• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643607)   Today's Articles (624)   Subscriber (50553)
For: Xu J, Yang X, Wong TL, Lee CS. Large-scale synthesis of Cu2SnS3 and Cu(1.8)S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells. Nanoscale 2012;4:6537-42. [PMID: 22968176 DOI: 10.1039/c2nr31724a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Number Cited by Other Article(s)
1
Zhang J, Chen X, Dong L, Zheng W. The Low-cost g-C3N4/CuS Electrode for QDSCs Prepared with Low-temperature Solid-state Method. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
2
Koskela K, Mora Perez C, Eremin DB, Evans JM, Strumolo MJ, Lewis NS, Prezhdo OV, Brutchey RL. Polymorphic Control of Solution-Processed Cu2SnS3 Films with Thiol-Amine Ink Formulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022;34:8654-8663. [PMID: 36248230 PMCID: PMC9558449 DOI: 10.1021/acs.chemmater.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Indexed: 05/10/2023]
3
Process optimization for decoration of Bi2Se3 nanoparticles on CdS nanowires: Twofold power conversion solar cell efficiency. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
4
Zhu Y, Qing H, Dong W, Dong M, Shen T, Cui J. Solvent engineering to regulate the phase of copper zinc tin sulfide nanocrystals. Dalton Trans 2022;51:17328-17337. [DOI: 10.1039/d2dt02899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
One-step synthesis of MOF-derived Cu@N-doped carbon composites as counter electrode catalysts for quantum dot-sensitized solar cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Jathar S, Rondiya SR, Jadhav YA, Nilegave DS, Cross RW, Barma SV, Nasane MP, Gaware SA, Bade BR, Jadkar SR, Funde AM, Dzade NY. Ternary Cu2SnS3: Synthesis, Structure, Photoelectrochemical Activity, and Heterojunction Band Offset and Alignment. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021;33:1983-1993. [PMID: 33840893 PMCID: PMC8026117 DOI: 10.1021/acs.chemmater.0c03223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/08/2021] [Indexed: 06/01/2023]
7
Wang Q, Zhou M, Zhang L. A dual mode photoelectrochemical sensor for nitrobenzene and L-cysteine based on 3D flower-like Cu2SnS3@SnS2 double interfacial heterojunction photoelectrode. JOURNAL OF HAZARDOUS MATERIALS 2020;382:121026. [PMID: 31446355 DOI: 10.1016/j.jhazmat.2019.121026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 05/14/2023]
8
Wu P, Xu Y, Zhan J, Li Y, Xue H, Pang H. The Research Development of Quantum Dots in Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018;14:e1801479. [PMID: 30141575 DOI: 10.1002/smll.201801479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/20/2018] [Indexed: 05/26/2023]
9
Stroyuk O, Raevskaya A, Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 2018;47:5354-5422. [PMID: 29799031 DOI: 10.1039/c8cs00029h] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
10
Pejjai B, Minnam Reddy VR, Gedi S, Park C. Review on earth-abundant and environmentally benign Cu–Sn–X(X = S, Se) nanoparticles by chemical synthesis for sustainable solar energy conversion. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
11
Supercritical methanol synthesis, phase evolution and formation mechanism of Cu1.8S and Cu9S5/CuS complex microcrystal. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
12
Bhat SV, Dhanasekar M, Rickey KM, Ruan X. Facile In Situ Growth of Nanostructured Copper Sulfide Films Directly on FTO Coated Glass Substrates as Efficient Counter Electrodes for Quantum Dot Sensitized Solar Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
13
Sun S, Li P, Liang S, Yang Z. Diversified copper sulfide (Cu2-xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. NANOSCALE 2017;9:11357-11404. [PMID: 28776056 DOI: 10.1039/c7nr03828c] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
14
Kozytskiy AV, Stroyuk OL, Raevskaya AE, Kuchmy SY. Photoelectrochemical Solar Cells with Semiconductor Nanoparticles and Liquid Electrolytes: a Review. THEOR EXP CHEM+ 2017. [DOI: 10.1007/s11237-017-9512-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
15
Kamaja CK, Devarapalli RR, Shelke MV. One-Step Synthesis of a MoS2 −CuS Composite with High Electrochemical Activity as an Effective Counter Electrode for CdS/CdSe Sensitized Solar Cells. ChemElectroChem 2017. [DOI: 10.1002/celc.201700231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
16
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017;117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
17
Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M. Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2016;8:27688-27700. [PMID: 27700023 DOI: 10.1021/acsami.6b08921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
18
Zhu Y, Cui H, Jia S, Zheng J, Yang P, Wang Z, Zhu Z. 3D Graphene Frameworks with Uniformly Dispersed CuS as an Efficient Catalytic Electrode for Quantum Dot-Sensitized Solar Cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Ghosh D, Halder G, Sahasrabudhe A, Bhattacharyya S. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells. NANOSCALE 2016;8:10632-10641. [PMID: 27146800 DOI: 10.1039/c6nr01161f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
20
Milan R, Hassan M, Selopal GS, Borgese L, Natile MM, Depero LE, Sberveglieri G, Concina I. A Player Often Neglected: Electrochemical Comprehensive Analysis of Counter Electrodes for Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2016;8:7766-7776. [PMID: 26955853 DOI: 10.1021/acsami.5b11508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
21
Guo Y, Yin X, Yang Y, Que W. Construction of ZnO/Cu2SnS3 nanorod array films for enhanced photoelectrochemical and photocatalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra22674d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
22
Tao F, Zhang Y, Zhang F, An Y, Dong L, Yin Y. Structural evolution from CuS nanoflowers to Cu9S5 nanosheets and their applications in environmental pollution removal and photothermal conversion. RSC Adv 2016. [DOI: 10.1039/c6ra09092c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]  Open
23
Vadivel S, Maruthamani D, Paul B, Dhar SS, Habibi-Yangjeh A, Balachandran S, Saravanakumar B, Selvakumar A, Selvam K. Biomolecule-assisted solvothermal synthesis of Cu2SnS3 flowers/RGO nanocomposites and their visible-light-driven photocatalytic activities. RSC Adv 2016. [DOI: 10.1039/c6ra12068g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
24
Liu L, Liu C, Fu W, Deng L, Zhong H. Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells. Chemphyschem 2015;17:771-6. [DOI: 10.1002/cphc.201500627] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Indexed: 12/27/2022]
25
Hwang I, Yong K. Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015. [DOI: 10.1002/celc.201402405] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
26
Bi E, Su Y, Chen H, Yang X, Yin M, Ye F, Li Z, Han L. A hybrid catalyst composed of reduced graphene oxide/Cu2S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Adv 2015. [DOI: 10.1039/c4ra14029j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
27
Gusain M, Rawat P, Nagarajan R. Facile synthesis and optical properties of pure and Ni2+, Co2+, Bi3+, Sb3+ substituted Cu3SnS4. RSC Adv 2015. [DOI: 10.1039/c4ra17125j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]  Open
28
Chang JY, Chang SC, Tzing SH, Li CH. Development of nonstoichiometric CuInS₂ as a light-harvesting photoanode and catalytic photocathode in a sensitized solar cell. ACS APPLIED MATERIALS & INTERFACES 2014;6:22272-22281. [PMID: 25420094 DOI: 10.1021/am5061992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
29
Kim CS, Choi SH, Bang JH. New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability. ACS APPLIED MATERIALS & INTERFACES 2014;6:22078-87. [PMID: 25423356 DOI: 10.1021/am505473d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
30
Xu J, Xue H, Yang X, Wei H, Li W, Li Z, Zhang W, Lee CS. Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014;10:4754-4759. [PMID: 24986216 DOI: 10.1002/smll.201401102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Indexed: 06/03/2023]
31
Synthesis of copper tin sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.159] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
32
Xu J, Chen Z, Zapien JA, Lee CS, Zhang W. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014;26:5337-67. [PMID: 24817111 DOI: 10.1002/adma.201400403] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/07/2014] [Indexed: 05/26/2023]
33
Peng Z, Liu Y, Zhao Y, Chen K, Cheng Y, Chen W. Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
34
A new in-situ preparation method to CuS electrodes for CdS/CdSe co-sensitized solar cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
35
Wu C, Wei L, Li Y, Liu C, Jiao J, Chen Y, Mei L. ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells. NANOSCALE RESEARCH LETTERS 2014;9:112. [PMID: 24618047 PMCID: PMC3975228 DOI: 10.1186/1556-276x-9-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/03/2014] [Indexed: 05/10/2023]
36
Liu C, Li Y, Wei L, Wu C, Chen Y, Mei L, Jiao J. CdS quantum dot-sensitized solar cells based on nano-branched TiO2 arrays. NANOSCALE RESEARCH LETTERS 2014;9:107. [PMID: 24597830 PMCID: PMC3975883 DOI: 10.1186/1556-276x-9-107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
37
Choi HM, Ji IA, Bang JH. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu(1.8)Se and PbSe. ACS APPLIED MATERIALS & INTERFACES 2014;6:2335-2343. [PMID: 24490774 DOI: 10.1021/am404355m] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
38
Ko YN, Choi SH, Park SB, Kang YC. Preparation of Yolk-Shell and Filled Co9S8Microspheres and Comparison of their Electrochemical Properties. Chem Asian J 2013;9:572-6. [DOI: 10.1002/asia.201301209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
39
Zeng X, Xiong D, Zhang W, Ming L, Xu Z, Huang Z, Wang M, Chen W, Cheng YB. Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. NANOSCALE 2013;5:6992-6998. [PMID: 23800939 DOI: 10.1039/c3nr01564e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
40
Mi L, Ding Q, Chen W, Zhao L, Hou H, Liu C, Shen C, Zheng Z. 3D porous nano/micro nickel sulfides with hierarchical structure: controlled synthesis, structure characterization and electrochemical properties. Dalton Trans 2013;42:5724-30. [DOI: 10.1039/c3dt00017f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
41
Feng N, Hu D, Wang P, Sun X, Li X, He D. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys Chem Chem Phys 2013;15:9924-30. [DOI: 10.1039/c3cp50615k] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
42
Liu Y, Xie Y, Cui H, Zhao W, Yang C, Wang Y, Huang F, Dai N. Preparation of monodispersed CuInS2 nanopompons and nanoflake films and application in dye-sensitized solar cells. Phys Chem Chem Phys 2013;15:4496-9. [DOI: 10.1039/c3cp44485f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA