1
|
Thome CP, Fowle JP, McDonnell P, Zultak J, Jayaram K, Neumann AK, López GP, Shields CW. Acoustic pipette and biofunctional elastomeric microparticle system for rapid picomolar-level biomolecule detection in whole blood. SCIENCE ADVANCES 2024; 10:eado9018. [PMID: 39413177 PMCID: PMC11482303 DOI: 10.1126/sciadv.ado9018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Most biosensing techniques require complex processing steps that generate prolonged workflows and introduce potential points of error. Here, we report an acoustic pipette to purify and label biomarkers in 70 minutes. A key aspect of this technology is the use of functional negative acoustic contrast particles (fNACPs), which display biorecognition motifs for the specific capture of biomarkers from whole blood. Because of their large size and compressibility, the fNACPs robustly trap along the pressure antinodes of a standing wave and separate from blood components in under 60 seconds with >99% efficiency. fNACPs are subsequently fluorescently labeled in the pipette and are analyzed by both a custom, portable fluorimeter and flow cytometer. We demonstrate the detection of anti-ovalbumin antibodies from blood at picomolar levels (35 to 60 pM) with integrated controls showing minimal nonspecific adsorption. Overall, this system offers a simple and versatile approach for the rapid, sensitive, and specific capture of biomolecules.
Collapse
Affiliation(s)
- Cooper P. Thome
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - John P. Fowle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Parker McDonnell
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Johanna Zultak
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaushik Jayaram
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Aaron K. Neumann
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Gabriel P. López
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Thome C, Hoertdoerfer WS, Bendorf JR, Lee JG, Shields CW. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. NANO LETTERS 2023; 23:2379-2387. [PMID: 36881680 PMCID: PMC10038089 DOI: 10.1021/acs.nanolett.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
Collapse
Affiliation(s)
- Cooper
P. Thome
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Wren S. Hoertdoerfer
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Julia R. Bendorf
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jin Gyun Lee
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Hladysh S, Oleshchuk D, Dvořáková J, Šeděnková I, Filipová M, Pobořilová Z, Pánek J, Proks V. Comparison of carboxybetaine with sulfobetaine polyaspartamides: Nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion. J Appl Polym Sci 2021. [DOI: 10.1002/app.52099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sviatoslav Hladysh
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Diana Oleshchuk
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science Charles University in Prague Prague 2 Czech Republic
| | - Jana Dvořáková
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Ivana Šeděnková
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Zuzana Pobořilová
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| |
Collapse
|
4
|
Wu C, Zheng J, Hu J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Li D, Lin J, An Z, Li Y, Zhu X, Yang J, Wang Q, Zhao J, Zhao Y, Chen L. Enhancing hydrophilicity and comprehensive antifouling properties of microfiltration membrane by novel hyperbranched poly(N-acryoyl morpholine) coating for oil-in-water emulsion separation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Wu C, Zhou Y, Wang H, Hu J, Wang X. Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Ye H, Han M, Huang R, Schmidt TA, Qi W, He Z, Martin LL, Jay GD, Su R, Greene GW. Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18090-18102. [PMID: 31026132 DOI: 10.1021/acsami.9b01493] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preventing the unwanted adsorption of proteins and cells at articular cartilage surfaces plays a critical role in maintaining healthy joints and avoiding degenerative diseases such as osteoarthritis. Immobilized at the surface of healthy articular cartilage is a thin, interfacial layer of macromolecules consisting mainly of hyaluronic acid (HA) and lubricin (LUB; a.k.a. PRG4) that is believed to form a co-adsorbed, composite film now known to exhibit synergistic tribological properties. Bioinspired by the composition of cartilage surfaces, composite layers of HA and LUB were grafted to Au surfaces and the antiadhesive properties were assessed using surface plasmon resonance and quartz crystal microbalance. A clear synergistic enhancement in antiadhesive properties was observed in the composite films relative to grafted HA and LUB layers alone. Atomic force microscopy (AFM) normal force measurements provide insight into the architecture of the HA/LUB composite layer and implicate a strong contribution of hydrophobic interactions in the binding of LUB end-domains directly to HA chains. These AFM force measurements indicate that the adhesion of LUB to HA is strong and indicate that the hydrophobic coupling of LUB to HA shields the hydrophobic domains in these molecules from interactions with other proteins or molecules.
Collapse
Affiliation(s)
| | - Mingyu Han
- Institute of Frontier Materials, Australian Centre of Excellence in Electromaterials Science , Deakin University , 75 Pigdons Road , Waurn Ponds , VIC 3216 , Australia
| | | | - Tannin A Schmidt
- Biomedical Engineering Department , University of Connecticut , 263 Farmington Avenue , Farmington , Connecticut 06030 , United States
| | | | | | - Lisandra L Martin
- School of Chemistry , Monash University , Wellington Road , Clayton , VIC 3800 , Australia
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School, Division of Biomedical Engineering, School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | | | - George W Greene
- Institute of Frontier Materials, Australian Centre of Excellence in Electromaterials Science , Deakin University , 75 Pigdons Road , Waurn Ponds , VIC 3216 , Australia
| |
Collapse
|
8
|
Wu C, Zhou Y, Wang H, Hu J. P4VP Modified Zwitterionic Polymer for the Preparation of Antifouling Functionalized Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E706. [PMID: 31067668 PMCID: PMC6566957 DOI: 10.3390/nano9050706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Zwitterionic polymers are suitable for replacing poly(ethylene glycol) (PEG) polymers because of their better antifouling properties, but zwitterionic polymers have poor mechanical properties, strong water absorption, and their homopolymers should not be used directly. To solve these problems, a reversible-addition fragmentation chain transfer (RAFT) polymerization process was used to prepare copolymers comprised of zwitterionic side chains that were attached to an ITO glass substrate using spin-casting. The presence of 4-vinylpyridine (4VP) and zwitterion chains on these polymer-coated ITO surfaces was confirmed using 1H NMR, FTIR, and GPC analyses, with successful surface functionalization confirmed using water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) studies. Changes in water contact angles and C/O ratios (XPS) analysis demonstrated that the functionalization of these polymers with β-propiolactone resulted in hydrophilic mixed 4VP/zwitterionic polymers. Protein adsorption and cell attachment assays were used to optimize the ratio of the zwitterionic component to maximize the antifouling properties of the polymer brush surface. This work demonstrated that the antifouling surface coatings could be readily prepared using a "P4VP-modified" method, that is, the functionality of P4VP to modify the prepared zwitterionic polymer. We believe these materials are likely to be useful for the preparation of biomaterials for biosensing and diagnostic applications.
Collapse
Affiliation(s)
- Chaoqun Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Yudan Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
9
|
Zhao J, Li D, Han H, Lin J, Yang J, Wang Q, Feng X, Yang N, Zhao Y, Chen L. Hyperbranched Zwitterionic Polymer-Functionalized Underwater Superoleophobic Microfiltration Membranes for Oil-in-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2630-2638. [PMID: 30677303 DOI: 10.1021/acs.langmuir.8b03231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inspired by mussel adhesion chemistry, a kind of hydrophilic poly(vinylidene fluoride) (PVDF) microfiltration membrane with underwater superoleophobicity was prepared using thiolated hyperbranched zwitterionic poly(sulfobetaine methacrylate) (HPS) as a nanoscale surface modifier. The HPS was first synthesized via reversible addition fragmentation chain transfer (RAFT) copolymerization and followed by sulfonation reaction and then coated onto polydopamine (PD) adhesive PVDF membranes via thiol-mediated Michael addition reaction. The successful and uniform coating of HPS onto the membrane surface was demonstrated by X-ray photoelectron spectroscopy and by using an energy dispersive X-ray detector. The surface micro-nano morphology and increased roughness of the PD/HPS-modified (M-PD/HPS) membrane were also investigated by using a field emission scanning electron microscope and an atomic force microscope. The M-PD/HPS membrane could be wetted completely by water, and the underwater oil contact angles were about 160°, indicating the M-PD/HPS membrane has excellent hydrophilicity and underwater superoleophobicity. Compared with the pure PVDF membrane, the M-PD/HPS membrane for hexane-in-water emulsion separation exhibited an enhanced water filtration flux of 10 707 L m-2 h-1 (0.1 MPa), and the oil rejection ratio was above 99.9%. Besides, the excellent antifouling ability and recyclable properties of the M-PD/HPS membranes would make them suitable for long-time use. Thus, the approach of mussel adhesion chemistry employing the RAFT-mediated nanosized hyperbranched zwitterionic polymers as postmodification reagents showed a good application prospect in purification of oily waste water and oil recovery.
