• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4607200)   Today's Articles (1612)   Subscriber (49374)
For: Yang S, Feng G, Williams NH. Highly selective colorimetric sensing pyrophosphate in water by a NBD-phenoxo-bridged dinuclear Zn(II) complex. Org Biomol Chem 2012;10:5606-12. [PMID: 22733118 DOI: 10.1039/c2ob25617g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Number Cited by Other Article(s)
1
Kavitha V, Chitra K, Gomathi A, Dhivya R, Viswanathamurthi P. Sensing of Pyrophosphate Anion by a Fluorescent Zn(II) Complex Bearing Acenaphthene Imidazole Moiety. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822070115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
2
López-Alled CM, Park SJ, Lee DJ, Murfin LC, Kociok-Köhn G, Hann JL, Wenk J, James TD, Kim HM, Lewis SE. Azulene-based fluorescent chemosensor for adenosine diphosphate. Chem Commun (Camb) 2021;57:10608-10611. [PMID: 34570136 DOI: 10.1039/d1cc04122c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
3
Minagawa S, Fujiwara S, Hashimoto T, Hayashita T. Supramolecular Zn(II)-Dipicolylamine-Azobenzene-Aminocyclodextrin-ATP Complex: Design and ATP Recognition in Water. Int J Mol Sci 2021;22:ijms22094683. [PMID: 33925230 PMCID: PMC8125763 DOI: 10.3390/ijms22094683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023]  Open
4
Recent developments in molecular sensor designs for inorganic pyrophosphate detection and biological imaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213744] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
5
Cruz A, Núñez-Montenegro A, Mateus P, Delgado R. Monitoring inorganic pyrophosphatase activity with the fluorescent dizinc(ii) complex of a macrocycle bearing one dansylamidoethyl antenna. Dalton Trans 2020;49:9487-9494. [PMID: 32608414 DOI: 10.1039/d0dt01673j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
6
de Sousa DP, Yu JH, Miller CJ, Chang Y, McKenzie CJ, Waite TD. Redox- and EPR-Active Graphene Diiron Complex Nanocomposite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019;35:12339-12349. [PMID: 31470693 DOI: 10.1021/acs.langmuir.9b01526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
7
Xu H, Yu L, Zhang S, Xu X, Chen T, Ye H, Zhu X. Signal-on fluorescence assay for pyrophosphate ions based on DNA-stabilized silver nanoclusters. LUMINESCENCE 2019;34:774-778. [PMID: 31304666 DOI: 10.1002/bio.3673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 01/17/2023]
8
Villamil-Ramos R, Gómez-Tagle P, Aguilar-Cordero JC, Yatsimirsky AK. Spectrophotometric, fluorimetric and electrochemical selective pyrophosphate/ATP sensing based on the dimethyltin(IV)-tiron system. Anal Chim Acta 2019;1057:51-59. [PMID: 30832918 DOI: 10.1016/j.aca.2019.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
9
Yang S, Feng W, Feng G. Development of a near-infrared fluorescent sensor with a large Stokes shift for sensing pyrophosphate in living cells and animals. Anal Chim Acta 2018;1034:119-127. [DOI: 10.1016/j.aca.2018.05.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
10
Zhang ST, Li P, Kou X, Xiao D. Highly Selective and Sensitive Luminescent Turn-On Probe for Pyrophosphate Detection in Aqueous Solution. ChemistrySelect 2018. [DOI: 10.1002/slct.201801215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
11
Jarvis TS, Roland FM, Dubiak KM, Huber PW, Smith BD. Time-lapse imaging of cell death in cell culture and whole living organisms using turn-on deep-red fluorescent probes. J Mater Chem B 2018;6:4963-4971. [PMID: 30858977 PMCID: PMC6407891 DOI: 10.1039/c8tb01495g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
12
Esteves CV, Esteban-Gómez D, Platas-Iglesias C, Tripier R, Delgado R. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen. Inorg Chem 2018;57:6466-6478. [DOI: 10.1021/acs.inorgchem.8b00539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
13
Electrochemical strategy for pyrophosphatase detection Based on the peroxidase-like activity of G-quadruplex-Cu2+ DNAzyme. Talanta 2018;178:491-497. [DOI: 10.1016/j.talanta.2017.09.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
14
Pandian TS, Srinivasadesikan V, Lin MC, Park JIL, Kang J. A Hydrogen Pyrophosphate Selective Anion Receptor Based on Thiosemicarbazone. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
