1
|
Lu GL, Chiu ST, Lin PH, Long J. Modulating magnetic anisotropy in linear tetranuclear dysprosium(III) complexes via coordinated anions. Dalton Trans 2024; 53:18575-18584. [PMID: 39470254 DOI: 10.1039/d4dt01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report the synthesis, structures, and magnetic properties of two novel linear tetranuclear complexes with the general formula [Dy4(Hheb)2(heb)4X2(MeOH)4] (X- = NO3-, OAc-; H2heb = (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazide, OAc- = acetate). The rigid ligands (Hheb-/heb2-) incorporate phenoxide groups and bridge the Dy3+ ions in an unusual tetranuclear linear assembly. Notably, we demonstrate through magnetic measurements and theoretical calculations how the anion (X) coordinated at the peripheral Dy3+ centers acts as a switch, significantly changing the magnetic anisotropy of the entire complex. This control over magnetic anisotropy through the selection of the coordinated anion offers a promising avenue for tailoring the functionality of single-molecule magnets.
Collapse
Affiliation(s)
- Guan-Lin Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Shih-Ting Chiu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
2
|
Zhong X, Li DY, Cao C, Luo TK, Hu ZB, Peng Y, Liu SJ, Zheng YZ, Wen HR. Effect of Substituents in Equatorial Hexaazamacrocyclic Schiff Base Ligands on the Construction and Magnetism of Pseudo D6h Single-Ion Magnets. Inorg Chem 2024; 63:21909-21918. [PMID: 39482923 DOI: 10.1021/acs.inorgchem.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Three mononuclear DyIII compounds [DyL1(Ph3SiO)2][BPh4]·MeCN·2H2O (1), [DyL2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2), and [DyL3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3) and their corresponding YIII diluted analogues [Dy0.0967Y0.9033L1(Ph3SiO)2][BPh4]·MeCN·2H2O (1@Y), [Dy0.2668Y0.7332L2(Ph3SiO)2][BPh4]·C2H5OH·H2O (2@Y), and [Dy0.1260Y0.8740L3(Ph3SiO)(OAc)][BPh4]·CH3OH·3H2O (3@Y) were synthesized with hexaazamacrocyclic Schiff base ligands as an equatorial ligand. The substituents in the equatorial hexaazamacrocyclic Schiff base ligand show a significant effect on the replacement of the axial ligands. Compounds 1, 2, and 3 are typical zero dc field single-molecule magnets with effective energy barriers (Ueff) of 1092(6), 946.1(7), and 150.1(9) K, respectively. Although the effective energy barriers of 1 and 2 are close, the magnetic hysteresis remains open up to 20 K for 1, twice as large as that of 2 (10 K), which is different from the previously reported compounds, probably due to nonplanarity N6 in the equator. Ab initio calculations indicate that the ground states of compounds 1 and 2 exhibit high anisotropy and pure second and third excited states, while compound 3 exhibits pure ground-state anisotropy and highly mixed excited states, leading to the easy occurrence of quantum tunneling of magnetization between the ground and excited states in compound 3. This work indicates that the substituents in equatorial hexaazamacrocyclic Schiff base ligands have a significant effect on the construction and magnetic properties of DyIII SIMs with D6h symmetry.
Collapse
Affiliation(s)
- Xiang Zhong
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Dong-Yang Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Tong-Kai Luo
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Zhao-Bo Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province 341000, P. R. China
| |
Collapse
|
3
|
Moorthy S, Tarannum I, Kumari K, Singh SK. A highly anisotropic family of hexagonal bipyramidal Dy(III) unsaturated 18-crown-6 complexes exceeding the blockade barrier over 2700 K: a computational exploration. Dalton Trans 2024; 53:12073-12079. [PMID: 38787652 DOI: 10.1039/d4dt00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In the present work, we have explored a series of unsaturated hexa-18-crown-6 (U18C6) ligands towards designing highly anisotropic Dy(III) based single-ion magnets (SIMs) with the general formula [Dy(U18C6)X2]+ (where U18C6 = [C12H12O6] (1), [C12H12S6] (2), [C12H12Se6] (3), [C12H12O4S2] (4), [C12H12O4Se2] (5) and X = F, Cl, Br, I, OtBu and OSiPh3). By analysing the electronic structure, bonding and magnetic properties, we find that the U18C6 ligands prefer stabilising the highly symmetric eight-coordinated hexagonal bipyramidal geometry (HBPY-8), which is the source of the near-Ising type anisotropy in all the [Dy(U18C6)X2]+ complexes. Moreover, the ability of sulfur/selenium substituted U18C6 ligands to stabilize the highly anisotropic HBPY-8 geometry makes them more promising towards engineering the equatorial ligand field compared to substituted saturated 18C6 ligands where the exodentate arrangement of the S lone pairs results in low symmetry. Magnetic relaxation analysis predicts a record barrier height over 2700 K for [Dy(C12H12O6)F2]+ and [Dy(C12H12S6)X2]+ (where X = F, OtBu and OSiPh3) complexes, nearly 23% higher than those of the top performing Dy(III) based SIMs in the literature.
Collapse
Affiliation(s)
- Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
4
|
Mortensen SS, Nielsen VRM, Sørensen TJ. Contrasting impact of coordination polyhedra and site symmetry on the electronic energy levels in nine-coordinated Eu(III) and Sm(III) crystals structures determined from single crystal luminescence spectra. Dalton Trans 2024; 53:10079-10092. [PMID: 38712555 DOI: 10.1039/d4dt00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Lanthanide luminescence is characterised by "forbidden" 4f-4f transitions and a complicated electronic structure. Our understanding of trivalent lanthanide(III) ion luminescence is centered on Eu3+ because absorbing and emitting transitions in Eu3+ occur from a single electronic energy level. In Sm3+ both absorbing and emitting multiplets have a larger multiplicity. A band arising in transitions from the first emitting state multiplet to the ground state multiplet will have nine lines for a Sm3+ complex. In this study, high-resolution emission and excitation spectra were used to determine the electronic energy levels for the lowest multiplet and first emitting multiplet in four Sm3+ compounds with either tricapped trigonal prismatic TTP or capped square antiprismatic cSAP coordination polyhedra but different site symmetry. This was achieved by the use of Boltzmann distribution population analysis and experimentally determined transition probabilities from emission and excitation spectra. Using this analysis it was possible to show the effect of changing three oxygen atoms with three nitrogen atoms in the donor set for two compounds with the same coordination polyhedra and site symmetry. This work celebrates the 40th anniversary of Kirby and Richardson's first report of [Eu(ODA)3]3- luminescence.
Collapse
Affiliation(s)
- Sabina Svava Mortensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Villads R M Nielsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
5
|
Zanella S, Aragon-Alberti M, Brite CDS, Salles F, Carlos LD, Long J. Luminescent Single-Molecule Magnets as Dual Magneto-Optical Molecular Thermometers. Angew Chem Int Ed Engl 2023; 62:e202306970. [PMID: 37418512 DOI: 10.1002/anie.202306970] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Luminescent thermometry allows the remote detection of the temperature and holds great potential in future technological applications in which conventional systems could not operate. Complementary approaches to measuring the temperature aiming to enhance the thermal sensitivity would however represent a decisive step forward. For the first time, we demonstrate the proof-of-concept that luminescence thermometry could be associated with a complementary temperature readout related to a different property. Namely, we propose to take advantage of the temperature dependence of both magnetic (canonical susceptibility and relaxation time) and luminescence features (emission intensity) found in Single-Molecule Magnets (SMM) to develop original dual magneto-optical molecular thermometers to conciliate high-performance SMM and Boltzmann-type luminescence thermometry. We highlight this integrative approach to concurrent luminescent and magnetic thermometry using an air-stable benchmark SMM [Dy(bbpen)Cl] (H2 bbpen=N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethyl-enediamine)) exhibiting Dy3+ luminescence. The synergy between multiparametric magneto-optical readouts and multiple linear regression makes possible a 10-fold improvement in the relative thermal sensitivity of the thermometer over the whole temperature range, compared with the values obtained with the single optical or magnetic devices.