Collapse
Affiliation(s)
- Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Dongyang Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Hongrui Han
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Jingjing Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Qiqi Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Xia Feng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| |
Collapse
|
10
|
Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci 2017; 101:31-42. [PMID: 28137471 DOI: 10.1016/j.ejps.2017.01.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/14/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
From the last couple of decades, lyotropic liquid crystals have garnered enormous attentions in medical and pharmaceutical sciences. Non-toxic, chemically stable, and biocompatible properties of these liquid crystal systems are contributing to their applications for drug delivery. Among a large variety of liquid crystal phases, inverse bicontinuous cubic and inverse hexagonal mesophases have been extensively investigated for their ability to encapsulate and controlled release of bioactive molecules of various sizes and polarity. The concept of changing the drug release rate in situ by simply changing the mesophase structure is much more fascinating. The encapsulation of bioactive compounds in mesophase systems of desirable features in sub-micron sized particles such as hexosomes and cubosomes, at ambient and high temperature is bringing innovation in the development of new drug applications. This review article outlines unique structural features of cubosomes and hexosomes, their methods of productions, factors affecting their formations and their potential utilization as smart nano-carriers for biopharmaceuticals in drug delivery applications.
Collapse
Affiliation(s)
- Samina Akbar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, KSK Campus, GT Road, Lahore, Pakistan.
| | - Aneela Anwar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, KSK Campus, GT Road, Lahore, Pakistan
| | | | - Joanne M Elliott
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD
| | - Adam M Squires
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD
| |
Collapse
|
11
|
Chang B, Zhang B, Sun T. Smart Polymers with Special Wettability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 27008568 DOI: 10.1002/smll.201503472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/10/2016] [Indexed: 05/16/2023]
Abstract
Surface wettability plays a key role in addressing issues ranging from basic life activities to our daily life, and thus being able to control it is an attractive goal. Learning from nature, both of its structure and function, brings us much inspiration in designing smart polymers to tackle this major challenge. Life functions particularly depend on biomolecular recognition-induced interfacial properties from the aqueous phase onto either "soft" cell and tissue or "hard" inorganic bone and tooth surfaces. The driving force is noncovalent weak interactions rather than strong covalent combinations. An overview is provided of the weak interactions that perform vital actions in mediating biological processes, which serve as a basis for elaborating multi-component polymers with special wettabilities. The role of smart polymers from molecular recognitions to macroscopic properties are highlighted. The rationale is that highly selective weak interactions are capable of creating a dynamic synergetic communication in the building components of polymers. Biomolecules could selectively induce conformational transitions of polymer chains, and then drive a switching of physicochemical properties, e.g., roughness, stiffness and compositions, which are an integrated embodiment of macroscopic surface wettabilities.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Bei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P.R. China
| |
Collapse
|
12
|
Tracing drug release process with dual-modal hyperbranched polymer-gold nanoparticle complexes. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0228-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Jin X, Yuan J, Shen J. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Colloids Surf B Biointerfaces 2016; 145:275-284. [PMID: 27208441 DOI: 10.1016/j.colsurfb.2016.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
A low-fouling zwitterionic surface strategy has been proven to be promising and effective for repelling nonspecific adsorption of proteins, cells and bacteria, which may eventually induce adverse pathogenic problems such as thrombosis and infection. Herein, a multi-step process was developed by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) technique for improving hemocompatible and anti-biofouling properties. Polyethylene terephthalate (PET) sheets were first treated with dopamine, and then the bromoalkyl initiators were immobilized on the poly(dopamine) functionalized surfaces, followed by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) of 2-(dimethylamino) ethyl methacrylate (DMAEMA) monomer. Subsequently, the resulting PET sheets were ring-opening reacted with 1,3-propiolactone (PL) and 1,3-propanesultone (PS) to afford polycarboxybetaine and polysulfobetaine brushes, respectively. Characterizations of the PET sheets were undertaken by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscope (AFM), water contact angle (WCA) measurements, and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The conversion rates of PDMAEMA to polyzwitterions were evaluated by XPS analysis. The remained PDMAEMA(weak cationic) and formed zwitterions(neutral) would form a synergetic antifouling and antibacterial surface. Hemocompatible and anti-biofouling properties were evaluated by total adsorption of protein as well as the adhesion of platelet, cell and bacterium. Zwitterionic polymer brushes grafted PET sheets showed outstanding hemocompatibility featured on reduced platelet adhesion and repelled protein adsorption. Meanwhile, the grafted PET sheets exerted excellent anti-biofouling property characterized by the resisted adhesion of Escherichia coli and 3T3 cells. In summary, zwitterionic polymer brushed modified PET sheets have a great potential for biomedical applications.
Collapse
Affiliation(s)
- Xingxing Jin
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
14
|
Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polym Chem 2016. [DOI: 10.1039/c6py01006g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unimolecular micelles have high functionalities, encapsulation capabilities and site specific confinement abilities in various applications.
Collapse
Affiliation(s)
- Xiaoshan Fan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
15
|
Qiu F, Huang Y, Zhu X. Fluorescent Unimolecular Conjugated Polymeric Micelles for Biological Applications. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P. R. China
| | - Yu Huang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
16
|
Yang J, Hua Z, Wang T, Wu B, Liu G, Zhang G. Counterion-Specific Protein Adsorption on Polyelectrolyte Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6078-6084. [PMID: 25985929 DOI: 10.1021/acs.langmuir.5b01145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein adsorption is an important issue in biorelated fields. We have investigated the protein adsorption on the poly(ionic liquid) (PIL) brushes in the presence of different types of counterions. The protein adsorption is driven by a decrease in osmotic pressure within the brushes with an increase in entropy via the release of counterions. Our study demonstrates that counterion specificity has a significant influence on protein adsorption on the PIL brushes. There have been two different regimes for counterion-specific protein adsorption. When the released counterions cannot bind to the protein surface, the counterion-specific protein adsorption is dominated by the ion-specific counterion condensation within the PIL brushes. If the released counterions can bind to the protein surface, then counterion-specific protein adsorption is dominated by the ion-specific rebinding of released counterions on the protein surface. This work opens up a new opportunity for controlling protein adsorption on polyelectrolyte brushes.
Collapse
Affiliation(s)
- Jun Yang
- †Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, PR China
| | - Zan Hua
- †Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, PR China
| | - Tao Wang
- †Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, PR China
| | - Bo Wu
- ‡Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guangming Liu
- †Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, PR China
| | - Guangzhao Zhang
- ‡Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
17
|
Greene GW, Martin LL, Tabor RF, Michalczyk A, Ackland LM, Horn R. Lubricin: A versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials 2015; 53:127-36. [DOI: 10.1016/j.biomaterials.2015.02.086] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 12/31/2022]
|
18
|
Mo B, Liu H, Zhou X, Zhao Y. Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym Chem 2015. [DOI: 10.1039/c5py00132c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successive RAFT SCVP and ROP were used to generate novel hyperbranched graft copolymers with the ability for the photo-triggered degradation and accelerative release of hydrophobic dye.
Collapse
Affiliation(s)
- Bin Mo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangdong Zhou
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
19
|
Zheng X, Zhang C, Bai L, Liu S, Tan L, Wang Y. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. J Mater Chem B 2015; 3:1921-1930. [DOI: 10.1039/c4tb01766h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of well-controlled bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymers were grafted to gold surfaces through an in situ aminolysis reaction to reduce protein adsorption and platelet adhesion.
Collapse
Affiliation(s)
- Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Chong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| |
Collapse
|
20
|
Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Bhadra P, Shajahan MS, Bhattacharya E, Chadha A. Studies on varying n-alkanethiol chain lengths on a gold coated surface and their effect on antibody–antigen binding efficiency. RSC Adv 2015. [DOI: 10.1039/c5ra11725a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibody immobilization efficiency varied with the SAM of n-alkanethiols. However, this did not necessarily result in a corresponding increase in antigen binding.
Collapse
Affiliation(s)
- P. Bhadra
- Centre for NEMS and Nanophotonics
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - M. S. Shajahan
- Centre for NEMS and Nanophotonics
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - E. Bhattacharya
- Centre for NEMS and Nanophotonics
- Indian Institute of Technology Madras
- Chennai 600 036
- India
- Department of Electrical Engineering
| | - A. Chadha
- Centre for NEMS and Nanophotonics
- Indian Institute of Technology Madras
- Chennai 600 036
- India
- Department of Biotechnology
| |
Collapse
|
22
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
23
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
24
|
Chong JYT, Mulet X, Postma A, Keddie DJ, Waddington LJ, Boyd BJ, Drummond CJ. Novel RAFT amphiphilic brush copolymer steric stabilisers for cubosomes: poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate). SOFT MATTER 2014; 10:6666-6676. [PMID: 25058647 DOI: 10.1039/c4sm01064g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Copolymers, particularly Pluronics®, are typically used to sterically stabilise colloidal nanostructured particles composed of a lyotropic liquid crystalline bicontinuous cubic phase (cubosomes). There is a need to design and assess new functionalisable stabilisers for these colloidal drug delivery systems. Six amphiphilic brush copolymers, poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate) (P(ODA)-b-P(PEGA-OMe)), synthesised by reversible addition-fragmentation chain transfer (RAFT), were assessed as novel steric stabilisers for cubosomes. It was found that increasing the density of PEG on the nanostructured particle surface by incorporating a PEG brush design (i.e., brush copolymer), provided comparable and/or increased stabilisation effectiveness compared to a linear PEG structure, Pluronic® F127, which is extensively used for steric stabilisation of cubosomes. Assessment was conducted both prior to and following the removal of the dodecyl trithiocarbonate end-group, by free radical-induced reduction. The reduced (P(ODA)-b-P(PEGA-OMe) copolymers were more effective steric stabilisers for phytantriol and monoolein colloidal particle dispersions than their non-reduced analogues. High throughput characterisation methodologies, including an accelerated stability assay (ASA) and synchrotron small angle X-ray scattering (SAXS), were implemented in this study for the rapid assessment of steric stabiliser effectiveness and lyotropic liquid crystalline phase identification. Phytantriol cubosomes stabilised with P(ODA)-b-P(PEGA-OMe) copolymers exhibited a double diamond cubic phase (Q(2)(D)), whilst monoolein cubosomes exhibited a primitive cubic phase (Q(2)(P)), analogous to those formed using Pluronic® F127.
Collapse
Affiliation(s)
- Josephine Y T Chong
- CSIRO Materials Science and Engineering, Private Bag 10, Clayton, VIC 3169, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhi X, Li P, Gan X, Zhang W, Shen T, Yuan J, Shen J. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1619-28. [DOI: 10.1080/09205063.2014.943537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Liu G, Cai M, Zhou F, Liu W. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. J Phys Chem B 2014; 118:4920-31. [PMID: 24735439 DOI: 10.1021/jp500074g] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fabrication of core/shell charged polymer brushes-grafted hollow silica nanoparticles (PSPMA-g-HSNPs) is reported. Because of the excellent hydration capability of the shells consisting of charged polymer brushes, the functional nanoparticles can achieve a good lubricating effect in aqueous media via hydration lubrication mechanism. The mesoporous hollow silica cores endow the nanoparticles with drug loading-release capability. Aspirin, as a useful drug for treating arthritis, was employed to carry out in vitro drug loading and release studies. It is clear that brushes-modified hollow silica exhibited long-term drug release performance. The combination of lubrication and drug loading capabilities results in the great clinical potential of new multifunctional nanoparticles as injectable joint lubricant fluid in arthritis treatment.
Collapse
Affiliation(s)
- Guoqiang Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, Gansu, China
| | | | | | | |
Collapse
|
27
|
Lu C, Zhao D, Wang S, Wang Y, Wang Y, Gao H, Ma J, Wu G. Synthesis and characterization of zwitterionic peptides derived from natural amino acids and their resistance to protein adsorption. RSC Adv 2014. [DOI: 10.1039/c3ra47353h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
28
|
Schüll C, Frey H. Grafting of hyperbranched polymers: From unusual complex polymer topologies to multivalent surface functionalization. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.07.065] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Li P, Cai X, Wang D, Chen S, Yuan J, Li L, Shen J. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Colloids Surf B Biointerfaces 2013; 110:327-32. [PMID: 23735748 DOI: 10.1016/j.colsurfb.2013.04.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 11/19/2022]
Abstract
Inspired by the composition of adhesive proteins in mussels, we used self-polymerized dopamine to form a thin and surface-adherent polydopamine layer onto poly(ethylene terephthalate) (PET) sheet, followed by covalent grafting cysteine (Cys) to improve hemocompatibility and anti-biofouling property. The obtained surfaces were characterized by water contact angle measurements (WCA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The results of platelet adhesion and protein adsorption tests showed that cysteine immobilized PET was endowed with improved resistance to nonspecific protein adsorption and platelet adhesion. The results of hemolysis rate test showed cysteine grafted PET (PET-g-Cys) had low hemolytic ability. Cell assay results showed that PET-g-Cys surface could greatly inhibit HeLa cell adhesion. These works provide an ideal hemocompatible and antifouling surface for biomedical applications.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Key Laboratory for Biofunctional Materials, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Yuan J, Huang X, Li P, Li L, Shen J. Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property. Polym Chem 2013. [DOI: 10.1039/c3py00565h] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|