1
|
Li T, Zhang M, He J, Ni P. Synthesis and Characterization of Graft Copolymers with Poly(ε-caprolactone) Side Chain Using Hydroxylated Poly(β-myrcene- co-α-methyl styrene). Molecules 2024; 29:2363. [PMID: 38792224 PMCID: PMC11124195 DOI: 10.3390/molecules29102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Graft copolymers have unique application scenarios in the field of high-performance thermoplastic elastomers, resins and rubbers. β-myrcene (My) is a biomass monomer derived from renewable plant resources, and its homopolymer has a low glass transition temperature and high elasticity. In this work, a series of tapered copolymers P(My-co-AMS)k (k = 1, 2, 3) were first synthesized in cyclohexane by one-pot anionic polymerization of My and α-methyl styrene (AMS) using sec-BuLi as the initiator. PAMS chain would fracture when heated at high temperature and could endow the copolymer with thermal degradation property. The effect of the incorporation of AMS unit on the thermal stability and glass transition temperature of polymyrcene main chain was studied. Subsequently, the double bonds in the linear copolymers were partially epoxidized and hydroxylated into hydroxyl groups to obtain hydroxylated copolymer, which was finally used to initiate the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) to synthesize the graft copolymer with PCL as the side chain. All these copolymers before and after modifications were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), thermogravimetry analysis (TGA), and differential scanning calorimeter (DSC).
Collapse
Affiliation(s)
| | | | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China; (T.L.); (M.Z.); (P.N.)
| | | |
Collapse
|
2
|
El Yousfi R, Brahmi M, Dalli M, Achalhi N, Azougagh O, Tahani A, Touzani R, El Idrissi A. Recent Advances in Nanoparticle Development for Drug Delivery: A Comprehensive Review of Polycaprolactone-Based Multi-Arm Architectures. Polymers (Basel) 2023; 15:1835. [PMID: 37111982 PMCID: PMC10142392 DOI: 10.3390/polym15081835] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure-property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.
Collapse
Affiliation(s)
- Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, University Mohamed Premier, P. B. 300, Nador 62700, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Rachid Touzani
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| |
Collapse
|
3
|
Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Chen C, Richter F, Zhang J, Guerrero-Sanchez C, Traeger A, Schubert US, Feng A, Thang SH. Synthesis of functional miktoarm star polymers in an automated parallel synthesizer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Mekpothi T, Meepowpan P, Sriyai M, Molloy R, Punyodom W. Novel Poly(Methylenelactide- g-L-Lactide) Graft Copolymers Synthesized by a Combination of Vinyl Addition and Ring-Opening Polymerizations. Polymers (Basel) 2021; 13:3374. [PMID: 34641191 PMCID: PMC8512580 DOI: 10.3390/polym13193374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a novel poly (methylenelactide-g-L-lactide), P(MLA-g-LLA) graft copolymer was synthesized from poly(methylenelactide) (PMLA) and L-lactide (LLA) using 0.03 mol% liquid tin(II) n-butoxide (Sn(OnBu)2) as an initiator by a combination of vinyl addition and ring-opening polymerization (ROP) at 120 °C for 72 h. Proton and carbon-13 nuclear magnetic resonance spectroscopy (1H- and 13C-NMR) and Fourier-transform infrared spectroscopy (FT-IR) confirmed the grafted structure of P(MLA-g-LLA). The P(MLA-g-LLA) melting temperatures (Tm) range of 144-164 °C, which was lower than that of PLA (170-180 °C), while the thermal decomposition temperature (Td) of around 314-335 °C was higher than that of PLA (approx. 300 °C). These results indicated that the grafting reaction could widen the melt processing range of PLA and in doing so increase PLA's thermal stability during melt processing. The graft copolymers were obtained with weight-average molecular weights (M¯w) = 4200-11,000 g mol-1 and a narrow dispersity (Đ = 1.1-1.4).
Collapse
Affiliation(s)
- Tanyaluck Mekpothi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (P.M.)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (P.M.)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Montira Sriyai
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (P.M.)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Zhou C, Hou C, Wang L, Chen W, Cheng J. Synthesis and micellar property of amphiphilic brush-arm star copolymers via living ROMP. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Facilitating ionic conduction for anion exchange membrane via employing star-shaped block copolymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Liu R, Rong Z, Han G, Yang X, Zhang W. Synthesis and self-assembly of star multiple block copolymer of poly(4-vinylpyridine)-block-polystyrene. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Wang TW, Golder MR. Advancing macromolecular hoop construction: recent developments in synthetic cyclic polymer chemistry. Polym Chem 2021. [DOI: 10.1039/d0py01655a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic methodology to access cyclic macromolecules continues to develop via two distinct mechanistic classes: ring-expansion of macrocyclic initiators and ring-closure of functionalized linear polymers.
Collapse
Affiliation(s)
- Teng-Wei Wang
- Department of Chemistry
- University of Washington
- Seattle
- USA
| | | |
Collapse
|
10
|
Aoki D, Aibara G, Takata T. Reversible cyclic-linear topological transformation using a long-range rotaxane switch. Polym Chem 2021. [DOI: 10.1039/d1py01197a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A reversible linear-cyclic topological transformation of polymers facilitated by a long-range rotaxane switch.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Gota Aibara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
- JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
11
|
Goncharova IK, Tukhvatshin RS, Kholodkov DN, Novikov RA, Solodilov VI, Arzumanyan AV. Dumbbell-Shaped, Graft and Bottlebrush Polymers with All-Siloxane Nature: Synthetic Methodology, Thermal, and Rheological Behavior. Macromol Rapid Commun 2020; 42:e2000645. [PMID: 33345394 DOI: 10.1002/marc.202000645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Indexed: 12/14/2022]
Abstract
A methodology for synthesizing a wide range of dumbbell-shaped, graft and bottlebrush polymers with all-siloxane nature (without carbosilane linkers) is suggested. These macroarchitectures are synthesized from SiOH-containing compounds-silanol (Et3 SiOH) and siloxanol dendrons of the first and second generations, with various peripheral substituents (Me or Et)-and from linear siloxanes comprising terminal and internal SiH groups by the Piers-Rubinsztajn reaction. Products and key building blocks are obtained in yields up to 95%. These polymers are heat and frost-resistant siloxanes. As it turns out, the product physical properties are determined not only by the macromolecular structure, the linear chain length, the size and frequency of branched pendant, but also by the type of peripheral substituents-Me or Et-in the pendant. Thus, the viscosity of the graft polymers with branched pendant groups comprising peripheral Me-groups is more than ≈3-5 fold lower than that of analogous polymers with peripheral Et-groups.
Collapse
Affiliation(s)
- Irina K Goncharova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Rinat S Tukhvatshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Dmitry N Kholodkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Roman A Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Pr., Moscow, 119991, Russian Federation
| | - Vitaliy I Solodilov
- Semenov Federal Research Center For Chemical Physics Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation
| | - Ashot V Arzumanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| |
Collapse
|
12
|
Intrinsic viscosity of poly(N-vinylcaprolactam) with varying the architecture. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Wang Y, Zhu X. Nanofabrication within unimolecular nanoreactors. NANOSCALE 2020; 12:12698-12711. [PMID: 32525189 DOI: 10.1039/d0nr02674c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticles (NPs) have been a research focus over the last three decades owing to their unique properties and extensive applications. It is crucial to precisely control the features of NPs including topology, architecture, composition, size, surface and assembly because these features will affect their properties and then applications. Ingenious nanofabrication strategies have been developed to precisely control these features of NPs, especially for templated nanofabrication within predesigned nanoreactors. Compared with conventional nanoreactors (hard templates and supramolecular nanoreactors), unimolecular nanoreactors exhibit (1) covalently stable nanostructures uninfluenced by environmental variations, (2) extensively regulated features of the structure including topology, composition, size, surface and valence due to the rapid development of polymer chemistry, and (3) effective encapsulation of abundant guests with or without strong interaction to achieve the function of loading, delivery and conversion of guests. Thus, unimolecular nanoreactors have shown fascinating prospects as templates for nanofabrication. Various NPs with expected topologies (sphere, rod, tube, branch, and ring), architectures (compact, hollow, core-shell, and necklace-like), compositions (metal, metal oxide, semiconductor, doping, alloy, silica, and composite), sizes (generally 1-100 nm), surface properties (hydrophilic, hydrophobic, reactivity, valence and responsivity) and assemblies (oligomer, chain, and aggregate) can be fabricated easily within reasonably designed unimolecular nanoreactors in a programmable way. In this review, we provide a brief introduction of the properties and types of unimolecular nanoreactors, a condensed summary of representative methodologies of nanofabrication within various unimolecular nanoreactors and a predicted outlook of the potential further developments of this charming nanofabrication approach.
Collapse
Affiliation(s)
- Youfu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | | |
Collapse
|
14
|
Alhilfi T, Chambon P, Rannard SP. Architectural control of polystyrene physical properties using branched anionic polymerization initiated at ambient temperature. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tamara Alhilfi
- Department of Chemistry University of Liverpool Liverpool UK
| | - Pierre Chambon
- Department of Chemistry University of Liverpool Liverpool UK
| | | |
Collapse
|
15
|
Tian B, Cai Y, Zhang X, Fan H, Li BG. Design of Well-Defined Polyethylene-g-poly-methyltrifluorosiloxane Graft Copolymers via Direct Copolymerization of Ethylene with Polyfluorosiloxane Macromonomers. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baozheng Tian
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yuquan Cai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Xianwei Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Hong Fan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
16
|
|
17
|
Lu C, Jiang L, Xu W, Yu F, Xia W, Pan M, Zhou W, Pan X, Wu C, Liu D. Poly(ethylene glycol) crosslinked multi-armed poly(ε-benzyloxycarbonyl-L-lysine)s as super-amphiphiles: Synthesis, self-assembly, and evaluation as efficient delivery systems for poorly water-soluble drugs. Colloids Surf B Biointerfaces 2019; 182:110384. [PMID: 31357126 DOI: 10.1016/j.colsurfb.2019.110384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023]
Abstract
Polymeric micelles with high thermodynamic stability and loading capacity are of tremendous significance for their potential applications in drug delivery. In the present study, super-amphiphiles in the form of poly(ethylene glycol)-crosslinked multi-armed polyethylenimine-g-poly(ε-benzyloxycarbonyl-L-lysine)s (PEZ-alt-PEG) were designed, synthesized, and optimized as nanocarriers for hydrophobic drugs. In an aqueous solution, the copolymer PEZ-alt-PEG self-assembled into sub-100-nm spherical shell crosslinked micelles with low toxicity in vitro and in vivo. The crosslinked super-amphiphilic structure of PEZ-alt-PEG could not only enhance the thermodynamic stability of polymeric micelles, but it could also significantly improve the loading capacity of hydrophobic drugs, such as curcumin (CUR). CUR-loaded PEZ-alt-PEG micelles could mediate effective drug delivery with sustained and complete CUR release. The use of PEZ-alt-PEG micellar nanocarriers remarkably improved the cellular uptake of CUR and therefore exhibited effective inhibitory activity on the growth of human hepatoma (HepG2) cells. Compared to free CUR, CUR-loaded polymeric micelles significantly accelerated the apoptosis rate of HepG2 cells. Therefore, PEZ-alt-PEG polymeric micelles, with their high thermodynamic stability, high drug-loading capacity, enhanced drug uptake and improved pharmacodynamic effects, could serve as efficient and promising nanocarriers for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Chao Lu
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Ling Jiang
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Weijie Xu
- Department of Pharmacy, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, China
| | - Feiyuan Yu
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Wenquan Xia
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Wen Zhou
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou 515041, China.
| |
Collapse
|
18
|
Zhang Z, Ye Z, Han S, Li S. One-Pot Synthesis of Hyperbranched and Star Polyketones by Palladium-Catalyzed Terpolymerization of 4-tert-Butylstyrene, Divinylbenzene, and Carbon Monoxide. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zhichao Zhang
- Bharti School of Engineering, Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhibin Ye
- Bharti School of Engineering, Laurentian University, Sudbury P3E 2C6, Ontario, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H3G 1M8, Quebec, Canada
| | - Shuang Han
- School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shiyun Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| |
Collapse
|
19
|
Neugebauer D, Mielańczyk A, Bielas R, Odrobińska J, Kupczak M, Niesyto K. Ionic Polymethacrylate Based Delivery Systems: Effect of Carrier Topology and Drug Loading. Pharmaceutics 2019; 11:E337. [PMID: 31311145 PMCID: PMC6681121 DOI: 10.3390/pharmaceutics11070337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
The presented drug delivery polymeric systems (DDS), i.e., conjugates and self-assemblies, based on grafted and star-shaped polymethacrylates have been studied for the last few years in our group. This minireview is focused on the relationship of polymer structure to drug conjugation/entrapment efficiency and release capability. Both graft and linear polymers containing trimethylammonium groups showed the ability to release the pharmaceutical anions by ionic exchange, but in aqueous solution they were also self-assembled into nanoparticles with encapsulated nonionic drugs. Star-shaped polymers functionalized with ionizable amine/carboxylic groups were investigated for drug conjugation via ketimine/amide linkers. However, only the conjugates of polybases were water-soluble, giving opportunity for release studies, whereas the self-assembling polyacidic stars were encapsulated with the model drugs. Depending on the type of drug loading in the polymer matrix, their release rates were ordered as follows: Physical ≥ ionic > covalent. The studies indicated that the well-defined ionic polymethacrylates, including poly(ionic liquid)s, are advantageous for designing macromolecular carriers due to the variety of structural parameters, which are efficient for tuning of drug loading and release behavior in respect to the specific drug interactions.
Collapse
Affiliation(s)
- Dorota Neugebauer
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Anna Mielańczyk
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Rafał Bielas
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Justyna Odrobińska
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Maria Kupczak
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Niesyto
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
20
|
Li M, Guo JW, Wen WQ, Chen JK. Biodegradable Redox-Sensitive Star Polymer Nanomicelles for Enhancing Doxorubicin Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E547. [PMID: 30987287 PMCID: PMC6523129 DOI: 10.3390/nano9040547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
A typical amphiphilic star polymer adamantane-[poly(lactic-co-glycolic acid)-bis(2-carboxyethyl) sulfide-poly(ethylene glycol) monomethyl ether)]₄ with a specific hydrophilic/redox-sensitive/hydrophobic structure was designed and synthesized through ring opening and esterification reactions. The self-assembled nanomicelles were used as doxorubicin (DOX) delivery vehicles with suitable critical micelle concentrations (5.0 mg/L). After the drug being loaded, drug-loaded micelles showed good drug-loading efficiency (10.39%), encapsulation efficiency (58.1%), and drug release (up to 60%) under simulated biological environment conditions. In addition, the backbone structure of the biodegradable polymer was easily hydrolyzed by the action of biological enzymes. As expected, cell-based studies showed that the designed polymer micelles possessed good biocompatibility (a survival rate of 85% for NH-3T3 cells). Moreover, the drug (DOX) still maintained good anti-cancer effects after being loaded, which caused 40% of MCF-7 cells to survive. These redox-sensitive micelles showed anti-tumor therapeutic potential.
Collapse
Affiliation(s)
- Meng Li
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| | - Jian-Wei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wei-Qiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| |
Collapse
|
21
|
Pitet LM, Chamberlain BM, Hauser AW, Hillmyer MA. Dispersity and architecture driven self-assembly and confined crystallization of symmetric branched block copolymers. Polym Chem 2019. [DOI: 10.1039/c9py01173k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Architectural variety in the form of branching combined with disparate dispersities in block polymers have been exploited to access microphase morphologies outside the conventional phase windows typically observed in uniform linear analogs.
Collapse
Affiliation(s)
- Louis M. Pitet
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Institute for Materials Research (IMO) and Department of Chemistry
| | | | - Adam W. Hauser
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | |
Collapse
|
22
|
Atanase LI, Riess G. Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances. Polymers (Basel) 2018; 10:E62. [PMID: 30966101 PMCID: PMC6414829 DOI: 10.3390/polym10010062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/31/2022] Open
Abstract
This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation number, and morphology, are examined as a function of the copolymers' architecture and molecular characteristics.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Faculty of Dental Medicine, "Apollonia" University, 700399 Iasi, Romania.
- Research Institute "Academician Ioan Haulica", 700399 Iasi, Romania.
| | - Gerard Riess
- University of Haute Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, 68093 Mulhouse CEDEX, France.
| |
Collapse
|
23
|
Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J 2017. [DOI: 10.1038/pj.2017.60] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Atanase L, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Honda S, Tanaka N, Toyota T. Synthesis of star-shaped poly(n
-butyl acrylate) oligomers with coumarin end groups and their networks for a UV-tunable viscoelastic material. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Satoshi Honda
- Department of Basic Science, Graduate School of Arts and Sciences; The University of Tokyo, 3-8-1 Komaba; Meguro Tokyo 153-8902 Japan
| | - Nobuaki Tanaka
- Department of Basic Science, Graduate School of Arts and Sciences; The University of Tokyo, 3-8-1 Komaba; Meguro Tokyo 153-8902 Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences; The University of Tokyo, 3-8-1 Komaba; Meguro Tokyo 153-8902 Japan
| |
Collapse
|
26
|
Sun F, Lu G, Feng C, Li Y, Huang X. A PHEA-g-PEO well-defined graft copolymer exhibiting the synchronous encapsulation of both hydrophobic pyrene and hydrophilic Rhodamine 6G. Polym Chem 2017. [DOI: 10.1039/c6py01595f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of a well-defined PHEA-g-PEO graft copolymer by the combination of RAFT polymerization, Cu(i)-mediated ATNRC, and the grafting-onto strategy, which could encapsulate hydrophilic R6G and hydrophobic pyrene simultaneously.
Collapse
Affiliation(s)
- Fangxu Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
27
|
Satoh Y, Matsuno H, Yamamoto T, Tajima K, Isono T, Satoh T. Synthesis of Well-Defined Three- and Four-Armed Cage-Shaped Polymers via “Topological Conversion” from Trefoil- and Quatrefoil-Shaped Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02316] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Satoh
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hirohiko Matsuno
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
28
|
Kermagoret A, Gigmes D. Combined nitroxide mediated radical polymerization techniques for block copolymer synthesis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Ding H, Park S, Zhong M, Pan X, Pietrasik J, Bettinger CJ, Matyjaszewski K. Facile Arm-First Synthesis of Star Block Copolymers via ARGET ATRP with ppm Amounts of Catalyst. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01597] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hangjun Ding
- Department
of Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Materials Science and Engineering, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sangwoo Park
- Department
of Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mingjiang Zhong
- Department
of Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangcheng Pan
- Department
of Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Joanna Pietrasik
- Department
of Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute
of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego
12/16, 90-924 Lodz, Poland
| | - Christopher John Bettinger
- Department
of Materials Science and Engineering, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Altay E, Rzayev J. Synthesis of star-brush polymer architectures from end-reactive molecular bottlebrushes. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Lin C, Xu L, Huang L, Chen J, Liu Y, Ma Y, Ye F, Qiu H, He T, Yin S. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers. Macromol Rapid Commun 2016; 37:1453-9. [DOI: 10.1002/marc.201600227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Cuiling Lin
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Luonan Xu
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Libo Huang
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Jia Chen
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Yuanyuan Liu
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Yifan Ma
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Feixiang Ye
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Tian He
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 P. R. China
| |
Collapse
|
32
|
Sato H, Aoki D, Takata T. Synthesis and Star/Linear Topology Transformation of a Mechanically Linked ABC Terpolymer. ACS Macro Lett 2016; 5:699-703. [PMID: 35614675 DOI: 10.1021/acsmacrolett.6b00320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of an ABC star terpolymer containing one polymer chain connected mechanically through a rotaxane linkage and its topology transformation to a linear structure are reported. Pseudo[2]rotaxane, which was designed as the key trifunctional species for the star polymer synthesis, comprised a sec-ammonium axle with ethynyl and hydroxy groups and a crown ether wheel with a trithiocarbonate group. Stepwise polymer connections to the pseudo[2]rotaxane using the three groups afforded a rotaxane-linked ABC star terpolymer. The topology transformation from star to linear by the removal of the attractive interaction between the axle and wheel components yielded a linear ABC terpolymer via the wheel shifting to the axle end. The spectroscopic and solution property changes clearly indicated the occurrence of the polymer topology change.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Chemical Science and Engineering and ‡JST-CREST, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering and ‡JST-CREST, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering and ‡JST-CREST, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
33
|
Ren Y, Wei Z, Leng X, Wu T, Bian Y, Li Y. Relationships between Architectures and Properties of Highly Branched Polymers: The Cases of Amorphous Poly(trimethylene carbonate) and Crystalline Poly(ε-caprolactone). J Phys Chem B 2016; 120:4078-90. [PMID: 27064385 DOI: 10.1021/acs.jpcb.6b01867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Highly branched polymers (HBPs) are a special class of functional polymeric materials and possess unique properties due to their unique topological structure. A new series of highly branched linear-comb and star-comb amorphous poly(trimethylene carbonate)s (PTMC) and crystalline poly(ε-caprolactone)s (PCL) with well-defined structure and high molecular weight were first synthesized using hydroxylated polybutadiene (HPB) as macroinitiators by simple "one-step" and "graft from" strategies. It is expected that the impact of long-chain, highly branched architecture on the properties of amorphous and crystalline polymers, respectively, is different. We explored systematically for the first time the effect and comparison of branched architectures on the physical and chemical properties of highly branched PTMCs and PCLs, including the intrinsic viscosity, glass transition, thermal degradation, creep property, rheological property, and crystallization and melting behaviors. It is found that the intrinsic viscosities in solution for both comb-branched PTMCs and PCLs were much lower compared with their linear and star counterparts arise from more compact structure and smaller hydrodynamic volumes. For amorphous PTMC, the creep strain and rate increased remarkably with degree of branching increasing due to the shorter side chains making it difficult for the highly branched molecules to entangle. For crystalline PCL, both WAXD and DSC analysis of PCLs with different topological structures indicated that the comb branched architectures have no significant influence on the crystal structure of PCL, but greatly promote the crystallization behavior, e.g., higher crystallinities. The deep understanding of structure-property relationship expects to guide the synthesis of designed functional polymer materials and the processing of polymer products.
Collapse
Affiliation(s)
- Yingying Ren
- State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| | - Tong Wu
- State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| | - Yufei Bian
- State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
34
|
Henke H, Posch S, Brüggemann O, Teasdale I. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes. Macromol Rapid Commun 2016; 37:769-74. [PMID: 27027404 PMCID: PMC4907350 DOI: 10.1002/marc.201600057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/29/2016] [Indexed: 12/14/2022]
Abstract
A new synthetic procedure is described for the preparation of poly(organo)phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2-1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo)phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm.
Collapse
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry Johannes Kepler University Linz Altenberger Straße 69, 4040 Linz, Austria
| | - Sandra Posch
- Department of Applied Experimental Biophysics Institute of
Biophysics Johannes Kepler University Linz Gruberstraße 40, 4020
Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
35
|
Williams R, Pitto-Barry A, Kirby N, Dove AP, O’Reilly RK. Cyclic Graft Copolymer Unimolecular Micelles: Effects of Cyclization on Particle Morphology and Thermoresponsive Behavior. Macromolecules 2016; 49:2802-2813. [PMID: 27175037 PMCID: PMC4861350 DOI: 10.1021/acs.macromol.5b02710] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/17/2016] [Indexed: 01/27/2023]
Abstract
The synthesis of cyclic amphiphilic graft copolymers with a hydrophobic polycarbonate backbone and hydrophilic poly(N-acryloylmorpholine) (PNAM) side arms via a combination of ring-opening polymerization (ROP), cyclization via copper-catalyzed azide-alkyne cycloaddition (CuAAC), and reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The ability of these cyclic graft copolymers to form unimolecular micelles in water is explored using a combination of light scattering, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular micelle analogues. Furthermore, the cyclic and linear graft copolymers were found to exhibit significantly different cloud point temperatures. This study highlights how subtle changes in polymer architecture (linear graft copolymer versus cyclic graft copolymer) can dramatically influence a polymer's nanostructure and its properties.
Collapse
Affiliation(s)
- Rebecca
J. Williams
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Anaïs Pitto-Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Victoria 3168, Australia
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
36
|
Tong M, An X, Pan W, Liu H, Zhao Y. Synthesis and properties of stimuli-sensitive heterografted toothbrush-like terpolymers with a linear handle and two types of V-shaped grafts. Polym Chem 2016. [DOI: 10.1039/c6py00182c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Straightforward syntheses were performed to generate amphiphilic heterograftedPNIPAM(PAA)2m(PCL)2mcopolymers, which could self-assemble into versatile nanoobjects for thermo, pH and additive triggered controlled release of doxorubicin.
Collapse
Affiliation(s)
- Min Tong
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaonan An
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Weidong Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
37
|
Smitha G, Sreekumar K. Chiral dendrigraft polymer for asymmetric synthesis of isoquinuclidines. RSC Adv 2016. [DOI: 10.1039/c6ra15548k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A copper complex of chiral modified dendrigraft amidoamine polymer with a pentaerythritol initiated polyepichlorohydrin core, PEN-G2, on a solid resin support is employed in the synthesis of isoquinuclidines via aza Diels–Alder reaction between cyclohexenone and imines.
Collapse
Affiliation(s)
- G. Smitha
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi-22
- India
| | - K. Sreekumar
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi-22
- India
| |
Collapse
|
38
|
Sun F, Feng C, Liu H, Huang X. PHEA-g-PDMAEA well-defined graft copolymers: SET-LRP synthesis, self-catalyzed hydrolysis, and quaternization. Polym Chem 2016. [DOI: 10.1039/c6py01637e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of well-defined graft copolymers containing a PHEA backbone and degradable PDMAEA side chains, by the combination of RAFT polymerization, SET-LRP, and the grafting-from strategy.
Collapse
Affiliation(s)
- Fangxu Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Haoyu Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
39
|
Sugimoto H, Goto H, Honda S, Yamada R, Manabe Y, Handa S. Synthesis of four- and six-armed star-shaped polycarbonates by immortal alternating copolymerization of CO2 and propylene oxide. Polym Chem 2016. [DOI: 10.1039/c6py00558f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of four- and six-armed star-shaped poly(propylene carbonate)s (PPCs) have successfully been synthesized by carbon dioxide (CO2)–propylene oxide (PO) immortal alternating copolymerization initiated either from tetra- or hexa-functional carboxylic acids.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- Department of Industrial Chemistry
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Hidetoshi Goto
- Department of Industrial Chemistry
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Satoshi Honda
- Department of Industrial Chemistry
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Rumi Yamada
- Department of Industrial Chemistry
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Yoshihisa Manabe
- Department of Industrial Chemistry
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku-ku
- Japan
| | - Shinya Handa
- Department of Industrial Chemistry
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku-ku
- Japan
| |
Collapse
|
40
|
Qiu F, Huang Y, Zhu X. Fluorescent Unimolecular Conjugated Polymeric Micelles for Biological Applications. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P. R. China
| | - Yu Huang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
41
|
Moquin A, Sharma A, Cui Y, Lau A, Maysinger D, Kakkar A. Asymmetric AB3Miktoarm Star Polymers: Synthesis, Self-Assembly, and Study of Micelle Stability Using AF4for Efficient Drug Delivery. Macromol Biosci 2015; 15:1744-54. [DOI: 10.1002/mabi.201500186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandre Moquin
- Department of Pharmacology and Therapeutics; McGill University; 3655 Promenade Sir William Osler, Montreal Quebec H3G 1Y6 Canada
