995a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reaction of the chloro-bridged dimeric precursor [{(p-cym)Ru(II)Cl}(μ-Cl)]2 (p-cym = p-cymene) with the bridging ligand 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine (bpytz) in ethanol results in the formation of the dinuclear complex [{(p-cym)Ru(II)Cl}2(μ-bpytz˙(-))](+), [1](+). The bridging tetrazine ligand is reduced to the anion radical (bpytz˙(-)) which connects the two Ru(II) centres. Compound [1](PF6) has been characterised by an array of spectroscopic and electrochemical techniques. The radical anion character has been confirmed by magnetic moment (corresponding to one electron paramagnetism) measurement, EPR spectroscopic investigation (tetrazine radical anion based EPR spectrum) as well as density functional theory based calculations. Complex [1](+) displays two successive one electron oxidation processes at 0.66 and 1.56 V versus Ag/AgCl which can be attributed to [{(p-cym)Ru(II)C}2(μ-bpytz˙(-))](+)/[{(p-cym)Ru(II)Cl}2(μ-bpytz)](2+) and [{(p-cym)Ru(II)Cl}2(μ-bpytz)](+)/[{(p-cym)Ru(III)Cl}2(μ-bpytz)](2+) processes (couples I and II), respectively. The reduction processes (couple III-couple V), which are irreversible, likely involve the successive reduction of the bridging ligand and the metal centres together with loss of the coordinated chloride ligands. UV-Vis-NIR spectroelectrochemical investigation reveals typical tetrazine radical anion containing bands for [1](+) and a strong absorption in the visible region for the oxidized form [1](2+), which can be assigned to a Ru(II) → π* (tetrazine) MLCT transition. The assignment of spectroscopic bands was confirmed by theoretical calculations.
Collapse
Affiliation(s)
- Suman Kumar Tripathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751007, India.
| | - Margarethe van der Meer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany.
| | - Anupam Sahoo
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751007, India.
| | - Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751007, India.
| | - Niranjan Dehury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751007, India.
| | - Sebastian Plebst
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany.
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751007, India.
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751007, India.
| |
Collapse
|
41
|
Zhang J, Pitto-Barry A, Shang L, Barry NPE. Anti-inflammatory activity of electron-deficient organometallics. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170786. [PMID: 29291071 PMCID: PMC5717645 DOI: 10.1098/rsos.170786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
We report an evaluation of the cytotoxicity of a series of electron-deficient (16-electron) half-sandwich precious metal complexes of ruthenium, osmium and iridium ([Os/Ru(η6-p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1/2), [Ir(η5-pentamethylcyclopentadiene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (3), [Os/Ru(η6-p-cymene)(benzene-1,2-dithiolato)] (4/5) and [Ir(η5-pentamethylcyclopentadiene)(benzene-1,2-dithiolato)] (6)) towards RAW 264.7 murine macrophages and MRC-5 fibroblast cells. Complexes 3 and 6 were found to be non-cytotoxic. The anti-inflammatory activity of 1-6 was evaluated in both cell lines after nitric oxide (NO) production and inflammation response induced by bacterial endotoxin lipopolysaccharide (LPS) as the stimulus. All metal complexes were shown to exhibit dose-dependent inhibitory effects on LPS-induced NO production on both cell lines. Remarkably, the two iridium complexes 3 and 6 trigger a full anti-inflammatory response against LPS-induced NO production, which opens up new avenues for the development of non-cytotoxic anti-inflammatory drug candidates with distinct structures and solution chemistry from that of organic drugs, and as such with potential novel mechanisms of action.
Collapse
Affiliation(s)
| | | | - Lijun Shang
- Authors for correspondence: Lijun Shang e-mail:
| | | |
Collapse
|
42
|
Yu WB, Cui PF, Gao WX, Jin GX. B H activation of carboranes induced by late transition metals. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.07.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Synthesis, structural characterization and catalytic activity of indenyl complexes of ruthenium bearing fluorinated phosphine ligands. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Song XD, Kong X, He SF, Chen JX, Sun J, Chen BB, Zhao JW, Mao ZW. Cyclometalated iridium(III)-guanidinium complexes as mitochondria-targeted anticancer agents. Eur J Med Chem 2017; 138:246-254. [PMID: 28668477 DOI: 10.1016/j.ejmech.2017.06.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/28/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
|
45
|
Zhang X, Zheng H, Li J, Xu F, Zhao J, Yan H. Selective Catalytic B–H Arylation of o-Carboranyl Aldehydes by a Transient Directing Strategy. J Am Chem Soc 2017; 139:14511-14517. [DOI: 10.1021/jacs.7b07160] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaolei Zhang
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongning Zheng
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Li
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Fei Xu
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Zhao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Hong Yan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
46
|
Ugur I, Cinar SA, Dedeoglu B, Aviyente V, Hawthorne MF, Liu P, Liu F, Houk KN, Jiménez-Osés G. 1,3-Dipolar Cycloaddition Reactions of Low-Valent Rhodium and Iridium Complexes with Arylnitrile N-Oxides. J Org Chem 2017; 82:5096-5101. [PMID: 28414468 PMCID: PMC5679111 DOI: 10.1021/acs.joc.7b00282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions between low-valent Rh(I) and Ir(I) metal-carbonyl complexes and arylnitrile oxides possess the electronic and structural features of 1,3-dipolar cycloadditions. Density functional theory (DFT) calculations on these reactions, involving both cyclopentadienyl and carboranyl ligands on the metal carbonyl, explain the ease of the chemical processes and the stabilities of the resulting metallaisoxazolin-5-ones. The metal-carbonyl bond has partial double bond character according to the Wiberg index calculated through NBO analysis, and so the reaction can be considered a normal 1,3-dipolar cycloaddition involving M═C bonds. The rates of formation of the metallacycloadducts are controlled by distortion energy, analogous to their organic counterparts. The superior ability of anionic Ir complexes to share their electron density and accommodate higher oxidation states explains their calculated higher reactivity toward cycloaddition, as compared to Rh analogues.
Collapse
Affiliation(s)
- Ilke Ugur
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Burcu Dedeoglu
- Foundations Development Directorate, Sabancı University, Tuzla-Orhanlı, Istanbul 34956, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - M. Frederick Hawthorne
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, Missouri 65211-3450, United States
| | - Peng Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
47
|
p53 dependent apoptosis and cell cycle delay induced by heteroleptic complexes in human cervical cancer cells. Biomed Pharmacother 2017; 88:218-231. [DOI: 10.1016/j.biopha.2017.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 11/21/2022] Open
|
48
|
Wang HY, Qian Y, Wang FX, Habtemariam A, Mao ZW, Sadler PJ, Liu HK. Ruthenium(II)-Arene Metallacycles: Crystal Structures, Interaction with DNA, and Cytotoxicity. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hong-Yan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046, Jiang Su Nanjing P. R. China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046, Jiang Su Nanjing P. R. China
| | - Fang-Xin Wang
- School of Chemistry; Sun Yat-Sen University; 510275, Guang Dong Guangzhou P. R. China
| | - Abraha Habtemariam
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| | - Zong-Wan Mao
- School of Chemistry; Sun Yat-Sen University; 510275, Guang Dong Guangzhou P. R. China
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials; Jiangsu Key Laboratory of Biofunctional Materials; College of Chemistry and Materials Science; Nanjing Normal University; 210046, Jiang Su Nanjing P. R. China
| |
Collapse
|
49
|
Chen C, Ni S, Zheng Q, Yu M, Wang H. Synthesis, Structure, Biological Evaluation, and Catalysis of Two Pyrazole-Functionalized NHC-RuIIComplexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao Chen
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Shengliang Ni
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Qing Zheng
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Meifang Yu
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Hangxiang Wang
- The First Affiliated Hospital; School of Medicine; Zhejiang University; 310003 Hangzhou China
| |
Collapse
|
50
|
Guo BB, Lin YJ, Jin GX. Controllable construction of half-sandwich octanuclear complexes based on pyridyl-substituted ligands with conjugated centers. Dalton Trans 2017; 46:8190-8197. [DOI: 10.1039/c7dt00836h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on three tetradentate ligands with conjugated centers, seven half-sandwich octanuclear complexes were selectively obtained. Several subsequent structural conversions were also successfully conducted.
Collapse
Affiliation(s)
- Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
| |
Collapse
|