Collapse
Affiliation(s)
- Sofia Zanella
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Carlos D S Brite
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France, (IUF), 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
6
|
Mao PD, Zhang SH, Yao NT, Sun HY, Yan FF, Zhang YQ, Meng YS, Liu T. Regulating Magnetic Relaxations of Cyano-Bridged {Dy III Mo V } Systems by Tuning the N-Sites in β-Diketone Ligands. Chemistry 2023; 29:e202301262. [PMID: 37272418 DOI: 10.1002/chem.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
Collapse
Affiliation(s)
- Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Hui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Chu YY, García Alejo A, Bud'ko SL, Boteju K, Patnaik S, Ellern A, Pérez García M, Sadow AD. Structure and Magnetic Properties of Homoleptic Trivalent Tris(alkyl)lanthanides. Inorg Chem 2023. [PMID: 37471624 DOI: 10.1021/acs.inorgchem.3c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Six new solvent-free, homoleptic paramagnetic tris(alkyl)lanthanides Ln{C(SiHMe2)3}3 (1Ln) and Ln{C(SiHMe2)2Ph}3 (2Ln) (Ln = Gd, Dy, and Er) were synthesized to investigate the magnetic properties of 4f organometallic compounds stabilized by secondary Ln↼H-Si and benzylic interactions. The unit cell of 1Gd contains one independent molecule (Z = 2), while 1Dy and 1Er crystallize with four independent isostructural molecules per unit cell (Z = 16). In all molecules, as in other 1Ln compounds, the three tris(dimethylsilyl)methyl ligands form a trigonal planar LnC3 core, and six secondary interactions involving Ln↼H-Si bonding in Ln{C(SiHMe2)3}3 form above and below the equatorial plane. Two and five crystallographically independent molecules of each 2Ln (2Gd, Z = 8; 2Dy, Z = 20) form with three π-coordinated phenyl groups in addition to either one or two secondary Ln↼H-Si interactions per molecule. The packing of these midseries organolanthanide compounds contrasts the single crystallographically unique molecules in previously reported La{C(SiHMe2)3}3 (1La, Z = 2, Z' = 1) and La{C(SiHMe2)2Ph}3 (2La, Z = 2, Z' = 1/3). 2La doped with 2Dy can adopt the crystallographic structure of 2La, which promotes magnetic properties, namely a higher χmT value at low temperatures as well as stronger magnetic anisotropy. The ac susceptibility data for 10% 2Dy doped into 2La suggests slow relaxation at low temperatures with a relaxation barrier of ∼45 K. The computed saturated magnetization of 1Er (M ≈ 4.5 μB) and 1Dy (M ≈ 6 μB) matches the experimental values, while the computed value for 2Dy better matches the value measured for 2Dy diluted in 2La (M ≈ 5 μB). Gas-phase calculations predict that the ground-state and first excited-state multiplet separations are larger for 1Er than 2Er, while the ordering for dysprosium is 1Dy > 2Dy.
Collapse
Affiliation(s)
- Yang-Yun Chu
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011, United States
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
| | - Andrés García Alejo
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011, United States
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
| | - Sergey L Bud'ko
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Physics 0012, 2323 Osborn Drive, Ames, Iowa 50011, United States
| | - Kasuni Boteju
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011, United States
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
| | - Smita Patnaik
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011, United States
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
| | - Arkady Ellern
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011, United States
| | - Marilú Pérez García
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
| | - Aaron D Sadow
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011, United States
- US DOE Ames National Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Yang QQ, Wang YF, Wang YX, Tang MJ, Yin B. Ab initio prediction of key parameters and magneto-structural correlation of tetracoordinated lanthanide single-ion magnets. Phys Chem Chem Phys 2023. [PMID: 37401358 DOI: 10.1039/d3cp01766d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Single-molecule magnets (SMMs) have great potential in becoming revolutionary materials for micro-electronic devices. As one type of SMM and holding the performance record, lanthanide single-ion magnets (Ln-SIMs) stand at the forefront of the family. Lowering the coordination number (CN) is an important strategy to improve the performance of Ln-SIMs. Here, we report a theoretical study on a typical group of low-CN Ln-SIMs, i.e., tetracoordinated structures. Our results are consistent with those of experiments and they identify the same three best Ln-SIMs via a concise criterion, i.e., the co-existence of long τQTM and high Ueff. Compared to the record-holding dysprosocenium systems, the best SIMs here possess τQTM values that are shorter by several orders of magnitude and Ueff values that are lower by ∼1000 Kelvin (K). These are important reasons for the fact that the tetracoordinated Ln-SIMs are clearly inferior to dysprosocenium. A simple but intuitive crystal-field analysis leads to several routes to improve the performance of a given Ln-SIM, including compression of the axial bond length, widening the axial bond angle, elongation of the equatorial bond length and usage of weaker equatorial donor ligands. Although these routes are not brand-new, the most efficient option and the degree of improvement resulting from it are not known in advance. Consequently, a theoretical magneto-structural study, covering various routes, is carried out for the best Ln-SIM here and the most efficient route is shown to be widening the axial ∠O-Dy-O angle. The most optimistic case, having a ∠O-Dy-O of 180°, could have a τQTM (up to 103 s) and Ueff (∼2400 K) close to those of the record-holders. Subsequently, a blocking temperature (TB) of 64 K is predicted to be possible for it. A more practical case, with ∠O-Dy-O being 160°, could have a τQTM of up to 400 s, Ueff of around 2200 K and the possibility of a TB of 57 K. Although having an inherent precision limit, these predictions provide a guide to performance improvement, starting from an existing system.
Collapse
Affiliation(s)
- Qi-Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Yu-Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Yu-Xi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Ming-Jing Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
9
|
Kapurwan S, Sahu PK, Raizada M, Kharel R, Konar S. [α-AsW 9O 33] 9- bridged hexagonal clusters of Ln(III) showing field induced SMM behavior: experimental and theoretical insight. Dalton Trans 2023. [PMID: 37357913 DOI: 10.1039/d3dt00406f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Polyoxometalates (POM), as inorganic polydentate oxygen donors, provide binding opportunities for oxophilic lanthanide metal centers to construct novel Ln-substituted POM materials with exciting structures and attractive properties. Herein, we have reported four arsenotungstate [α-AsW9O33]9- based lanthanide-containing polyoxometalates [CsxK36-x{Ln6(H2O)12(α-AsW9O33)6}]·yH2O (Ln = Er (1), Gd (2), Ho (3), and Tb (4)), which are synthesized in an alkaline medium. Complexes 1-3 are the dimeric structures of [Ln3(H2O)6(α-AsW9O33)3]18- polyanions, whereas complex 4 is a hexamer of the polyanion [Tb (H2O)2(α-AsW9O33)]6- as a building unit. In all the complexes, [α-AsW9O33]9- units are staggered up and down and give rise to the chair conformation, where one [α-AsW9O33]9- unit bridges two Ln(III) centers through four μ2-oxygen and two terminal oxygen atoms, resulting in the hexagonal arrangement of lanthanides. The dynamic magnetic measurement indicates that only complex 1 exhibits slow relaxation of magnetization with an applied dc field (1500 Oe). To gain insight into the slow relaxation of magnetization in complex 1, the ligand-field parameters and the splitting of the ground-state multiplet of the Er(III) ions have been estimated. The ab initio calculation results confirm that the ground state wave function of these molecules (1, 3, and 4) is mainly composed of a mixture of mJ states, and the non-axial crystal field (CF) terms are more predominant than the axial CF term. The solid-state fluorescence spectra of 1-4 reveal that the photoexcitation O → M ligand-to-metal charge-transfer (LMCT) of arsenotungstate fragments is effectively quenched due to the spatial coordination environment around the Ln(III) ion.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Cemortan V, Simler T, Moutet J, Jaoul A, Clavaguéra C, Nocton G. Structure and bonding patterns in heterometallic organometallics with linear Ln-Pd-Ln motifs. Chem Sci 2023; 14:2676-2685. [PMID: 36908951 PMCID: PMC9993901 DOI: 10.1039/d2sc06933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Complexes with short intermetallic distances between transition metal fragments and lanthanide (Ln) fragments are fascinating objects of study, owing to the ambiguity of the nature of the interaction. The addition of the divalent lanthanide fragments Cp*2Ln(OEt2) (Ln = Sm or Yb) to a Pd(ii) complex bearing the deprotonated form of the redox-active, non-symmetrical ligand, 2-pyrimidin-2-yl-1H-benzimidazole (Hbimpm), leads to two isostructural complexes, of the general formula (Cp*2Ln)2[μ-Pd(pyridyl)2] (Ln = Sm (4) and Yb (5)). These adducts have interesting features, such as unique linear Ln-Pd-Ln arrangements and short Ln-Pd distances, which deviate from the expected lanthanide contraction. A mixed computational and spectroscopic study into the formation of these adducts gathers important clues as to their formation. At the same time, thorough characterization of these complexes establishes the +3 oxidation state of all the involved Ln centers. Detailed theoretical computations demonstrate that the apparent deviation from lanthanide contraction is not due to any difference in the intermetallic interaction between the Pd and the Ln, but that the fragments are joined together by electrostatic interactions and dispersive forces. This conclusion contrasts with the findings about a third complex, Cp*2Yb(μ-Me)2PdCp* (6), formed during the reaction, which also possesses a short Yb-Pd distance. Studies at the CASSCF level of theory on this complex show several orbitals containing significant interactions between the 4f and 4d manifolds of the metals. This demonstrates the need for methodical and careful analyses in gauging the intermetallic interaction and the inadequacy of empirical metrics in describing such phenomena.
Collapse
Affiliation(s)
- Valeriu Cemortan
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France .,Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000 Orsay 91405 France
| | - Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| | - Jules Moutet
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| | - Arnaud Jaoul
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000 Orsay 91405 France
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| |
Collapse
|
11
|
Ekanayaka T, Jiang T, Delahaye E, Perez O, Sutter JP, Le D, N'Diaye AT, Streubel R, Rahman TS, Dowben PA. Evidence of symmetry breaking in a Gd 2 di-nuclear molecular polymer. Phys Chem Chem Phys 2023; 25:6416-6423. [PMID: 36779815 DOI: 10.1039/d2cp03050k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A chiral 3D coordination compound, [Gd2(L)2(ox)2(H2O)2], arranged around a dinuclear Gd unit has been characterized by X-ray photoemission and X-ray absorption measurements in the context of density functional theory studies. Core level photoemission of the Gd 5p multiplet splittings indicates that spin orbit coupling dominates over j-J coupling evident in the 5p core level spectra of Gd metal. Indications of spin-orbit coupling are consistent with the absence of inversion symmetry due to the ligand field. Density functional theory predicts antiferromagnet alignment of the Gd2 dimers and a band gap of the compound consistent with optical absorption.
Collapse
Affiliation(s)
- Thilini Ekanayaka
- Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| | - Tao Jiang
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Building 121 PS 430, Orlando, FL, 32816, USA.
| | - Emilie Delahaye
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, Toulouse, France.
| | - Olivier Perez
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000, Caen, France
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, Toulouse, France.
| | - Duy Le
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Building 121 PS 430, Orlando, FL, 32816, USA.
| | - Alpha T N'Diaye
- Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA, 94720, USA
| | - Robert Streubel
- Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| | - Talat S Rahman
- Department of Physics, University of Central Florida, 4000 Central Florida Blvd, Building 121 PS 430, Orlando, FL, 32816, USA.
| | - Peter A Dowben
- Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| |
Collapse
|
12
|
Pilichos E, Tubau À, Speed S, Font-Bardia M, Escuer A, Grabulosa A, Mayans J. Magnetic and optical studies of a new family of multidimensional and multiproperty PO-lanthanide(III) derived systems. Dalton Trans 2023; 52:2485-2494. [PMID: 36727531 DOI: 10.1039/d2dt03621e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new family of lanthanide compounds has been synthesized using 1,2-bis(diphenylphosphino)ethane dioxide (dppeO2) as an O-donor ligand through the phosphoryl group to lanthanide(III) cations and structurally, magnetically and optically studied. Depending on the lanthanide, two different topologies appear: the two-dimensional structure [LnIII(dppeO2)1.5(NO3)3(H2O)0.5]n (Ln = Ce (1), Sm (2) and Dy (6)) and the one-dimensional structure [Ln(dppeO2)(NO3)3DMF]n (Ln = Eu (3), Gd (4) and Tb (5)). Some of the Ln-derived complexes have been used as structural probes, while others have been synthesized to use the specific characteristics of each cation to take advantage of their magnetic/luminescence properties. Complex 6 presents slow relaxation of the magnetization while 2, 3 and 5 present emitting properties in the visible range.
Collapse
Affiliation(s)
- Evangelos Pilichos
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain
| | - Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain
| | - Saskia Speed
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain
| | - Mercè Font-Bardia
- Departament de Mineralogia, Cristal·lografia i Dipòsits Minerals and Unitat de Difracció de R-X, Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona-08028, Spain
| | - Arnald Grabulosa
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona-08028, Spain
| | - Júlia Mayans
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona-08028, Spain
| |
Collapse
|
13
|
Ray D, Oakley MS, Sarkar A, Bai X, Gagliardi L. Theoretical Investigation of Single-Molecule-Magnet Behavior in Mononuclear Dysprosium and Californium Complexes. Inorg Chem 2023; 62:1649-1658. [PMID: 36652606 PMCID: PMC9890484 DOI: 10.1021/acs.inorgchem.2c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Early-actinide-based (U, Np, and Pu) single-molecule magnets (SMMs) have yet to show magnetic properties similar to those of highly anisotropic lanthanide-based ones. However, there are not many studies exploring the late-actinides (more than half-filled f shells) as potential candidates for SMM applications. We computationally explored the electronic structure and magnetic properties of a hypothetical Cf(III) complex isostructural to the experimentally synthesized Dy(dbm)3(bpy) complex (bpy = 2,2'-bipyridine; dbm = dibenzoylmethanoate) via multireference methods and compared them to those of the Dy(III) analogue. This study shows that the Cf(III) complex can behave as a SMM and has a greater magnetic susceptibility compared to other experimentally and computationally studied early-actinide-based (U, Np, and Pu) magnetic complexes. However, Cf spontaneously undergoes α-decay and converts to Cm. Thus, we also explored the isostructural Cm(III)-based complex. The computed magnetic susceptibility and g-tensor values show that the Cm(III) complex has poor SMM behavior in comparison to both the Dy(III) and Cf(III) complexes, suggesting that the performance of Cf(III)-based magnets may be affected by α-decay and can explain the poor performance of experimentally studied Cf(III)-based molecular magnets in the literature. Further, this study suggests that the ligand field is dominant in Cf(III), which helps to increase the magnetization blocking barrier by nearly 3 times that of its 4f congener.
Collapse
Affiliation(s)
- Debmalya Ray
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Meagan S. Oakley
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Arup Sarkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois60637, United States
| | - Xiaojing Bai
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois60637, United States,
| |
Collapse
|
14
|
Dy3 and Gd3 Complexes with Dy3 Exhibiting Field-Induced Single-Molecule Magnet Behaviour. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Observation of field-induced single-molecule magnet behavior in an octahedrally coordinated binuclear Co2 compound. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Long J, Selikhov AN, Cherkasov AV, Nelyubina YV, Salles F, Guari Y, Larionova J, Trifonov AA. Base‐Free Alkoxide Dysprosium(III) Complexes with an Unusual Tetraphenylborate Coordination: Study of the Slow Relaxation of the Magnetization. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Long
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
- Institut Universitaire de France (IUF) 1 rue Descartes 75231 Paris Cedex 05 France
| | - Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Yulia V. Nelyubina
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | | | - Yannick Guari
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| |
Collapse
|
17
|
Youssef H, Schäfer T, Becker J, Sedykh AE, Basso L, Pietzonka C, Taydakov IV, Kraus F, Müller-Buschbaum K. 3D-Frameworks and 2D-networks of lanthanide coordination polymers with 3-pyridylpyrazole: photophysical and magnetic properties. Dalton Trans 2022; 51:14673-14685. [PMID: 36098070 DOI: 10.1039/d2dt01999j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 15 lanthanide-containing coordination polymers, both 3D- and 2D-networks, as well as complexes of Ln-trichlorides with 3-(3-pyridyl)pyrazole (3-PyPzH), were synthesized. A large structural diversity is observed depending on the ligand content: 3∞[Ln(3-PyPzH)Cl3], Ln = Eu and Gd, of sra topology, 2∞[Sm(3-PyPzH)Cl3], 2∞[Ln2(3-PyPzH)3Cl6]·2solv, Ln = Eu3+, Tb3+, Dy3+, Ho3+ and Er3+, solv = Tol and MeCN, of sql topology and 2∞[Ln(3-PyPzH2)Cl4], Ln = La and Nd, of hcb topology with salt like complexes of the formula [(3-PyPzH2)][Ln(3-PyPzH)2Cl4], Ln = Eu, Tb, Dy and Ho. The products were characterized by single-crystal and powder X-ray diffraction, high-temperature X-ray diffraction, differential thermal analysis and thermogravimetry (DTA/TG) combined with mass spectrometry, differential scanning calorimetry (DSC), IR-spectroscopy, UV-visible spectrophotometry, photoluminescence spectroscopy, and magnetic susceptibility. Absorption spectroscopy shows ion-specific 4f-4f transitions that can be assigned to Sm3+, Eu3+, Dy3+, Ho3+ and Er3+ in a wide range from the UV-VIS to NIR region. An excellent antenna effect through ligand-metal energy transfer was observed in 2∞[Tb2(3-PyPzH)3Cl6]·2solv, leading to high efficiency of the luminescence indicated by a quantum yield up to 76%. Direct current magnetic susceptibility studies reveal the absence of interatomic interaction for Dy3+ and Er3+ and weak ferromagnetic interaction for Ho3+. Thermal analysis shows good stability up to 365 °C for 2∞[Ho2(3-PyPzH)3Cl6]·2MeCN.
Collapse
Affiliation(s)
- Heba Youssef
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany. .,Department of Chemistry, Faculty of Science, Mansoura University, El Gomhouria, Mansoura Qism 2, Dakahlia Governorate, 11432, Mansoura, Egypt
| | - Thomas Schäfer
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Alexander E Sedykh
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Leonardo Basso
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Clemens Pietzonka
- Fachbereich Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Ilya V Taydakov
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy pr-t, 53, 119991, Moscow, Russia
| | - Florian Kraus
- Fachbereich Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany. .,Center for Materials Research (LAMA), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
18
|
Abstract
A tetranuclear dysprosium Schiff base complex was isolated by reacting dysprosium chloride with 2-hydroxy-3-methoxybenzaldehyde and 2-(aminomethyl)pyridine in-situ under basic conditions. The isolated Dy(III) complex was characterized by elemental analyses, single crystal X-ray diffraction and molecular spectroscopy. The complex crystallizes in the triclinic space group P-1 with unit cell parameters of a = 10.2003 (4), b = 13.8602 (5), c = 14.9542 (6), α = 94.523 (3), β = 109.362 (4), and γ = 99.861 (3). The magnetic properties of 1 have been investigated by DC and AC susceptibility measurements. The DC measurements reveal weak exchange coupling of antiferromagnetic nature. In the AC measurement, the complex shows a slow relaxation of magnetization in the absence of an external magnetic field.
Collapse
|
19
|
Liu H, Li JF, Yin B. The coexistence of long τQTM and high Ueff as a concise criterion for a good single-molecule magnet: a theoretical case study of square antiprism dysprosium single-ion magnets. Phys Chem Chem Phys 2022; 24:11729-11742. [PMID: 35506508 DOI: 10.1039/d2cp00776b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic theoretical study is performed on a group of 16 square antiprism dysprosium single-ion magnets. Based on ab initio calculations, the quantum tunneling of magnetization (QTM) time, i.e., τQTM, and effective barrier of magnetic reversal, Ueff, are theoretically predicted. The theoretical τQTM is able to identify the ones with the longest QTM time with small numerical deviations. Similar results occur with respect to Ueff too. The systems possessing the best single-molecule magnet (SMM) properties here are just the ones having both the longest τQTM and the highest Ueff, from either experiment or theory. Thus, our results suggest the coexistence of long τQTM and high Ueff to be a criterion for high-performance SMMs. Although having its own limits, this criterion is easy to be applied in a large number of systems since both τQTM and Ueff could be predicted by theory with satisfactory efficiency and reliability. Therefore, this concise criterion could provide screened candidates for high-performance SMMs quickly and, hence, ease the burden of further exploration aiming for a higher degree of precision. This screening is important since the further exploration could easily demand tens or even hundreds of ab initio calculations for a single SMM. A semi-quantitative crystal field (CF) analysis is performed and shown here to be capable of indicating the general trends in a more chemically intuitive way. This analysis could help to identify the most important coordinating atoms for both diagonal and non-diagonal CF components. Thus, it could give some direct clues for improving the SMM properties: reducing the distance of the axial atom to the central ion, rotating the axial atom closer to the easy axis or increasing the amount of its negative charge. Correspondingly, opposite operations on the equatorial atom could give the same result.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Jin-Feng Li
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
20
|
Hu B, Xi J, Cen P, Guo Y, Ding Y, Qin Y, Zhang YQ, Liu X. A mononuclear nine-coordinated Dy(iii) complex exhibiting field-induced single-ion magnetism behaviour. RSC Adv 2022; 12:13992-13998. [PMID: 35558827 PMCID: PMC9089352 DOI: 10.1039/d2ra02260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
A new mononuclear Dy(iii) complex, with the formula [Dy(Hcpt)3]·2H2O (1), has been successfully prepared via self-assembly between Dy(iii) ions and 2-cyano-N′-(1-(pyridin-2-yl)amido)acetyl (Hcpt) ligand. X-ray diffraction study shows that the Dy(iii) ion is nine-coordinated by three Hcpt ligands with a tridentate chelating mode, leading to an approximately monocapped square-antiprismatic (C4v) geometry. Magnetic data analysis demonstrates that 1 performs field-induced slow magnetic relaxation with a relaxation barrier of 97.90 K, due to the quantum tunneling effect suppressed upon a static dc field of 2000 Oe. To deeply understand the magnetic behaviors, the relaxation mechanisms and magneto-structure relationship are rationally discussed using ab initio calculations as well. Reaction of Dy(iii) ion with tridentate acylhydrazone ligand leads to a field-induced Dy(iii) SIM, of which the magneto-structural correlation is elucidated by the magnetic and theoretical studies.![]()
Collapse
Affiliation(s)
- Biao Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yuanyuan Qin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
21
|
Eggen M, Ke¸dziorski A, Janicki R, Korabik M, Krośnicki M. The ab-initio and experimental study of the spectroscopic and magnetic properties of Ho(III)-EDTA. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Dong H, Ma S, Zhong Q, Zhu M. Crystal structure, magnetic properties and luminescent behavior of four mononuclear lanthanide-radical complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
A quantum-chemically supported classical approach to assessing the vibrational contribution to the thermal expansion of molecules. Example of LaI3. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Du J, Duan B, Gao L, Jiang Z, Sun L, Ma P, Li M. A centrosymmetric Dy2 compound derived from acylhydrazone Schiff base ligand exhibiting zero-field single-molecule magnet behavior. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Qu Z, Wu D, Jin J, Yang GP, Wang YY. Fabrication of a series of isostructural water-stable lanthanide metal-organic frameworks: Tunable luminescence, sensing for antibiotics and magnetic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Long J, Lyubov DM, Gurina GA, Nelyubina YV, Salles F, Guari Y, Larionova J, Trifonov AA. Using N-Heterocyclic Carbenes as Weak Equatorial Ligands to Design Single-Molecule Magnets: Zero-Field Slow Relaxation in Two Octahedral Dysprosium(III) Complexes. Inorg Chem 2022; 61:1264-1269. [PMID: 34994542 DOI: 10.1021/acs.inorgchem.1c03429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis, structures, and magnetic investigations of two new octahedral dysprosium complexes, based on the original N-heterocyclic carbene (NHC) tridentate bis(phenoxide) ligand, of the respective formulas mer-[DyL(THF)2Cl] (1) and mer-[DyL(THF)3][BPh4] (2), where L = 1,3-bis(3,5-di-tert-butyl-2-oxidophenyl)-5,5-dimethyl-3,4,5,6-tetrahydropyrimidin-1-ium chloride and THF = tetrahydrofuran. The short Dy-O distances in the axial direction in association with the weak donor ability of the NHC moiety provide a suitable environment for slow relaxation of magnetization, overcoming the previous single-molecule magnets based on NHC ligands.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Dmitry M Lyubov
- Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), 28 Vavilova str., 119334 Moscow, Russia.,Institute of Organometallic Chemistry, Russian Academy of Sciences (RAS), 49 Tropinina str., GSP-445, 630950 Nizhny, Novgorod, Russia
| | - Galina A Gurina
- Institute of Organometallic Chemistry, Russian Academy of Sciences (RAS), 49 Tropinina str., GSP-445, 630950 Nizhny, Novgorod, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), 28 Vavilova str., 119334 Moscow, Russia
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | | | - Alexander A Trifonov
- Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), 28 Vavilova str., 119334 Moscow, Russia.,Institute of Organometallic Chemistry, Russian Academy of Sciences (RAS), 49 Tropinina str., GSP-445, 630950 Nizhny, Novgorod, Russia
| |
Collapse
|
27
|
Long J, Lyubov DM, Kissel' AA, Gogolev IA, Tyutyunov AA, Nelyubina YV, Salles F, Guari Y, Cherkasov AV, Larionova J, Trifonov AA. Effect on the geometry over the slow relaxation of the magnetization in a series of erbium( iii) complexes based on halogenated ligands. CrystEngComm 2022. [DOI: 10.1039/d2ce00856d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erbium(iii) complexes based on halogenated ligands.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Alexander A. Kissel'
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Ilia A. Gogolev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Andrey A. Tyutyunov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Fabrice Salles
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Yannick Guari
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| |
Collapse
|
28
|
Wu X, Li J, Yin B. The interpretation and prediction of lanthanide single-ion magnet from ab initio electronic structure calculation: The capability and limit. Dalton Trans 2022; 51:14793-14816. [DOI: 10.1039/d2dt01507b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnet (SMM) is a fascinating system holding the potential of being revolutionary micro-electronic device in information technology. However current SMMs are still far away from real-life application due to...
Collapse
|
29
|
Sun AH, Liu XX, Sun R, Xiong J, Sun HL, Gao S. The rational construction of diamond-like dysprosium–hexacyanometallate frameworks featuring dynamic magnetic behaviour. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel diamond-like dysprosium–hexacyanometallate frameworks featuring slow magnetic relaxation have been rationally constructed by a feasible building block strategy using hexacyanometallate to link superparamagnetic dimeric units.
Collapse
Affiliation(s)
- Ai-Huan Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China
| | - Xi-Xi Liu
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
30
|
Yan H, Wang C, Chen P, Zhang YQ, Sun W. Schiff Base Tetranuclear Zn2Ln2 Single-Molecule Magnets bridged by Hydroxamic acid in association with Near-Infrared Luminescence. Dalton Trans 2022; 51:6918-6926. [DOI: 10.1039/d2dt00001f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Zn-Ln heteronuclear SMMs formed by hexadentate compartment Schiff base Zn-precursor and lanthanoid ions were structurally and magnetically characterized, in which the two [Zn-Ln] moieties are bridged by...
Collapse
|
31
|
Lu F, Guo WX, Zhang YQ. Largely Enhancing the Blocking Energy Barrier and Temperature of a Linear Cobalt(II) Complex through the Structural Distortion: A Theoretical Exploration. Inorg Chem 2021; 61:295-301. [PMID: 34923824 DOI: 10.1021/acs.inorgchem.1c02858] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Complete-active-space self-consistent field and N-electron valence second-order perturbation theory have both been employed to investigate the magnetic anisotropy of one two-coordinate cobalt(II) compound via altering the Co-C bond lengths and twist angle φ. The calculated energy barrier Ueff decreases with the decrease in the Co-C bond lengths due to the gradually increasing interaction between the 3d orbitals of CoII and the coordination ligand field and then to the decrease in the ground orbital angular moment L of CoII. Thus, we cannot improve Ueff simply by shortening the Co-C bond lengths. However, by rotating the twist angle φ from 60 to 0°, it is surprising to find that the energy barrier and blocking temperature can be enhanced up to 1559.1 cm-1 and 90 K, respectively, with φ = 0°, which are prominent even among lanthanide-based single-molecule magnets.
Collapse
Affiliation(s)
- Fang Lu
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wen-Xiao Guo
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Dong Y, Zhu L, Yin B, Zhu X, Li D. Regulating the magnetic properties of seven-coordinated Dy(III) single-ion magnets through the effect of positional isomers on axial crystal-field. Dalton Trans 2021; 50:17328-17337. [PMID: 34787614 DOI: 10.1039/d1dt02925h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Six Dy(III) single-ion magnets (SIMs) [Dy(n-OMe-bbpen)X] were synthesized by a solvothermal reaction with three positional isomers (ortho, meta, and para) of ligands n-OMe-H2bbpen and dysprosium halides DyX3, (n-OMe-H2bbpen = N,N'-bis(2-hydroxy-n-methoxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine; n = 3, X = Cl, 1; n = 3, X = Br, 2; n = 4, X = Cl, 3; n = 4, X = Br, 4; n = 5, X = Cl, 5; n = 5, X = Br, 6). Dynamic magnetic measurements revealed that the six complexes possess notably different effective barriers of magnetic reversal: 872.0 K (1), 1210.1 K (2), 137.9 K (3), 602.6 K (4), 907.0 K (5) and 1216.7 K (6). 6 showed the best performance as SIMs among the six Dy(III) complexes. Moreover, the magnetic hysteresis loops of 6 remained open at 21 K. The crystal structures indicate the switching of local symmetry around Dy(III) ion, aroused by the variation in intermolecular interactions and steric effects. This switch is primarily correlated with the distinction of magnetic properties. In addition, ab initio calculations confirmed that the different electrostatic potential around Dy(III) ion stemming from the electronic effect of the OMe-substituted group is another factor leading to the distinction in magnetic properties. This work warns us that when designing ligands for Dy-SIMs, the effect of positional isomerism on magnetic performance must be considered, which is one of the factors that can easily be overlooked.