| | - Anjali Sharma
- Department of Chemistry; McGill University; 801 Sherbrooke St. West, Montreal Quebec H3A 0B8 Canada
| | - Yiming Cui
- Department of Pharmacology and Therapeutics; McGill University; 3655 Promenade Sir William Osler, Montreal Quebec H3G 1Y6 Canada
| | - Anthony Lau
- Department of Chemistry; McGill University; 801 Sherbrooke St. West, Montreal Quebec H3A 0B8 Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics; McGill University; 3655 Promenade Sir William Osler, Montreal Quebec H3G 1Y6 Canada
| | - Ashok Kakkar
- Department of Chemistry; McGill University; 801 Sherbrooke St. West, Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
42
|
|
43
|
Aoki D, Uchida S, Takata T. Star/Linear Polymer Topology Transformation Facilitated by Mechanical Linking of Polymer Chains. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Aoki D, Uchida S, Takata T. Star/Linear Polymer Topology Transformation Facilitated by Mechanical Linking of Polymer Chains. Angew Chem Int Ed Engl 2015; 54:6770-4. [DOI: 10.1002/anie.201500578] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/09/2022]
|
45
|
Paik BA, Blanco MA, Jia X, Roberts CJ, Kiick KL. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers. SOFT MATTER 2015; 11:1839-50. [PMID: 25611563 PMCID: PMC4376481 DOI: 10.1039/c4sm02525c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polymer-peptide conjugates were produced via the copper-catalyzed azide-alkyne cycloaddition of poly(tert-butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and addition of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA's ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
46
|
Wang X, Graff RW, Shi Y, Gao H. One-pot synthesis of hyperstar polymers via sequential ATRP of inimers and functional monomers in aqueous dispersed media. Polym Chem 2015. [DOI: 10.1039/c5py01043h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot synthesis was reported to produce hyperstar polymers with high molecular weight, low polydispersity and no detectable star coupling reactions.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Robert W. Graff
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Yi Shi
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
47
|
Iatridi Z, Lencina MMS, Tsitsilianis C. PNIPAM-based heteroarm star-graft quarterpolymers: synthesis, characterization and pH-dependent thermoresponsiveness in aqueous media. Polym Chem 2015. [DOI: 10.1039/c5py00393h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the design of PSn(P2VP-b-PAA-g-PNIPAM)n heteroarm star-graft quarterpolymers, the thermoresponsiveness of which is strongly dependent on pH ionic strength, and their macromolecular features, e.g. arm number and grafting density.
Collapse
Affiliation(s)
- Zacharoula Iatridi
- Department of Chemical Engineering
- University of Patras
- 26504 Patras
- Greece
| | | | - Constantinos Tsitsilianis
- Department of Chemical Engineering
- University of Patras
- 26504 Patras
- Greece
- Institute of Chemical Engineering Sciences ICE/HT-FORTH
| |
Collapse
|
48
|
Huang X, He J, Hao Y, Ye M, Zhang Q, Ni P, Liu J. Synthesis of PEGylated brush-type copolymers for a plurality of plug-and-play functions. RSC Adv 2015. [DOI: 10.1039/c5ra06484h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A well-defined brush-type copolymer P(PEGMA-N3-co-PEGMEMA)-b-PMAA via ATRP is successfully synthesized and demonstrated with a plurality of plug-and-play functions.
Collapse
Affiliation(s)
- Xingqiang Huang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Ying Hao
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Min Ye
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Qi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
49
|
Abstract
This review describes the self-assembly of polymers with a cyclic topology and highlights how cyclization affects the resulting assemblies.
Collapse
|
50
|
Synthesis and properties of arborescent polyisobutylene-poly(ethylene oxide) graft copolymers: a comparison of linear and arborescent graft copolymer architectures. POLYM INT 2014. [DOI: 10.1002/pi.4795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|