1
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024; 28:4515-4552. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
2
|
Veisi H, Pirhayati M, Mohammadi P, Tamoradi T, Hemmati S, Karmakar B. Recent advances in the application of magnetic nanocatalysts in multicomponent reactions. RSC Adv 2023; 13:20530-20556. [PMID: 37435379 PMCID: PMC10331794 DOI: 10.1039/d3ra01208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Recently, the preparation and applications of magnetic nanostructures have attracted increasing attention in nanocatalysis studies, and magnetic nanoparticle (MNP) functionalized catalysts have been applied in important reactions such as Suzuki-Miyaura and Heck couplings. The modified nanocomposites demonstrate significant catalytic efficiency and excellent benefits in the context of catalyst recovery methods. This review discusses the recent modified magnetic nanocomposites in the field of catalytic applications along with the synthetic processes that are usually employed.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University Malayer Iran
| | | | | | - Saba Hemmati
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College 24-Parganas (North) India
| |
Collapse
|
3
|
Sanna Angotzi M, Mameli V, Zákutná D, Secci F, Xin HL, Cannas C. Hard-Soft Core-Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101679. [PMID: 37242095 DOI: 10.3390/nano13101679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Cubic bi-magnetic hard-soft core-shell nanoarchitectures were prepared starting from cobalt ferrite nanoparticles, prevalently with cubic shape, as seeds to grow a manganese ferrite shell. The combined use of direct (nanoscale chemical mapping via STEM-EDX) and indirect (DC magnetometry) tools was adopted to verify the formation of the heterostructures at the nanoscale and bulk level, respectively. The results showed the obtainment of core-shell NPs (CoFe2O4@MnFe2O4) with a thin shell (heterogenous nucleation). In addition, manganese ferrite was found to homogeneously nucleate to form a secondary nanoparticle population (homogenous nucleation). This study shed light on the competitive formation mechanism of homogenous and heterogenous nucleation, suggesting the existence of a critical size, beyond which, phase separation occurs and seeds are no longer available in the reaction medium for heterogenous nucleation. These findings may allow one to tailor the synthesis process in order to achieve better control of the materials' features affecting the magnetic behaviour, and consequently, the performances as heat mediators or components for data storage devices.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Dominika Zákutná
- Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Fausto Secci
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| |
Collapse
|
4
|
Rozeh P, Shahvelayati AS, Khalil Moghaddam S. Efficient Synthesis and Antioxidant Activity Evaluation of Novel Fused Indenofurane Derivatives Using Fe 3O 4-Magnetic Nanoparticles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Peyman Rozeh
- Department o f Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ashraf Sadat Shahvelayati
- Department o f Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Khalil Moghaddam
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Xu X, Bizmark N, Christie KSS, Datta SS, Ren ZJ, Priestley RD. Thermoresponsive Polymers for Water Treatment and Collection. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Sanna Angotzi M, Mameli V, Khanal S, Veverka M, Vejpravova J, Cannas C. Effect of different molecular coatings on the heating properties of maghemite nanoparticles. NANOSCALE ADVANCES 2022; 4:408-420. [PMID: 35178500 PMCID: PMC8765356 DOI: 10.1039/d1na00478f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
In this work, the effect of different molecular coatings on the alternating magnetic field-induced heating properties of 15 nm maghemite nanoparticles (NPs) in water dispersions was studied at different frequencies (159-782 kHz) and field amplitudes (100-400 G). The original hydrophobic oleate coating was replaced with dimercaptosuccinic acid (DMSA) or polyethylene glycol trimethoxysilane (PEGTMS), while cetrimonium bromide (CTAB) or stearic acid-poloxamer 188 (SA-P188) was intercalated or encapsulated, respectively, to transfer the dispersions into water. Surface modification, based on intercalation processes, induced clustering phenomena with the formation of spherical-like assemblies (CTAB and SA-P188), while ligand-exchange strategies kept the particles isolated. The clustering phenomenon has detrimental effects on the heating performances compared with isolated systems, in line with the reduction of Brown relaxation times. Furthermore, broader comprehension of the heating phenomenon in this dynamic system is obtained by following the evolution of SPA and ILP with time and temperature beyond the initial stage.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Shankar Khanal
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Miroslav Veverka
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Jana Vejpravova
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| |
Collapse
|
8
|
Moeini N, Molaei S, Ghadermazi M. Dysprosium (III) Supported on CoFe2O4 MNPs as a Heterogeneous Catalyst for the Selective Oxidation of Sulfides and Synthesis of Symmetrical Disulfides. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Molaei S, Ghadermazi M, Moeini N. Fabrication of La (III) supported on CoFe2O4 MNPs: a novel and efficient heterogeneous catalyst for selective oxidation of sulfides and synthesis of symmetrical disulfides. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Affiliation(s)
- Prateek Rai
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, India
| |
Collapse
|
11
|
Bordier C, Escande V, Darcel C. Past and current routes to β-hydroperoxy alcohols: A functional group with high potential in organic synthesis. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Marandi A, Koukabi N. Fe3O4@TEA core-shell nanoparticles decorated palladium: A highly active and magnetically separable nanocatalyst for the Heck coupling reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
14
|
Khan S, Sharifi M, Hasan A, Attar F, Edis Z, Bai Q, Derakhshankhah H, Falahati M. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 2021; 30:171-184. [PMID: 34026294 PMCID: PMC8132204 DOI: 10.1016/j.jare.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Heterocyclic compounds have always been used as a core portion in the development of anticancer drugs. However, there is a pressing need for developing inexpensive and simple alternatives to high-cost and complex chemical agents-based catalysts for large-scale production of heterocyclic compounds. Also, development of some smart platforms for cancer treatment based on nanoparticles (NPs) which facilitate Fenton reaction have been widely explored by different scientists. Magnetic NPs not only can serve as catalysts in the synthesis of heterocyclic compounds with potential anticancer properties, but also are widely used as smart agents in targeting cancer cells and inducing Fenton reactions. Aim of Review Therefore, in this review we aim to present an updated summary of the reports related to the main clinical or basic application and research progress of magnetic NPs in cancer as well as their application in the synthesis of heterocyclic compounds as potential anticancer drugs. Afterwards, specific tumor microenvironment (TME)-responsive magnetic nanocatalysts for cancer treatment through triggering Fenton-like reactions were surveyed. Finally, some ignored factors in the design of magnetic nanocatalysts- triggered Fenton-like reaction, challenges and future perspective of magnetic nanocatalysts-assisted synthesis of heterocyclic compounds and selective cancer therapy were discussed.Key Scientific Concepts of Review:This review may pave the way for well-organized translation of magnetic nanocatalysts in cancer therapy from the bench to the bedside.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Shaker Ardakani L, Surendar A, Thangavelu L, Mandal T. Silver nanoparticles (Ag NPs) as catalyst in chemical reactions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1894450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - A. Surendar
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Tanmay Mandal
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Fe3O4@SiO2@(CH2)3-urea-quinoline sulfonic acid chloride: A novel catalyst for the synthesis of coumarin containing 1,4 dihydropyridines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Shen H, Liu E, Xu S, Tang W, Sun J, Gao Z, Gong J. Modular Assembly of Drug and Monodisperse SPIONs for Superior Magnetic and T 2-Imaging Performance. Bioconjug Chem 2020; 32:182-191. [PMID: 33346657 DOI: 10.1021/acs.bioconjchem.0c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Development of superparamagnetic iron oxide nanoparticles (SPIONs) based theranostics has suffered due to its self-contradictory requirements on water dispersity and drug loadings. Generally well-dispersed SPIONs have excellent MRI performance but are insensitive to magnetism mediated delivery. Besides, loading hydrophobic drugs also hampers the stability of SPIONs which is critical for their biomedical applications. Considering these aspects, we employed curcumin as a cross-linking agent to facilitate the modular assembly of drug and monodisperse SPIONs (Cur/ALN-β-CD-SPIONs). Interestingly, the saturation magnetization of Cur/ALN-β-CD-SPIONs is higher than that of ALN-β-CD-SPIONs, and the value of r2 indicating the negative contrast ability increases to 389.96 mM-1 s-1. Furthermore, the Cur/ALN-β-CD-SPIONs are very stable in PBS buffer over 3 weeks. The mice treated with Cur/ALN-β-CD-SPIONs by tail vein injection displayed a better tumor inhibition effect than that of free curcumin. This study provides a simple method for modular assembly of drug and monodisperse SPIONs, which is crucial to the design of SPIONs with superior T2-imaging performance and drug delivery.
Collapse
Affiliation(s)
- Huan Shen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Ergang Liu
- Zhongshan Branch, the Institute of Drug Research and Development, Chinese Academy of Sciences, Zhongshan 528451, China
| | - Shijie Xu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weiwei Tang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Jie Sun
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhenguo Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Ardakani LS, Arabmarkadeh A, Kazemi M. Multicomponent synthesis of highly functionalized piperidines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1861301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Arash Arabmarkadeh
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
19
|
Manafi Khajeh Pasha A, Raoufi S, Ghobadi M, Kazemi M. Biologically active tetrazole scaffolds: Catalysis in magnetic nanocomposites. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1811872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Ghobadi
- Central Laboratory, Llam Petro Chemical Coomplex (ILPC), Chavar, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
20
|
Affiliation(s)
- Xiaomin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| |
Collapse
|
21
|
Salimi M, Esmaeli-nasrabadi F, Sandaroos R. Fe3O4@Hydrotalcite-NH2-CoII NPs: A novel and extremely effective heterogeneous magnetic nanocatalyst for synthesis of the 1-substituted 1H-1, 2, 3, 4-tetrazoles. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Wang S, Wang C, Lv N, Tan C, Cheng T, Liu G. A Compartmentalized‐type Bifunctional Magnetic Catalyst for One‐pot Aerobic Oxysulfonylation and Asymmetric Transfer Hydrogenation. ChemCatChem 2020. [DOI: 10.1002/cctc.202001553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shitong Wang
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd. 200234 Shanghai P. R. China
| | - Chengyi Wang
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd. 200234 Shanghai P. R. China
| | - Ning Lv
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd. 200234 Shanghai P. R. China
| | - Chunxia Tan
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd. 200234 Shanghai P. R. China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd. 200234 Shanghai P. R. China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd. 200234 Shanghai P. R. China
| |
Collapse
|
23
|
Salimi M, Esmaeli‐nasrabadi F, Sandaroos R. Effective and selective aerobic oxidation of primary and secondary alcohols using CoFe
2
O
4
@HT@Imine‐Cu
II
and TEMPO in the air atmosphere. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mehri Salimi
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| | | | - Reza Sandaroos
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| |
Collapse
|
24
|
Ghobadi M, Pourmoghaddam Qhazvini P, Eslami M, Kazemi M. Magnetic nanoparticles supported bromine sources: Catalysis in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1829646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, Ilam Petro Chemical Coomplex (ILPC), Chavar, Ilam, Iran
| | | | - Mohammad Eslami
- Department of Electrical and Computer Engineering, Chabahar Branch, Islamic Azad University, Chabahar, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
25
|
Ghobadi M, Kargar Razi M, Javahershenas R, Kazemi M. Nanomagnetic reusable catalysts in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1819328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, llam Petro Chemical Complex (ILPC), Chavar, Ilam, Iran
| | - Maryam Kargar Razi
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Ramin Javahershenas
- Organic Chemistry Department, Chemistry Faculty, Urmia University, Urmia, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
26
|
Ghobadi M, Pourmoghaddam Qhazvini P, Kazemi M. Catalytic application of zinc (II) bromide (ZnBr 2) in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1811873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, Ilam Petro Chemical Coomplex (ILPC), Chavar, Iran
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
27
|
Kargar Razi M, Javahershenas R, Adelzadeh M, Ghobadi M, Kazemi M. Synthetic routes to rhodanine scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1812658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maryam Kargar Razi
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Chemistry Faculty, Urmia University, Urmia, Iran
| | | | - Massoud Ghobadi
- Central Laboratory, llam Petro Chemical Complex (ILPC), Chavar, Ilam, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
28
|
Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A facile and direct method for synthesizing magnetic periodic mesoporous organosilica nanoparticles from pure organosilane precursors is described. Magnetic ethylene- and phenylene-bridged periodic mesoporous organosilica nanoparticles (PMO NPs) were prepared by nanoemulsification techniques. For fabricating magnetic ethylene- or phenylene-bridged PMO NPs, hydrophobic magnetic nanoparticles in an oil-in-water (o/w) emulsion were prepared, followed by a sol–gel condensation of the incorporated bridged organosilane precursor (1,2 bis(triethoxysilyl)ethane or 1,4 bis(triethoxysilyl)benzene), respectively. The resulting materials were characterized using high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, and nitrogen sorption analysis (N2-BET). The magnetic ethylene-bridged PMO NPs were successfully loaded using a ruthenium oxide catalyst by means of sonication and evaporation under mild conditions. The obtained catalytic system, termed Ru@M-Ethylene-PMO NPS, was applied in a reduction reaction of aromatic compounds. It exhibited very high catalytic behavior with easy separation from the reaction medium by applying an external magnetic field.
Collapse
|
29
|
Sanna Angotzi M, Mameli V, Cara C, Musinu A, Sangregorio C, Niznansky D, Xin HL, Vejpravova J, Cannas C. Coupled hard-soft spinel ferrite-based core-shell nanoarchitectures: magnetic properties and heating abilities. NANOSCALE ADVANCES 2020; 2:3191-3201. [PMID: 36134260 PMCID: PMC9419663 DOI: 10.1039/d0na00134a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 05/20/2023]
Abstract
Bi-magnetic core-shell spinel ferrite-based nanoparticles with different CoFe2O4 core size, chemical nature of the shell (MnFe2O4 and spinel iron oxide), and shell thickness were prepared using an efficient solvothermal approach to exploit the magnetic coupling between a hard and a soft ferrimagnetic phase for magnetic heat induction. The magnetic behavior, together with morphology, stoichiometry, cation distribution, and spin canting, were investigated to identify the key parameters affecting the heat release. General trends in the heating abilities, as a function of the core size, the nature and the thickness of the shell, were hypothesized based on this systematic fundamental study and confirmed by experiments conducted on the water-based ferrofluids.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Anna Musinu
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Claudio Sangregorio
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
- Istituto di Chimica dei Composti OrganoMetallici - Consiglio Nazionale delle Ricerche (ICCOM-CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13 50019, Sesto Fiorentino (FI) Italy
| | - Daniel Niznansky
- Department of Inorganic Chemistry, Charles University Hlavova 8 12800 Prague 2 Czech Republic
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory 735 Brookhaven Ave Upton NY 11973 USA
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
| | - Jana Vejpravova
- Department of Inorganic Chemistry, Charles University Hlavova 8 12800 Prague 2 Czech Republic
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
- Consorzio per la Promozione di Attività Universitarie Sulcis-Iglesiente (AUSI), Centro di Ricerca per l'Energia, l'Ambiente e il TErritorio (CREATE) Palazzo Bellavista Monteponi 09016 Iglesias (CI) Italy
| |
Collapse
|
30
|
Ansari S, Ghosh KC, Devan RS, Sen D, Sastry PU, Kolekar YD, Ramana CV. Eco-Friendly Synthesis, Crystal Chemistry, and Magnetic Properties of Manganese-Substituted CoFe 2O 4 Nanoparticles. ACS OMEGA 2020; 5:19315-19330. [PMID: 32803025 PMCID: PMC7424582 DOI: 10.1021/acsomega.9b02492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/17/2020] [Indexed: 06/11/2023]
Abstract
The authors report on the effect of manganese (Mn) substitution on the crystal chemistry, morphology, particle size distribution characteristics, chemical bonding, structure, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by a simple, cost-effective, and eco-friendly one-pot aqueous hydrothermal method. Crystal structure analyses indicate that the Mn(II)-substituted cobalt ferrites, Co1-x Mn x Fe2O4 (CMFO, x = 0.0-0.5), were crystalline with a cubic inverse spinel structure (space group Fd 3 m ). The average crystallite size increases from 8 to 14 nm with increasing Mn(II) content; the crystal growth follows an exponential growth function while the lattice parameters follow Vegard's law. Chemical bonding analyses made using Raman spectroscopic studies further confirm the cubic inverse spinel phase. The relative changes in specific vibrational modes related to octahedral sites as a function of Mn content suggest a gradual change of measure of inversion of the ferrite lattice at nanoscale dimensions. Small-angle X-ray scattering and electron microscopy revealed a narrow particle size distribution with the spherical shape morphology of the CMFO NPs. The zero-field-cooled and field-cooled magnetic measurements revealed the superparamagnetic behavior of CMFO NPs at room temperature. The sample with x = 0.3 indicates a lower value of blocking temperature (9.16 K) with the improved (maximum) value of saturation magnetization. The results and the structure-composition-property correlation suggest that the economic, eco-friendly hydrothermal approach can be adopted to process superparamagnetic nanostructured magnetic materials at a relatively lower temperature for practical electronic and electromagnetic device applications.
Collapse
Affiliation(s)
- Sumayya
M. Ansari
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Kartik C. Ghosh
- Department
of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri 65897, United States
| | - Rupesh S. Devan
- Discipline
of Metallurgy Engineering and Materials Science, Indian Institute of Technology, Indore 453552, India
| | - Debasis Sen
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400 085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Pulya U. Sastry
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400 085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Yesh D. Kolekar
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - C. V. Ramana
- Center for
Advanced Materials Research (CMR), University
of Texas at El Paso, 500 W. Univ. Avenue, El Paso, Texas 79968, United
States
| |
Collapse
|
31
|
Karimi F, Yarie M, Zolfigol MA. Synthesis and characterization of Fe3O4@SiO2@(CH2)3NH(CH2)2O2P(OH)2 and its catalytic application in the synthesis of benzo-[h]quinoline-4-carboxylic acids via a cooperative anomeric based oxidation mechanism. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Thekkathu R, Ashok D, K Ramkollath P, Neelakandapillai S, Kurishunkal LP, Yadav MP, Kalarikkal N. Magnetically recoverable Ir/IrO2@Fe3O4 core/ SiO2 shell catalyst for the reduction of organic pollutants in water. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Novel synthesis of silica-coated magnetic nano-particles based on acidic ionic liquid, as a highly efficient catalyst for three component system leads to furans derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Azizi S, Soleymani J, Hasanzadeh M. Iron oxide magnetic nanoparticles supported on amino propyl‐functionalized KCC‐1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sajjad Azizi
- Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
35
|
Rai VK, Verma F, Mahata S, Bhardiya SR, Singh M, Rai A. Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190709113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.
Collapse
Affiliation(s)
- Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Fooleswar Verma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Smita R. Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
36
|
Li Q, Li Y, Yang Q, Bai F. Proline‐derived Monodentate Organocatalyst for Asymmetric Reduction of Imine with HSiCl
3. ChemistrySelect 2019. [DOI: 10.1002/slct.201902699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Li
- College of ChemistryJilin University Changchun 130021 P.R. China
| | - Yuan Li
- Institute of Theoretical ChemistryLaboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 P. R. China
| | - Qingbiao Yang
- College of ChemistryJilin University Changchun 130021 P.R. China
| | - Fuquan Bai
- Institute of Theoretical ChemistryLaboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 P. R. China
| |
Collapse
|
37
|
Gholamian F, Hajjami M. Synthesis of Pd immobilized on functionalized hexagonal mesoporous silica (HMS–CPTMS–Cy–Pd) for coupling Suzuki–Miyaura and Stille reactions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Zeynizadeh B, Sepehraddin F, Mousavi H. Green and Highly Efficient Strategies for the Straightforward Reduction of Carboxylic Acids to Alcohols Using Four Different and Affordable Types of Hydrogen Donors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Farhad Sepehraddin
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
39
|
Veisi H, Mohammadi L, Hemmati S, Tamoradi T, Mohammadi P. In Situ Immobilized Silver Nanoparticles on Rubia tinctorum Extract-Coated Ultrasmall Iron Oxide Nanoparticles: An Efficient Nanocatalyst with Magnetic Recyclability for Synthesis of Propargylamines by A 3 Coupling Reaction. ACS OMEGA 2019; 4:13991-14003. [PMID: 31497717 PMCID: PMC6714602 DOI: 10.1021/acsomega.9b01720] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/01/2019] [Indexed: 06/05/2023]
Abstract
This research suggests a green method for synthesizing hybrid magnetic nanocomposites that can be used as a reductant and a stabilizing agent for immobilizing metal nanoparticles (NPs). The central idea is the modification of magnetic NPs using Rubia tinctorum extract, which consists of numerous carbonyl and phenolic hydroxyl functional groups to increase adsorption of metals and chelate silver ions, and decrease the adsorption of silver ions by Ag NPs, in situ. Thus, the suggested catalyst preparation process does not require toxic reagents, additional reductants, and intricate instruments. To show the effectiveness of the plant extract in reducing and immobilizing Ag NPs, the structural, morphological, and physicochemical features of the particles are studied using Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, vibrating sample magnetometry, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. One of the advantages of the suggested method is to reduce the size of the magnetic NPs from 15-20 to 2-5 nm, in the presence of the extract. Additionally, the prepared Fe3O4@R. tinctorum/Ag nanocatalyst is demonstrated to exhibit a very high activity in the catalysis of the three-component reaction of aldehydes, amines, and alkynes (A3 coupling) with good to high yields of diverse propargylamines. Moreover, the nanocatalyst can be recovered several times with no considerable leaching or loss of performance.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame
Noor University, Tehran 19395-4697, Iran
| | - Lida Mohammadi
- Department of Chemistry, Payame
Noor University, Tehran 19395-4697, Iran
| | - Saba Hemmati
- Department of Chemistry, Payame
Noor University, Tehran 19395-4697, Iran
| | - Taiebeh Tamoradi
- Department of Chemistry, Payame
Noor University, Tehran 19395-4697, Iran
| | - Pourya Mohammadi
- Department of Chemistry, Payame
Noor University, Tehran 19395-4697, Iran
| |
Collapse
|
40
|
Mohammadi L, Zolifgol MA, Yarie M, Ebrahiminia M, Roberts KP, Hussaini SR. Application of two magnetic nanoparticle-supported copper(I) catalysts for the synthesis of triazole derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03864-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Palladium-melamine complex anchored on magnetic nanoparticles: A novel promoter for C-C cross coupling reaction. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
A novel and reusable ionically tagged nanomagnetic catalyst: Application for the preparation of 2-amino-6-(2-oxo-2H-chromen-3-yl)-4-arylnicotinonitriles via vinylogous anomeric based oxidation. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Eidi E, Kassaee MZ, Nasresfahani Z, Cummings PT. Synthesis of quinazolines over recyclable Fe3
O4
@SiO2
-PrNH2
-Fe3+
nanoparticles: A green, efficient, and solvent-free protocol. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Esmaiel Eidi
- Department of Chemistry; Tarbiat Modares University; P.O. Box 14155-175 Tehran Iran
| | | | - Zahra Nasresfahani
- Department of Chemistry; Tarbiat Modares University; P.O. Box 14155-175 Tehran Iran
| | - Peter T. Cummings
- Chemical and Biomolecular Engineering; Vanderbilt University; Nashville TN 37240 USA
| |
Collapse
|
44
|
Afsar J, Zolfigol MA, Khazaei A, Alonso DA, Khoshnood A, Bayat Y, Asgari A. Synthesis and application of a novel nanomagnetic catalyst with Cl[DABCO-NO2]C(NO2)3 tags in the preparation of pyrazolo[3,4-b]pyridines via anomeric based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3576-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Zhang J, Fang Q, Duan J, Xu H, Xu H, Xuan S. Magnetically Separable Nanocatalyst with the Fe 3O 4 Core and Polydopamine-Sandwiched Au Nanocrystal Shell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4298-4306. [PMID: 29546989 DOI: 10.1021/acs.langmuir.8b00302] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work reports a novel Fe3O4@polydopamine/Au/polydopamine core/shell nanocomposite toward a magnetically separable nanocatalyst. Because the polydopamine (PDA) layer-sandwiched Au nanocrystals were prepared by a layer-by-layer method, the content of Au could be controlled by varying the Au shell number (such as burger-like Fe3O4@PDA/Au/PDA/Au/PDA). Fe3O4@PDA/Au/PDA exhibited excellent catalytic activity in reducing p-nitrophenol because the substrate could penetrate the PDA shell. Owing