1
|
Le-Vinh B, Steinbring C, Nguyen Le NM, Matuszczak B, Bernkop-Schnürch A. S-Protected Thiolated Chitosan versus Thiolated Chitosan as Cell Adhesive Biomaterials for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40304-40316. [PMID: 37594415 PMCID: PMC10472333 DOI: 10.1021/acsami.3c09337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Chitosan (Ch) and different Ch derivatives have been applied in tissue engineering (TE) because of their biocompatibility, favored mechanical properties, and cost-effectiveness. Most of them, however, lack cell adhesive properties that are crucial for TE. In this study, we aimed to design an S-protected thiolated Ch derivative exhibiting high cell adhesive properties serving as a scaffold for TE. 3-((2-Acetamido-3-methoxy-3-oxopropyl)dithio) propanoic acid was covalently attached to Ch via a carbodiimide-mediated reaction. Low-, medium-, and high-modified Chs (Ch-SS-1, Ch-SS-2, and Ch-SS-3) with 54, 107 and 140 μmol of ligand per gram of polymer, respectively, were tested. In parallel, three thiolated Chs, namely Ch-SH-1, Ch-SH-2, and Ch-SH-3, were prepared by conjugating N-acetyl cysteine to Ch at the same degree of modification to compare the effectiveness of disulfide versus thiol modification on cell adhesion. Ch-SS-1 showed better cell adhesion capability than Ch-SS-2 and Ch-SS-3. This can be explained by the more lipophilic surfaces of Ch-SS as a higher modification was made. Although Ch-SH-1, Ch-SH-2, and Ch-SH-3 were shown to be good substrates for cell adhesion, growth, and proliferation, Ch-SS polymers were superior to Ch-SH polymers in the formation of 3D cell cultures. Cryogels structured by Ch-SS-1 (SSg) resulted in homogeneous scaffolds with tunable pore size and mechanical properties by changing the mass ratio between Ch-SS-1 and heparin used as a cross-linker. SSg scaffolds possessing interconnected microporous structures showed good cell migration, adhesion, and proliferation. Therefore, Ch-SS can be used to construct tunable cryogel scaffolds that are suitable for 3D cell culture and TE.
Collapse
Affiliation(s)
- Bao Le-Vinh
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department
of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh
City, Vietnam
| | - Christian Steinbring
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nguyet-Minh Nguyen Le
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department
of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh
City, Vietnam
| | - Barbara Matuszczak
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, Vázquez-Lasa B, San Román J. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112515. [PMID: 34857294 DOI: 10.1016/j.msec.2021.112515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain; INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
3
|
Mao S, Liu X, Xia W. Chitosan oligosaccharide-g-linalool polymer as inhibitor of hyaluronidase and collagenase activity. Int J Biol Macromol 2020; 166:1570-1577. [PMID: 33189750 DOI: 10.1016/j.ijbiomac.2020.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023]
Abstract
In this study, chitosan oligosaccharide (COS) was modified by grafting Linalool (Lin) on its backbone to improve its anti-inflammatory activity. By changing the molar ratios of COS to Lin, three different degrees of substitution COS-g-Lin1-3 were prepared. The degrees of substitution of derivatives were 0.65, 0.80 and 1.14 respectively. The structure of COS-g-Lin1-3 were characterized by UV-vis, FT-IR, 1H NMR and elemental analysis in order to show the COS-g-Lin1-3 successfully synthesized. Besides, the thermal stability, solubility, pH stability as well as crystallinity were also investigated. The results revealed that the derivatives exhibited higher thermal stability and more remarkable anti-inflammatory property against hyaluronidase and collagenase than that of COS. The good biocompatibility made this novel material a promising and effective compound for anti-inflammatory applications.
Collapse
Affiliation(s)
- Shuifang Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, 214122, Jiangsu, PR China
| | - Xiaoli Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, 214122, Jiangsu, PR China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, 214122, Jiangsu, PR China.
| |
Collapse
|
4
|
|
5
|
Puertas-Bartolomé M, Benito-Garzón L, Fung S, Kohn J, Vázquez-Lasa B, San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110040. [PMID: 31546368 DOI: 10.1016/j.msec.2019.110040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Chronic wounds are particularly difficult to heal and constitute an important global health care problem. Some key factors that make chronic wounds challenging to heal are attributed to the incessant release of free radicals, which activate the inflammatory system and impair the repair of the wound. Intrinsic characteristics of hydrogels are beneficial for wound healing, but the effective control of free radical levels in the wound and subsequent inflammation is still a challenge. Catechol, the key molecule responsible for the mechanism of adhesion of mussels, has been proven to be an excellent radical scavenger and anti-inflammatory agent. Our approach in this work lies in the preparation of a hybrid system combining the beneficial properties of hydrogels and catechol for its application as a bioactive wound dressing to assist in the treatment of chronic wounds. The hydrogel backbone is obtained through a self-covalent crosslinking between chitosan (Ch) and oxidized hyaluronic acid (HAox) in the presence of a synthetic catechol terpolymer, which is subsequently coordinated to Fe to obtain an interpenetrated polymer network (IPN). The structural analysis, catechol release profiles, in vitro biological behavior and in vivo performance of the IPN are analyzed and compared with the semi-IPN (without Fe) and the Ch/HAox crosslinked hydrogels as controls. Catechol-containing hydrogels present high tissue adhesion strength under wet conditions, support growth, migration and proliferation of hBMSCs, protect cells against oxidative stress damage induce by ROS, and promote down-regulation of the pro-inflammatory cytokine IL-1β. Furthermore, in vivo experiments reveal their biocompatibility and stability, and histological studies indicate normal inflammatory responses and faster vascularization, highlighting the performance of the IPN system. The novel IPN design also allows for the in situ controlled and sustained delivery of catechol. Therefore, the developed IPN is a suitable ECM-mimic platform with high cell affinity and bioactive functionalities that, together with the controlled catechol release, will enhance the tissue regeneration process and has a great potential for its application as wound dressing.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain
| | | | - Stephanie Fung
- Rutgers University, New Jersey Center for Biomaterials, 08854 Piscataway, NJ, USA
| | - Joachim Kohn
- Rutgers University, New Jersey Center for Biomaterials, 08854 Piscataway, NJ, USA
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER-BBN, Institute of Health Carlos III, Monforte de Lemos 3-5 (11), 28029 Madrid, Spain
| |
Collapse
|
6
|
Pang X, Li W, Landwehr E, Yuan Y, Wang W, Azevedo HS. Mimicking the endothelial glycocalyx through the supramolecular presentation of hyaluronan on patterned surfaces. Faraday Discuss 2019; 219:168-182. [DOI: 10.1039/c9fd00015a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembled monolayers of hyaluronan (HA)-binding peptide allow immobilization of HA for studying the function of the endothelial glycocalyx.
Collapse
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- Institute of Bioengineering
| | - Weiqi Li
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- Institute of Bioengineering
| | - Eliane Landwehr
- Department of Chemistry
- University of Konstanz
- Konstanz 78464
- Germany
| | - Yichen Yuan
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- Institute of Bioengineering
| | - Wen Wang
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- Institute of Bioengineering
| | - Helena S. Azevedo
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- Institute of Bioengineering
| |
Collapse
|
7
|
Stefanov I, Hinojosa-Caballero D, Maspoch S, Hoyo J, Tzanov T. Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. J Mater Chem B 2018; 6:7943-7953. [PMID: 32255040 DOI: 10.1039/c8tb02483a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work describes the enzymatic synthesis of multifunctional hydrogels for chronic wound treatment using thiolated chitosan and the natural polyphenol chicoric acid. Gelation was achieved by laccase-catalyzed oxidation of chicoric acid, a natural compound used for the first time as a homobifunctional crosslinker, reacting subsequently with nucleophilic thiol and amino groups from the chitosan derivative. This approach allowed for twice as fast gelation at a three-fold reduced crosslinking reagent concentration, compared to reported enzymatic synthesis of hydrogels using gallic acid as a phenolic provider. Hydrogels with 600% swelling capacity, coupled with only 20% weight loss after 6 days under physiological conditions, were obtained. The clinically relevant Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa were reduced by up to 4.5 and 5.5 logs, respectively. A tunable, in the range of 20-95%, ex vivo inhibition of myeloperoxidase (MPO) activity in chronic wound exudate was achieved, together with control over the total matrix metalloproteinase (MMP) activities.
Collapse
Affiliation(s)
- Ivaylo Stefanov
- Grup de Biotecnologia Molecular i Industrial (GBMI), Department of Chemical Engineering, Universitat Politècnica de Catalunya - (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
8
|
Francesko A, Ivanova K, Hoyo J, Pérez-Rafael S, Petkova P, Fernandes MM, Heinze T, Mendoza E, Tzanov T. Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules 2018; 19:3628-3636. [DOI: 10.1021/acs.biomac.8b00626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Antonio Francesko
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Javier Hoyo
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Sílvia Pérez-Rafael
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Petya Petkova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Margarida M Fernandes
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, Jena 07743, Germany
| | - Ernest Mendoza
- Grup de Nanomaterials Aplicats, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, c/Pascual i Vila 15, Barcelona 08028, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
9
|
Puertas-Bartolomé M, Vázquez-Lasa B, San Román J. Bioactive and Bioadhesive Catechol Conjugated Polymers for Tissue Regeneration. Polymers (Basel) 2018; 10:polym10070768. [PMID: 30960693 PMCID: PMC6403640 DOI: 10.3390/polym10070768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
The effective treatment of chronic wounds constitutes one of the most common worldwide healthcare problem due to the presence of high levels of proteases, free radicals and exudates in the wound, which constantly activate the inflammatory system, avoiding tissue regeneration. In this study, we describe a multifunctional bioactive and resorbable membrane with in-built antioxidant agent catechol for the continuous quenching of free radicals as well as to control inflammatory response, helping to promote the wound-healing process. This natural polyphenol (catechol) is the key molecule responsible for the mechanism of adhesion of mussels providing also the functionalized polymer with bioadhesion in the moist environment of the human body. To reach that goal, synthesized statistical copolymers of N-vinylcaprolactam (V) and 2-hydroxyethyl methacrylate (H) have been conjugated with catechol bearing hydrocaffeic acid (HCA) molecules with high yields. The system has demonstrated good biocompatibility, a sustained antioxidant response, an anti-inflammatory effect, an ultraviolet (UV) screen, and bioadhesion to porcine skin, all of these been key features in the wound-healing process. Therefore, these novel mussel-inspired materials have an enormous potential for application and can act very positively, favoring and promoting the healing effect in chronic wounds.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
- CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
10
|
Huber D, Grzelak A, Baumann M, Borth N, Schleining G, Nyanhongo GS, Guebitz GM. Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels. N Biotechnol 2018; 40:236-244. [DOI: 10.1016/j.nbt.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
11
|
Stefanov I, Pérez-Rafael S, Hoyo J, Cailloux J, Santana Pérez OO, Hinojosa-Caballero D, Tzanov T. Multifunctional Enzymatically Generated Hydrogels for Chronic Wound Application. Biomacromolecules 2017; 18:1544-1555. [DOI: 10.1021/acs.biomac.7b00111] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ivaylo Stefanov
- Grup
de Biotecnologia Molecular i Industrial (GBMI), Department of Chemical
Engineering, Universitat Politècnica de Catalunya − (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa, Barcelona, Spain
| | - Sílvia Pérez-Rafael
- Grup
de Biotecnologia Molecular i Industrial (GBMI), Department of Chemical
Engineering, Universitat Politècnica de Catalunya − (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa, Barcelona, Spain
| | - Javier Hoyo
- Grup
de Biotecnologia Molecular i Industrial (GBMI), Department of Chemical
Engineering, Universitat Politècnica de Catalunya − (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa, Barcelona, Spain
| | - Jonathan Cailloux
- Centre
Català del Plàstic (CCP), Universitat Politècnica de Catalunya Barcelona - (UPC-EEBE), C/Colom, 114. Edifici Vapor Universitari, Terrassa 08222, Spain
| | - Orlando O. Santana Pérez
- Centre
Català del Plàstic (CCP), Universitat Politècnica de Catalunya Barcelona - (UPC-EEBE), C/Colom, 114. Edifici Vapor Universitari, Terrassa 08222, Spain
| | - Dolores Hinojosa-Caballero
- Unitat
de ferides Complexes, Consorci Sanitari de Terrassa Hospital de Terrassa, Ctra. Torrebonica, s/n, 08227 Terrassa, Barcelona, Spain
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial (GBMI), Department of Chemical
Engineering, Universitat Politècnica de Catalunya − (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
12
|
Soares da Costa D, Reis RL, Pashkuleva I. Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annu Rev Biomed Eng 2017; 19:1-26. [PMID: 28226217 DOI: 10.1146/annurev-bioeng-071516-044610] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sulfation is a dynamic and complex posttranslational modification process. It can occur at various positions within the glycosaminoglycan (GAG) backbone and modulates extracellular signals such as cell-cell and cell-matrix interactions; different sulfation patterns have been identified for the same organs and cells during their development. Because of their high specificity in relation to function, GAG sulfation patterns are referred to as the sulfation code. This review explores the role of GAG sulfation in different biological processes at the cell, tissue, and organism levels. We address the connection between the sulfation patterns of GAGs and several physiological processes and discuss the misregulation of GAG sulfation and its involvement in several genetic and metabolic disorders. Finally, we present the therapeutic potential of GAGs and their synthetic mimics in the biomedical field.
Collapse
Affiliation(s)
- Diana Soares da Costa
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Biobased Amines: From Synthesis to Polymers; Present and Future. Chem Rev 2016; 116:14181-14224. [DOI: 10.1021/acs.chemrev.6b00486] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vincent Froidevaux
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Claire Negrell
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Sylvain Caillol
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Jean-Pierre Pascault
- INSA-Lyon, IMP, UMR5223, F-69621 Villeurbanne, France
- Université de Lyon, F-69622 Lyon, France
| | - Bernard Boutevin
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| |
Collapse
|
14
|
Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T. Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27066-27077. [PMID: 26593217 DOI: 10.1021/acsami.5b09489] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.
Collapse
Affiliation(s)
- Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Margarida M Fernandes
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Antonio Francesko
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ernest Mendoza
- Laboratory of Applied Nanomaterials, Center for Research in NanoEngineering, Universitat Politècnica de Catalunya , c/Pascual I Vila 15, 08028 Barcelona, Spain
| | - Jamil Guezguez
- Synovo GmbH , Paul Ehrlich 15, D-72076 Tübingen, Germany
| | - Michael Burnet
- Synovo GmbH , Paul Ehrlich 15, D-72076 Tübingen, Germany
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| |
Collapse
|
15
|
Fernandes MM, Rivera D, Francesko A, Šližytė R, Mozuraitytė R, Rommi K, Lantto R, Tzanov T. Bio/sonochemical conversion of fish backbones into bioactive nanospheres. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Perelshtein I, Ruderman E, Francesko A, Fernandes MM, Tzanov T, Gedanken A. Tannic acid NPs - synthesis and immobilization onto a solid surface in a one-step process and their antibacterial and anti-inflammatory properties. ULTRASONICS SONOCHEMISTRY 2014; 21:1916-1920. [PMID: 24365223 DOI: 10.1016/j.ultsonch.2013.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Tannic acid nanoparticles were synthesized from an aqueous solution without the use of stabilizers via a sonochemical process. In order to avoid the dissolution of the formed nanoparticles, the sonochemical reaction was performed in the presence of a cotton fabric: following their formation, the tannic acid nanoparticles were embedded into the cotton substrate in a one-step process. The bioactive properties of the tannic acid coated surface were examined towards the inhibition of myeloperoxidase and collagenase, two major enzymes related with inflammatory processes. In addition, the antibacterial activity of the tannic acid nanoparticles coated textiles was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ilana Perelshtein
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | - Elena Ruderman
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | - Antonio Francesko
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Sant Nebridi s/n, 08222 Terrassa, Spain.
| | - Margarida M Fernandes
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Sant Nebridi s/n, 08222 Terrassa, Spain.
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Sant Nebridi s/n, 08222 Terrassa, Spain.
| | - Aharon Gedanken
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
17
|
Custódio CA, Reis RL, Mano JF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 2014; 3:797-810. [PMID: 24464880 DOI: 10.1002/adhm.201300603] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Indexed: 12/12/2022]
Abstract
Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.
Collapse
Affiliation(s)
- Catarina A. Custódio
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
18
|
Fernandes MM, Francesko A, Torrent-Burgués J, Carrión-Fité FJ, Heinze T, Tzanov T. Sonochemically Processed Cationic Nanocapsules: Efficient Antimicrobials with Membrane Disturbing Capacity. Biomacromolecules 2014; 15:1365-74. [DOI: 10.1021/bm4018947] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margarida M. Fernandes
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| | - Antonio Francesko
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| | - Juan Torrent-Burgués
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| | - F. Javier Carrión-Fité
- Instituto
de Investigación Textil y C.I. de Terrassa Laboratorio de Tensioactivos
y Detergencia, Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de Catalunya, Colom 1508222 Terrassa, Spain
| | - Thomas Heinze
- Center
of Excellence for Polysaccharide Research, Institute of Organic Chemistry
and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department d’Enginyeria
Química, Universitat Politècnica de Catalunya, Rambla
Sant Nebridi 22, 08222 Terrassa, Spain
| |
Collapse
|
19
|
Francesko A, Fernandes MM, Perelshtein I, Benisvy-Aharonovich E, Gedanken A, Tzanov T. One-step sonochemical preparation of redox-responsive nanocapsules for glutathione mediated RNA release. J Mater Chem B 2014; 2:6020-6029. [DOI: 10.1039/c4tb00599f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple and reproducible sonochemical method is described to achieve redox-responsive nanocapsules based on intracellular glutathione levels for enhanced and sustained RNA delivery.
Collapse
Affiliation(s)
- Antonio Francesko
- Grup de Biotecnologia Molecular i Industrial
- Department of Chemical Engineering
- Universitat Polìtecnica de Catalunya
- , Spain
| | - Margarida M. Fernandes
- Grup de Biotecnologia Molecular i Industrial
- Department of Chemical Engineering
- Universitat Polìtecnica de Catalunya
- , Spain
| | - Ilana Perelshtein
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Israel
| | | | - Aharon Gedanken
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Israel
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial
- Department of Chemical Engineering
- Universitat Polìtecnica de Catalunya
- , Spain
| |
Collapse
|
20
|
Fernandes MM, Francesko A, Torrent-Burgués J, Tzanov T. Effect of thiol-functionalisation on chitosan antibacterial activity: Interaction with a bacterial membrane model. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Francesko A, Soares da Costa D, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater 2013; 9:5216-25. [PMID: 23072830 DOI: 10.1016/j.actbio.2012.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
Collagen, collagen/hyaluronic acid (HA) and collagen/HA/chitosan (CS) sponges loaded with epigallocatechin gallate (EGCG), catechin (CAT) and gallic acid (GA) were developed and evaluated as active chronic wound dressings. Their physico-mechanical properties, biostability, biocompatibility and ability to inhibit in vitro myeloperoxidase (MPO) and collagenase--major enzymes related with the persistent inflammation in chronic wounds--were investigated as a function of the biopolymer composition and the polyphenolic compound used. The results demonstrated that the molecular weight of HA influences significantly the bulk properties of the obtained materials: higher elastic modulus, swelling ability and biostability against collagenase were measured when HA with higher molecular weights (830 and 2000 kDa) were added to the collagen matrices. The addition of CS and the polyphenols increased further the biostability of the sponges. Preliminary in vitro tests with fibroblasts revealed that the cells were able to adhere to all sponges. Cell viability was not affected significantly by the addition of the polyphenols; however, the presence of CS or high molecular weight HA in the sponge composition was associated with lower cellular viability. Finally, all specimens containing polyphenols efficiently inhibited the MPO activity. The highest inhibition capacity was observed for EGCG (IC₅₀=15±1μM) and it was coupled to the highest extent of binding to the biopolymers (>80%) and optimal release profile from the sponges that allowed for prolonged (up to 3-5 days) effects.
Collapse
|
22
|
Rocasalbas G, Touriño S, Torres JL, Tzanov T. A new approach to produce plant antioxidant-loaded chitosan for modulating proteolytic environment and bacterial growth. J Mater Chem B 2013; 1:1241-1248. [DOI: 10.1039/c2tb00239f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|