Collapse
Affiliation(s)
- Yubao Dong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Li Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Xinrui Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dongfeng Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
33
|
Youssef H, Sedykh AE, Becker J, Schäfer T, Taydakov IV, Li HR, Müller-Buschbaum K. Variable Luminescence and Chromaticity of Homoleptic Frameworks of the Lanthanides together with Pyridylpyrazolates. Chemistry 2021; 27:16634-16641. [PMID: 34613634 PMCID: PMC9298041 DOI: 10.1002/chem.202103068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/07/2022]
Abstract
Homoleptic, 3D coordination polymers of the formula 33 ∞ [Ln(3-PyPz)3 ] and 3 ∞ [Ln(4-PyPz)3 ], (3-PyPz)- =3-(3-pyridyl)pyrazolate anion, (4-PyPz)- =3-(4-pyridyl)pyrazolate anion, both C8 H6 N3 - , Ln=Sm, Eu, Gd, Tb, Dy, were obtained as highly luminescent frameworks by reaction of the lanthanide metals (Ln) with the aromatic heterocyclic amine ligands 3-PyPzH and 4-PyPzH. The compounds form two isotypic series of 3D coordination polymers and exhibit fair thermal stability up to 360 °C. The luminescence properties of all ten compounds were determined in the solid state, with an antenna effect through ligand-metal energy transfer leading to high efficiency of the luminescence displayed by good quantum yields of up to 74 %. The emission is mainly based on ion-specific lanthanide-dependent intra 4 f-4 f transitions for Tb3+ : green, Dy3+ : yellow, Sm3+ : orange-red, Eu3+ : red. For the Gd3+ -containing compounds, the yellow emission of ligand triplet-based phosphorescence is observed at room temperature and 77 K. Co doping of the Gd-containing frameworks with Eu3+ and Tb3+ allow further shifting of the chromaticity towards white light emission.
Collapse
Affiliation(s)
- Heba Youssef
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Department of Chemistry, Faculty of Science, Mansoura University, El Gomhouria, Mansoura Qism 2, Dakahlia Governorate, 11432, Mansoura, Egypt
| | - Alexander E Sedykh
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Thomas Schäfer
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Ilya V Taydakov
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy pr-t, 53, 119991, Moscow, Russia
| | - Huanrong R Li
- Hebei University of Technology, Guanrong Dao 8, Hongqiao District, 300130, Tianjin, P. R. China
| | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center of Materials Research (LAMA), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
34
|
Khalfaoui O, Beghidja A, Beghidja C, Guari Y, Larionova J, Long J. Synthesis, crystal structures, luminescent and magnetic properties of rare earth dinuclear complexes and one-dimensional coordination polymers supported by two derivatives of cinnamic acid. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Long J, Selikhov AN, Rad'kova NY, Cherkasov AV, Guari Y, Larionova J, Trifonov AA. Synthesis, Structures and Magnetic Properties of two Heteroleptic Dy
3+
Borohydride Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jérôme Long
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | - Natalia Yu. Rad'kova
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Yannick Guari
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| |
Collapse
|
36
|
Ueltzen K, Schmitz S, Moors M, Glöß M, Börner M, Werner I, Warneke Z, Warneke J, Abel B, Monakhov KY. Synthesis, Structure, and Surface Adsorption Characteristics of a Polynuclear Mn II,IV-Yb III Complex. Inorg Chem 2021; 60:10415-10425. [PMID: 34192460 DOI: 10.1021/acs.inorgchem.1c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The controlled adsorption of polynuclear coordination compounds with specific structural and electronic characteristics on surfaces is crucial for the prospective implementation of molecule-surface interfaces into practical electronic devices. From this perspective, a neutral 3d,4f-coordination cluster [MnII3MnIVYb3O3(OH)(L·SMe)3(OOCMe)9]·2MeCN·3EtOH (1·2MeCN·3EtOH), where L·SMe- is a Schiff base, has been synthesized and fully characterized and its adsorption on two different solid substrates, gold and graphite, has been studied. The mixed-valence compound with a bilayered metal core structure and the structurally exposed thioether groups exhibits a substantially different surface bonding to metallic gold and semimetallic graphite substrates. While on graphite the adsorption takes place only on distinguished attraction points with a locally increased number of potential bonding sites such as terrace edges and other surface defects, on gold the molecules were found to adsorb rather weakly on randomly distributed adsorption sites of the surface terraces. This entirely different behavior provides important information for the development of advanced surface materials that may enable well-distributed ordered molecular assemblies.
Collapse
Affiliation(s)
- Katharina Ueltzen
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Sebastian Schmitz
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Marco Moors
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Maria Glöß
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.,Peter Grünberg Institute (PGI-7), JARA-FIT, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Martin Börner
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Irina Werner
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Ziyan Warneke
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Jonas Warneke
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
37
|
Kofod N, Nawrocki P, Platas-Iglesias C, Sørensen TJ. Electronic Structure of Ytterbium(III) Solvates-a Combined Spectroscopic and Theoretical Study. Inorg Chem 2021; 60:7453-7464. [PMID: 33949865 DOI: 10.1021/acs.inorgchem.1c00743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The wide range of optical and magnetic properties of lanthanide(III) ions is associated with their intricate electronic structures which, in contrast to lighter elements, is characterized by strong relativistic effects and spin-orbit coupling. Nevertheless, computational methods are now capable of describing the ladder of electronic energy levels of the simpler trivalent lanthanide ions, as well as the lowest energy term of most of the series. The electronic energy levels result from electron configurations that are first split by spin-orbit coupling into groups of energy levels denoted by the corresponding Russell-Saunders terms. Each of these groups are then split by the ligand field into the actual electronic energy levels known as microstates or sometimes mJ levels. The ligand-field splitting directly informs on the coordination geometry and is a valuable tool for determining the structure and thus correlating the structure and properties of metal complexes in solution. The issue with lanthanide complexes is that the determination of complex structures from ligand-field splitting remains a very challenging task. In this paper, the optical spectra-absorption, luminescence excitation, and luminescence emission-of ytterbium(III) solvates were recorded in water, methanol, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF). The electronic energy levels, that is, the microstates, were resolved experimentally. Subsequently, density functional theory calculations were used to model the structures of the solvates, and ab initio relativistic complete active space self-consistent field calculations (CASSCF) were employed to obtain the microstates of the possible structures of each solvate. By comparing the experimental and theoretical data, it was possible to determine both the coordination number and solution structure of each solvate. In water, methanol, and N,N-dimethylformamide, the solvates were found to be eight-coordinated and have a square antiprismatic coordination geometry. In DMSO, the speciation was found to be more complicated. The robust methodology developed for comparing experimental spectra and computational results allows the solution structures of homoleptic lanthanide complexes to be determined.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Patrick Nawrocki
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Thomas Just Sørensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
38
|
Korzyński MD, Berkson ZJ, Le Guennic B, Cador O, Copéret C. Leveraging Surface Siloxide Electronics to Enhance the Relaxation Properties of a Single-Molecule Magnet. J Am Chem Soc 2021; 143:5438-5444. [PMID: 33818083 DOI: 10.1021/jacs.1c00706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as for applications in quantum computing and spintronics. To date, the most successful SMMs have been organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to the sensitivity of the magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchoring sites not only enable successful immobilization but also lead to a 2 orders of magnitude increase in magnetization relaxation times.
Collapse
Affiliation(s)
- Maciej D Korzyński
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
39
|
Yin B, Luo L. The anisotropy of the internal magnetic field on the central ion is capable of imposing great impact on the quantum tunneling of magnetization of Kramers single-ion magnets. Phys Chem Chem Phys 2021; 23:3093-3105. [PMID: 33491709 DOI: 10.1039/d0cp05470d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, a theoretical method, taking into account the anisotropy of the internal magnetic field (B[combining right harpoon above]int), is proposed to predict the rate of quantum tunneling of magnetization (QTM), i.e., τQTM-1, for Kramers single-ion magnets (SIMs). Direct comparison to both experimental and previous theoretical results of three typical Kramers SIMs indicates the necessity of the inclusion of the anisotropy of B[combining right harpoon above]int for accurate description of QTM. The predictions of the method here are consistent with the theory proposed by Prokof'ev and Stamp (PS). For Kramers SIMs of high magnetic axiality, the QTM rates, predicted by the method here, are almost linearly proportional to the results by the PS method. The dependence of τQTM-1 on various parameters is analyzed for model systems. The averaged magnitude of B[combining right harpoon above]int (Bave) and principal g value of the axial direction (gZ) are the parameters on which τQTM-1 is linearly dependent. The ones on which τQTM-1 is quadratically dependent are gXY, i.e., the principal g value of the transversal direction, and xaniso characterizing the anisotropy of B[combining right harpoon above]int. Compared to Bave and gZ, gXY and xaniso provide a higher order of dependence for QTM. Therefore regulation of the SMM property via introduction of desired values of gXY and xaniso ought to be a strategy more efficient than the one via Bave and gZ. Being different from the one via gXY, the strategy via xaniso to regulate the QTM has been rarely touched upon according to our best knowledge. However, this strategy could also lead to significant improvement since it is the same as gXY in the aspect of the dependence of τQTM-1.
Collapse
Affiliation(s)
- Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Lan Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
40
|
Fang Y, Sun R, Sun AH, Sun HL, Gao S. The construction of dynamic dysprosium-carboxylate ribbons by utilizing the hybrid-ligand conception. Dalton Trans 2021; 50:1246-1252. [PMID: 33410827 DOI: 10.1039/d0dt03589k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By utilizing the hybrid-ligand conception, three novel dysprosium complexes Dy(2-py-4-pmc)(L)(H2O) (H2-py-4-pmc = 2-(2-pyridyl)pyrimidine-4-carboxylic acid; L = fumarate (fum, 1), succinate (suc, 2), or pimelate (pim, 3)) have been successfully synthesized. Structural analysis reveals that the dicarboxylate ligands connect 2-py-4-pmc--protected Dy3+ to form one-dimensional molecular ribbons. Magnetic measurements indicate that the three complexes exhibit typical slow magnetic relaxation under a zero dc field with effective reversal barriers Ueff of 180 K, 145 K and 137 K for 1-3, respectively, which is mainly attributed to the strong Ising anisotropy of dysprosium ions induced by the appropriate arrangement of carboxylate groups. Ab initio calculations demonstrate that the charge distribution around dysprosium ions and the magnetic interactions between them are key contributions to their different dynamic behaviour.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Ai-Huan Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
41
|
Zhang S, Shen N, Zhang J, Xu F, Zhang J, Tang J, Hu D, Yin B, Chen S. Solvent responses and substituent effects upon magnetic properties of mononuclear Dy III compounds. Dalton Trans 2021; 50:624-637. [PMID: 33320134 DOI: 10.1039/d0dt03477k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Solvent responsive magnets comprise a class of molecule-based materials where lattice solvent driven structural transformation leads to the switching of magnetic properties. Herein, we present a special type of magnet where single-crystal to single-crystal (SCSC) transformations within mononuclear DyIII compounds result in the switching of DyIII single-molecule magnets (SMMs). This structural transformation involves lattice solvents which leads to significant changes in the color and magnetic properties. Additionally, the relaxation dynamics of mononuclear DyIII compounds are perceptibly fine-tuned by the modification of β-diketonate ligands. The uniaxial magnetic anisotropies, magneto-structural correlations and the relaxation mechanism were investigated by magnetic studies and ab initio calculations. These experimental and theoretical studies indicate that compound 2 exhibits the best magnetic properties in compounds 1-4. The experimental observation is supported by the theoretical prediction of QTM time (τZeeQTM) as theτZeeQTM of 2 is remarkably longer than those of the other three compounds by an order of magnitude. This means that, compared with 1, 3, and 4, the magnetic relaxation of 2 is significantly slower. Meanwhile, 2 has the largest value of axial ESP (the axial electrostatic potential), which supports the smallest gXY value in these compounds, resulting in better SMM properties. The present results offer a systematic synthesis regulation to change the magnetization dynamics and further understand magneto-structural correlations for DyIII SMMs.
Collapse
Affiliation(s)
- Sheng Zhang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang S, Tang J, Zhang J, Xu F, Chen S, Hu D, Yin B, Zhang J. In Situ Ligand Formation in the Synthetic Processes from Mononuclear Dy(III) Compounds to Binuclear Dy(III) Compounds: Synthesis, Structure, Magnetic Behavior, and Theoretical Analysis. Inorg Chem 2021; 60:816-830. [PMID: 33390004 DOI: 10.1021/acs.inorgchem.0c02863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guided by the self-assembled process and mechanism, the strategy of in situ Schiff base reaction would be capable of bringing a feasible method to construct and synthesize lanthanide compounds with distinct structures and magnetic properties. A mononuclear Dy(III) compound was synthesized through a multidentate Schiff base ligand and a chelating β-diketonate ligand, which was named as [Dy(L)(bppd)]·CH3OH [1; H2L = N,N'-bis(2-hydroxy-5-methyl-3-formylbenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bppd = 3-bis(pyridin-2-yl)propane-1,3-dione]. Furthermore, a new binuclear Dy(III) compound, [Dy2(H2Lox)(bppd)3]·8CH3OH [2; H4Lox = N,N'-bis[2-hydroxy-5-methyl-3-(hydroxyiminomethyl)benzyl]-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine], was obtained via an in situ synthetic process. Under similar synthetic conditions, [Dy(L)(ctbd)] [3; ctbd = 1-(4-chlorophenyl)-4,4,4-trifluoro-1,3-butanedione] and [Dy2(H2Lox)(ctbd)3]·CH3OH·C4H10O (4) were synthesized by modifying the β-diketonate ligand and in situ Schiff base reaction. Compound 3 is a mononuclear configuration, while compound 4 exhibits a binuclear Dy(III) unit. Therein, formylbenzyl groups of H2L in 1 and 3 were changed to (hydroxyiminomethyl)benzyl groups in 2 and 4, respectively. In isomorphous 2 and 4, two Dy(III) centers are connected through two phenol O- atoms of the H2Lox2- ligand to form a binuclear structure. Eight-coordinated Dy(III) ions with different distortions can be observed in 1-4. The crystals of 1 and 3 suffered dissolution/precipitation to obtain 2 and 4, respectively. The relationship between the structure and magnetism in compounds 1-4 was discussed through the combination of structural, experimental, and theoretical investigations. Especially, the rates of quantum tunneling of magnetization of 1-4 were theoretically predicted and are consistent with the experimental results. For 2 and 4, the theoretically calculated dipolar parameters Jdip are consistent with the experimental observation of weak ferromagnetic coupling.
Collapse
Affiliation(s)
- Sheng Zhang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Jiamin Tang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Jin Zhang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Fang Xu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi 721013, China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy and State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
43
|
Kong M, Feng X, Wang J, Zhang YQ, Song Y. Tuning magnetic anisotropy via terminal ligands along the Dy⋯Dy orientation in novel centrosymmetric [Dy2] single molecule magnets. Dalton Trans 2021; 50:568-577. [DOI: 10.1039/d0dt03854g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SMM properties of four dinuclear DyIII complexes can be effectively tuned by the appropriate alteration of terminal ligands and lattice guests.
Collapse
Affiliation(s)
- Ming Kong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Lab For NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- People's Republic of China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| |
Collapse
|
44
|
Long J, Tolpygin AO, Lyubov DM, Rad'kova NY, Cherkasov AV, Nelyubina YV, Guari Y, Larionova J, Trifonov AA. High magnetization reversal barriers in luminescent dysprosium octahedral and pentagonal bipyramidal single-molecule magnets based on fluorinated alkoxide ligands. Dalton Trans 2021; 50:8487-8496. [PMID: 34047741 DOI: 10.1039/d1dt01319j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis and structures of three luminescent dysprosium(iii) complexes based on fluorinated alkoxide ligands of formulas [Dy(L1)2(THF)4][BPh4]·0.5THF (1), [Dy(L2)2(THF)5][BPh4]·2.5THF (2) and [Dy(L3)2(THF)5][BPh4]·2THF (3) (L1 = (CF3)3CO-, L2 = C6F5C6F4O-, L3 = C6F5C(CH3)O-). Despite the different dysprosium ion geometries (octahedral vs. distorted pentagonal bipyramidal), these systems exhibit a single-molecule magnet (SMM) behavior, but with distinct relaxation dynamics. Moreover, a typical dysprosium-based luminescence is observed for the three complexes, which make them bifunctional magneto-luminescent SMMs. Remarkably, complex 3 exhibits a high anisotropy barrier of 1469 cm-1 and a blocking temperature of 22 K, making it one of the most performant alkoxide-based SMMs with the highest blocking temperature for a luminescent SMM.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Aleksei O Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. and A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| | - Dmitry M Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. and A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| | - Natalia Yu Rad'kova
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia.
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia.
| | - Yulia V Nelyubina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Alexander A Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. and A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| |
Collapse
|
45
|
Shen N, Liang J, Qu X, Liu S, Zhu L, Zhang S, Chen L, Zhang J, Hu D, Yin B. The influence of organic bases and substituted groups on coordination structures affording two mononuclear Dy( iii) single-molecule magnets (SMMs) and a novel Dy( iii)–K( i) compound with unusually coordinated fluorine atoms. CrystEngComm 2021. [DOI: 10.1039/d1ce00431j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The different organic bases and substituted groups of auxiliary ligands play an important role in synthetic processes, finally affording distinct structures and magnetic properties.
Collapse
Affiliation(s)
- Nan Shen
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Jing Liang
- Shaanxi Provincial Cancer Hospital
- Xi' an 710069
- China
| | - Xiaoni Qu
- College of Environment and Chemistry Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- P. R. China
| | - Sha Liu
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Lin Zhu
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Sheng Zhang
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Ling Chen
- Shaanxi Provincial Cancer Hospital
- Xi' an 710069
- China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| |
Collapse
|
46
|
Long J, Tolpygin AO, Cherkasov AV, Nelyubina YV, Guari Y, Larionova J, Trifonov AA. Tuning the coordination sphere of octahedral Dy( iii) complexes with silanolate/stannanolate ligands: synthesis, structures and slow relaxation of the magnetization. CrystEngComm 2021. [DOI: 10.1039/d1ce01266e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports four SMMs based on silanolate or stannanolate ligands cis-[Dy(OSiPh3)2(THF)4][BPh4]·THF·C6H6 (1), cis-[Dy(OSnPh3)2(THF)4][BPh4]·THF·C6H6·C6H14 (2), fac-[Dy(OSiPh3)3(THF)3]·THF (3) and fac-[Dy(OSiPh3)3(bipy)(THF)]·THF (4).
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Aleksei O. Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N.Nesmeyanov.Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
| | - Yulia V. Nelyubina
- A.N.Nesmeyanov.Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N.Nesmeyanov.Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| |
Collapse
|
47
|
Xi J, Ma X, Cen P, Wu Y, Zhang YQ, Guo Y, Yang J, Chen L, Liu X. Regulating the magnetic dynamics of mononuclear β-diketone Dy(iii) single-molecule magnets through the substitution effect on capping N-donor coligands. Dalton Trans 2021; 50:2102-2111. [DOI: 10.1039/d0dt03780j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Substituent change modulates the coordination symmetries and magnetic dynamics of five mononuclear β-diketonate-Dy(iii) complexes with capping N-donor coligands, which is studied by the combination of magnetic investigation and ab initio calculation.
Collapse
Affiliation(s)
- Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Peipei Cen
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|
48
|
Chen BY, Tsai MY, Su YC, Lin PH, Long J. Synthesis, structures and magnetic properties of dysprosium( iii) complexes based on amino-bis(benzotriazole phenolate) and nitrophenolates: influence over the slow relaxation of the magnetization. CrystEngComm 2021. [DOI: 10.1039/d1ce00909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Field-induced slow relaxation in dysprosium amino-bis(benzotriazole) phenolate complexes.
Collapse
Affiliation(s)
- Bo-Yi Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Yem Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Jérôme Long
- Univ. Montpellier, CNRS, ENSCM, ICGM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
49
|
Long J, Tolpygin AO, Mamontova E, Lyssenko KA, Liu D, Albaqami MD, Chibotaru LF, Guari Y, Larionova J, Trifonov AA. An unusual mechanism of building up of a high magnetization blocking barrier in an octahedral alkoxide Dy3+-based single-molecule magnet. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01267j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a new octahedral luminescent SMM exhibiting massive crystal-field splitting and an anisotropic barrier of 1385 cm−1.
Collapse
Affiliation(s)
| | - Aleksei O. Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
| | | | - Konstantin A. Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
- Dept. Chem
- Moscow 119991
| | - Dan Liu
- Institute of Flexible Electronics (IFE)
- Northwestern Polytechnical University (NPU)
- Shaanxi
- China
| | | | - Liviu F. Chibotaru
- Theory of Nanomaterials Group and INPAC
- Katholieke Universiteit Leuven
- Heverlee
- Belgium
| | | | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
| |
Collapse
|
50
|
Caporale C, Sobolev AN, Phonsri W, Murray KS, Swain A, Rajaraman G, Ogden MI, Massi M, Fuller RO. Lanthanoid pyridyl-β-diketonate 'triangles'. New examples of single molecule toroics. Dalton Trans 2020; 49:17421-17432. [PMID: 33220677 DOI: 10.1039/d0dt02855j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Trinuclear lanthanoid clusters have been synthesised and investigated as toroidal spin systems. A pyridyl functionalised β-diketonate, 1,3-bis(pyridin-2-yl)propane-1,3-dione (o-dppdH) has been used to synthesise a family of clusters of the form [Dy3(OH)2(o-dppd)3Cl2(H2O)4]Cl2·7H2O (1), [Tb3(o-dppd)3(μ3-OH)2(CH3CH2OH)3Cl3][Tb3(o-dppd)3(μ3-OH)2(H2O)(CH3CH2OH)2Cl3]Cl2·H2O (2), [Ho3(OH)2(o-dppd)3Cl(H2O)5]Cl3·3H2O (3) and [Er3(OH)2(o-dppd)3Cl2(H2O)3(CH3OH)]Cl2·3H2O·CH3OH (4). Despite the previous occurrence of this structural motif in the literature, these systems have not been widely investigated in terms of torodic behaviour. Magnetic studies were used to further characterise the complexes. DC susceptibility studies support weak antiferromagnetic exchange in the complexes. Slow magnetic relaxation behaviour is observed in the dynamic AC magnetic studies for complex 1. Theoretical studies predict that complex 1 and 3 have a non-magnetic ground state based on a toroidal arrangement of spins. Changes to the coordination environment in 2 do not support a toroic spin state. The prolate nature of the ErIII centres in complex 4 and large transverse anisotropy do not support the toroidal arrangement of lanthanoid spins in the complex.
Collapse
Affiliation(s)
- Chiara Caporale
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|