to the protection of the PDA shell, Fe3O4@PDA/Au/PDA presented higher cyclability than Fe3O4@PDA/Au. The activity of Fe3O4@PDA/Au/PDA maintained 95% after 7 cycles, while that of Fe3O4@PDA/Au was only 61%. The detailed cycling catalytic mechanism was investigated, and it was found that the catalytic rate of Fe3O4@PDA/Au/PDA/Au/PDA was faster than that of Fe3O4@PDA/Au/PDA because of the higher Au content. Interestingly, this method could be extended for other magnetic nanocomposites with two different kinds of noble metal nanocrystals integrated within one particle, such as Fe3O4@PDA/Au/PDA/Ag/PDA and Fe3O4@PDA/Au/PDA/Pd/PDA.
Collapse
Affiliation(s)
- Jianfeng Zhang
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Qunling Fang
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jinyu Duan
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Hongmei Xu
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Huajian Xu
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics , University of Science and Technology of China , Hefei 230027 , P. R. China
| |
Collapse
|
46
|
Nouri F, Rostamizadeh S, Azad M. Synthesis of a novel ZnO nanoplates supported hydrazone-based palladacycle as an effective and recyclable heterogeneous catalyst for the Mizoroki-Heck cross-coupling reaction. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Bonyasi R, Gholinejad M, Saadati F, Nájera C. Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. NEW J CHEM 2018. [DOI: 10.1039/c7nj03284f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly water dispersible CuFe2O4@Starch catalyzed click reaction.
Collapse
Affiliation(s)
- Reza Bonyasi
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
- Iran
| | - Mohammad Gholinejad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Gavazang
- Iran
| | - Fariba Saadati
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
- Iran
| | - Carmen Nájera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- Spain
| |
Collapse
|
48
|
Li Q, Li Y, Wang J, Lin Y, Wei Z, Duan H, Yang Q, Bai F, Li Y. An efficient proline-based homogeneous organocatalyst with recyclability. NEW J CHEM 2018. [DOI: 10.1039/c7nj03912c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A homogeneous organocatalyst for asymmetric reduction of imines can be reused for several cycles through a self-assembly method using MNPs.
Collapse
Affiliation(s)
- Qiang Li
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Yuan Li
- Institute of Theoretical Chemistry
- Laboratory of Theoretical and Computational Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Jingdong Wang
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Yingjie Lin
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Zhonglin Wei
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Haifeng Duan
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Qingbiao Yang
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Fuquan Bai
- Institute of Theoretical Chemistry
- Laboratory of Theoretical and Computational Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Yaoxian Li
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
49
|
Zolfigol MA, Navazeni M, Yarie M, Ayazi-Nasrabadi R. Application of Fe3O4@SiO2/(CH2)3-[imidazolium-SO3H]Cl as a robust, magnetically recoverable solid acid catalyst for the facile preparation of arylbispyranylmethanes. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, Fe3O4@SiO2/(CH2)3-[imidazolium-SO3H]Cl shows robust promoting capability in the synthesis of arylbispyranylmethane derivatives under mild and green conditions. Arylbispyranylmethanes were synthesized via efficient three-component reaction of various aromatic aldehydes with 4-hydroxy-6-methyl-2H-pyran-2-one. The nanomagnetic core-shell catalyst presented effective potential of at least eight times recycling applicability in the described synthetic procedure.
Collapse
Affiliation(s)
- Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Mahdiyeh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| | - Roya Ayazi-Nasrabadi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 6517838683, Hamedan, Iran
| |
Collapse
|
50
|
|