15
Naskar B, Modak R, Maiti DK, Drew MGB, Bauzá A, Frontera A, Das Mukhopadhyay C, Mishra S, Das Saha K, Goswami S. A Schiff base platform: structures, sensing of Zn(ii) and PPi in aqueous medium and anticancer activity. Dalton Trans 2017;46:9498-9510. [DOI: 10.1039/c7dt01932g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
16
Xu S, Feng X, Gao T, Wang R, Mao Y, Lin J, Yu X, Luo X. A novel dual-functional biosensor for fluorometric detection of inorganic pyrophosphate and pyrophosphatase activity based on globulin stabilized gold nanoclusters. Anal Chim Acta 2016;958:22-29. [PMID: 28110681 DOI: 10.1016/j.aca.2016.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/03/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
17
Luo L, Chen Y, Zhang L, Li Y, Li H, Zhang H, Tian Y. SERS assay for pyrophosphate based on its competitive binding to Cu(II) ion on silver nanoparticles modified with cysteine and rhodamine 6G. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2044-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
18
Zhao RR, Xu QL, Yang Y, Cao J, Zhou Y, Xu R, Zhang JF. A coumarin-based terpyridine–zinc complex for sensing pyrophosphate and its application in in vivo imaging. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
19
Simultaneous detection of Cu2+ and Cr3+ by a simple Schiff-base colorimetric chemosensor bearing NBD (7-nitrobenzo-2-oxa-1,3-diazolyl) and julolidine moieties. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
20
Ali M, Ahmed I, Ramirez P, Nasir S, Niemeyer CM, Mafe S, Ensinger W. Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016;12:2014-2021. [PMID: 26939057 DOI: 10.1002/smll.201600160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 01/29/2016] [Indexed: 06/05/2023]
21
Mesquita LM, André V, Esteves CV, Palmeira T, Berberan-Santos MN, Mateus P, Delgado R. Dinuclear Zinc(II) Macrocyclic Complex as Receptor for Selective Fluorescence Sensing of Pyrophosphate. Inorg Chem 2016;55:2212-9. [DOI: 10.1021/acs.inorgchem.5b02596] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Zhu X, Liu J, Peng H, Jiang J, Yu R. A novel fluorescence assay for inorganic pyrophosphatase based on modulated aggregation of graphene quantum dots. Analyst 2016;141:251-5. [DOI: 10.1039/c5an01937k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
23
Williams FJ, Fiedler D. A Fluorescent Sensor and Gel Stain for Detection of Pyrophosphorylated Proteins. ACS Chem Biol 2015;10:1958-63. [PMID: 26061479 DOI: 10.1021/acschembio.5b00256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
24
Conway JH, Fiedler D. An Affinity Reagent for the Recognition of Pyrophosphorylated Peptides. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
25
Conway JH, Fiedler D. An affinity reagent for the recognition of pyrophosphorylated peptides. Angew Chem Int Ed Engl 2015;54:3941-5. [PMID: 25651128 DOI: 10.1002/anie.201411232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/05/2022]
26
Jiao SY, Li K, Wang X, Huang Z, Pu L, Yu XQ. Making pyrophosphate visible: the first precipitable and real-time fluorescent sensor for pyrophosphate in aqueous solution. Analyst 2015;140:174-81. [DOI: 10.1039/c4an01615g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Tang L, Zheng Z, Huang Z, Zhong K, Bian Y, Nandhakumar R. Multi-analyte, ratiometric and relay recognition of a 2,5-diphenyl-1,3,4-oxadiazole-based fluorescent sensor through modulating ESIPT. RSC Adv 2015. [DOI: 10.1039/c4ra16347h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
28
Lee S, Yuen KKY, Jolliffe KA, Yoon J. Fluorescent and colorimetric chemosensors for pyrophosphate. Chem Soc Rev 2015;44:1749-62. [DOI: 10.1039/c4cs00353e] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
29
Anbu S, Kamalraj S, Paul A, Jayabaskaran C, Pombeiro AJL. The phenanthroimidazole-based dizinc(ii) complex as a fluorescent probe for the pyrophosphate ion as generated in polymerase chain reactions and pyrosequencing. Dalton Trans 2015;44:3930-3. [DOI: 10.1039/c4dt03590a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Kannan A, Rajakumar P. Synthesis, photophysical and electrochemical properties of a new class of fluorescent amidoanthracenophanes. RSC Adv 2015. [DOI: 10.1039/c5ra14357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
