1
|
Kim N, Shin S, Bae SW. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. BIOSENSORS-BASEL 2021; 11:bios11020039. [PMID: 33572585 PMCID: PMC7911721 DOI: 10.3390/bios11020039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.
Collapse
Affiliation(s)
- Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea;
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
| | - Se Won Bae
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3543
| |
Collapse
|
2
|
Keyes J, Mehta S, Zhang J. Strategies for Multiplexed Biosensor Imaging to Study Intracellular Signaling Networks. Methods Mol Biol 2021; 2350:1-20. [PMID: 34331275 PMCID: PMC8580745 DOI: 10.1007/978-1-0716-1593-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Signal transduction processes are a necessary component of multicellular life, and their dysregulation is the basis for a host of syndromes and diseases. Thus, it is imperative that we discover the complex details of how signal transduction processes result in specific cellular outcomes. One of the primary mechanisms of regulation over signaling pathways is through spatiotemporal control. However, traditional methods are limited in their ability to reveal such details. To overcome these limitations, researchers have developed a variety of genetically encodable, fluorescent protein-based biosensors to study these dynamic processes in real time in living cells. Due to the complexities and interconnectedness of signaling pathways, it is thus desirable to use multiple biosensors in individual cells to better elucidate the relationships between signaling pathways. However, multiplexed imaging with such biosensors has been historically difficult. Nevertheless, recent developments in designs and multiplexing strategies have led to vast improvements in our capabilities. In this review, we provide perspectives on the recently developed biosensor designs and multiplexing strategies that are available for multiplexed imaging of signal transduction pathways.
Collapse
Affiliation(s)
- Jeremiah Keyes
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Rational Design of a Protein Kinase A Nuclear-cytosol Translocation Reporter. Sci Rep 2020; 10:9365. [PMID: 32518322 PMCID: PMC7283302 DOI: 10.1038/s41598-020-66349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Kinase A (PKA) exists as a tetrameric holoenzyme which activates with increase of cAMP and plays an important role in many physiological processes including cardiac physiology, neuronal development, and adipocyte function. Although this kinase has been the subject of numerous biosensor designs, a single-fluorophore reporter that performs comparably to Förster resonance energy transfer (FRET) has not yet been reported. Here, we have used basic observations of electrostatic interactions in PKA substrate recognition mechanism and nucleus localization sequence motif to design a phosphorylation switch that shuttles between the cytosol and the nucleus, a strategy that should be generalizable to all basophilic kinases. The resulting reporter yielded comparable kinetics and dynamic range to the PKA FRET reporter, AKAR3EV. We also performed basic characterization and demonstrated its potential use in monitoring multiple signaling molecules inside cells using basic fluorescence microscopy. Due to the single-fluorophore nature of this reporter, we envision that this could find broad applications in studies involving single cell analysis of PKA activity.
Collapse
|
4
|
Mo GCH, Posner C, Rodriguez EA, Sun T, Zhang J. A rationally enhanced red fluorescent protein expands the utility of FRET biosensors. Nat Commun 2020; 11:1848. [PMID: 32296061 PMCID: PMC7160135 DOI: 10.1038/s41467-020-15687-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/20/2020] [Indexed: 11/30/2022] Open
Abstract
Genetically encoded Förster Resonance Energy Transfer (FRET)-based biosensors are powerful tools to illuminate spatiotemporal regulation of cell signaling in living cells, but the utility of the red spectrum for biosensing was limited due to a lack of bright and stable red fluorescent proteins. Here, we rationally improve the photophysical characteristics of the coral-derived fluorescent protein TagRFP-T. We show that a new single-residue mutant, super-TagRFP (stagRFP) has nearly twice the molecular brightness of TagRFP-T and negligible photoactivation. stagRFP facilitates significant improvements on multiple green-red biosensors as a FRET acceptor and is an efficient FRET donor that supports red/far-red FRET biosensing. Capitalizing on the ability of stagRFP to couple with multiple FRET partners, we develop a novel multiplex method to examine the confluence of signaling activities from three kinases simultaneously in single living cells, providing evidence for a role of Src family kinases in regulating growth factor induced Akt and ERK activities.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Clara Posner
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Tengqian Sun
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Abstract
Förster resonance energy transfer (FRET) is a powerful tool for the visualization of molecular signaling events such as protein activities and interactions in cells. In its different implementations, FRET microscopy has been mainly used for monitoring single events. Recently, there has been a trend of extending FRET imaging towards the simultaneous detection of multiple events and interactions. The concomitant increase in experimental complexity requires a deeper understanding of the biophysical background of FRET. The presence of multiple acceptors for one donor affects the well-known formalism for FRET between two molecules, increasing distance sensitivity through mechanisms that have become known as the ‘antenna’ and ‘surplus’ effect. We will discuss the nature of these effects and present the imaging methods that have been used to unravel the combined transfer rates in the multi-protein interactions of multiplexed FRET experiments. Multiplexing strategies are becoming invaluable analytical tools for the elucidation of biological complexes and for the visualization of decision points in cellular signaling networks in physiological and pathological conditions.
Collapse
|
6
|
Jones-Tabah J, Clarke PB, Hébert TE. Measuring G protein-coupled receptor signalling in the brain with resonance energy transfer based biosensors. Curr Opin Pharmacol 2016; 32:44-48. [PMID: 27837687 DOI: 10.1016/j.coph.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/30/2016] [Indexed: 01/06/2023]
Abstract
Activation of a G protein-coupled receptor (GPCR) triggers downstream signalling pathways whose identity is determined not only by the genetic background of the cell, but also by the interacting ligand. Assays that measure endogenous GPCR signalling in vivo are needed to specify the intracellular signalling pathways leading to therapeutic vs. adverse outcomes in animal models. To this end, genetically encoded biosensors can be expressed in vivo with cell type specificity to report GPCR signalling in real time. Biosensor imaging is facilitated by novel microscopic and photometric techniques developed for imaging in behaving animals. The techniques discussed here herald a new wave of in vivo signalling studies that will help identify therapeutically relevant signalling, and design functionally selective drugs for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Paul Bs Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
Handly LN, Yao J, Wollman R. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks. J Mol Biol 2016; 428:3669-82. [PMID: 27430597 PMCID: PMC5023475 DOI: 10.1016/j.jmb.2016.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022]
Abstract
Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.
Collapse
Affiliation(s)
- L Naomi Handly
- Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA 90095, USA
| | - Jason Yao
- Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA 90095, USA
| | - Roy Wollman
- Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Gorshkov K, Zhang J. Visualization of cyclic nucleotide dynamics in neurons. Front Cell Neurosci 2014; 8:395. [PMID: 25538560 PMCID: PMC4255612 DOI: 10.3389/fncel.2014.00395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022] Open
Abstract
The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Laboratory of Dr. Jin Zhang, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| | - Jin Zhang
- Laboratory of Dr. Jin Zhang, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, Maryland, USA
| |
Collapse
|
9
|
Lindenburg L, Merkx M. Engineering genetically encoded FRET sensors. SENSORS 2014; 14:11691-713. [PMID: 24991940 PMCID: PMC4168480 DOI: 10.3390/s140711691] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands.
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands.
| |
Collapse
|
10
|
Aye-Han NN, Zhang J. A multiparameter live cell imaging approach to monitor cyclic AMP and protein kinase A dynamics in parallel. Methods Mol Biol 2014; 1071:207-15. [PMID: 24052391 DOI: 10.1007/978-1-62703-622-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Parallel detection of signaling activities allows us to correlate activity dynamics between signaling molecules. In this review, we detail a multiparameter live cell imaging method to monitor 3',5'-cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activities in parallel.
Collapse
Affiliation(s)
- Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
11
|
Tewson PH, Quinn AM, Hughes TE. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells. JOURNAL OF BIOMOLECULAR SCREENING 2013; 18:797-806. [PMID: 23580666 PMCID: PMC4242713 DOI: 10.1177/1087057113485427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.
Collapse
|
12
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
13
|
Depry C, Mehta S, Zhang J. Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors. Pflugers Arch 2012; 465:373-81. [PMID: 23138230 DOI: 10.1007/s00424-012-1175-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/13/2012] [Indexed: 12/25/2022]
Abstract
Cells rely on a complex, interconnected network of signaling pathways to sense and interpret changes in their extracellular environment. The development of genetically encoded fluorescent protein (FP)-based biosensors has made it possible for researchers to directly observe and characterize the spatiotemporal dynamics of these intracellular signaling pathways in living cells. However, detailed information regarding the precise temporal and spatial relationships between intersecting pathways is often lost when individual signaling events are monitored in isolation. As the development of biosensor technology continues to advance, it is becoming increasingly feasible to image multiple FP-based biosensors concurrently, permitting greater insights into the intricate coordination of intracellular signaling networks by enabling parallel monitoring of distinct signaling events within the same cell. In this review, we discuss several strategies for multiplexed imaging of FP-based biosensors, while also underscoring some of the challenges associated with these techniques and highlighting additional avenues that could lead to further improvements in parallel monitoring of intracellular signaling events.
Collapse
Affiliation(s)
- Charlene Depry
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
14
|
Scott JD, Newton AC. Shedding light on local kinase activation. BMC Biol 2012; 10:61. [PMID: 22805055 PMCID: PMC3398854 DOI: 10.1186/1741-7007-10-61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation is the predominant language of cell signaling. And, as with any common language, an abundance of dialects has evolved to convey complex information. We discuss here how biosensors are being used to decode this language, affording an unprecedented glimpse into spatio-temporal patterns of protein phosphorylation events within the cell.
Collapse
Affiliation(s)
- John D Scott
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine,1959 Pacific Ave, NE, Seattle, WA 98195 USA.
| | | |
Collapse
|