31
Watchasit S, Suktanarak P, Suksai C, Ruangpornvisuti V, Tuntulani T. Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(ii) complex under an indicator displacement assay approach. Dalton Trans 2014;43:14701-9. [DOI: 10.1039/c3dt52392f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Sun J, Yang F, Zhao D, Yang X. Highly Sensitive Real-Time Assay of Inorganic Pyrophosphatase Activity Based on the Fluorescent Gold Nanoclusters. Anal Chem 2014;86:7883-9. [DOI: 10.1021/ac501814u] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
33
Chall S, Mati SS, Konar S, Singharoy D, Bhattacharya SC. An efficient, Schiff-base derivative for selective fluorescence sensing of Zn2+ions: quantum chemical calculation appended by real sample application and cell imaging study. Org Biomol Chem 2014;12:6447-56. [DOI: 10.1039/c4ob00732h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
34
Hu P, Yang S, Feng G. Discrimination of adenine nucleotides and pyrophosphate in water by a zinc complex of an anthracene-based cyclophane. Org Biomol Chem 2014;12:3701-6. [PMID: 24777701 DOI: 10.1039/c4ob00184b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
35
Yu W, Qiang J, Yin J, Kambam S, Wang F, Wang Y, Chen X. Ammonium-Bearing Dinuclear Copper(II) Complex: A Highly Selective and Sensitive Colorimetric Probe for Pyrophosphate. Org Lett 2014;16:2220-3. [DOI: 10.1021/ol5007339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
36
Kondo SI, Nakadai Y, Unno M. Pyrophosphate selective recognition by a Zn2+ complex of a 2,2′-binaphthalene derivative bearing di(2-pyridylmethyl)aminomethyl groups in aqueous solution. RSC Adv 2014. [DOI: 10.1039/c4ra01941e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
37
Huang F, Feng G. Highly selective and controllable pyrophosphate induced anthracene-excimer formation in water. RSC Adv 2014. [DOI: 10.1039/c3ra45681a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
38
A simple click generated probe for highly selective sequential recognition of Cu(II) and pyrophosphate. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
39
Deng J, Jiang Q, Wang Y, Yang L, Yu P, Mao L. Real-Time Colorimetric Assay of Inorganic Pyrophosphatase Activity Based on Reversibly Competitive Coordination of Cu2+ between Cysteine and Pyrophosphate Ion. Anal Chem 2013;85:9409-15. [DOI: 10.1021/ac402524e] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
40
Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 2013;114:590-659. [PMID: 24024656 DOI: 10.1021/cr300508p] [Citation(s) in RCA: 1184] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
41
Anbu S, Kamalraj S, Jayabaskaran C, Mukherjee PS. Naphthalene Carbohydrazone Based Dizinc(II) Chemosensor for a Pyrophosphate Ion and Its DNA Assessment Application in Polymerase Chain Reaction Products. Inorg Chem 2013;52:8294-6. [DOI: 10.1021/ic4011696] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
42
Kaur S, Hwang H, Lee JT, Lee CH. Displacement-based, chromogenic calix[4]pyrrole–indicator complex for selective sensing of pyrophosphate anion. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Deng J, Yu P, Yang L, Mao L. Competitive Coordination of Cu2+ between Cysteine and Pyrophosphate Ion: Toward Sensitive and Selective Sensing of Pyrophosphate Ion in Synovial Fluid of Arthritis Patients. Anal Chem 2013;85:2516-22. [DOI: 10.1021/ac303698p] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
44
Xu QC, Wang XF, Xing GW, Zhang Y. Carbazole substituted 2-aminobenzamide compounds: synthesis, fluorescence ON–OFF–ON sensing of Zn(ii) and PPi ions, assay for alkaline phosphatase, and computational study. RSC Adv 2013. [DOI: 10.1039/c3ra41897a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
45
Huang F, Cheng C, Feng G. Introducing Ligand-Based Hydrogen Bond Donors to a Receptor: Both Selectivity and Binding Affinity for Anion Recognition in Water Can Be Improved. J Org Chem 2012. [DOI: 10.1021/jo302271t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
46
Villamil-Ramos R, Barba V, Yatsimirsky AK. Selective fluorometric detection of pyrophosphate by 3-hydroxyflavone-diphenyltin(iv) complex in aqueous micellar medium. Analyst 2012;137:5229-36. [DOI: 10.1039/c2an35999e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA