1
|
Cao J, Veytia-Bucheli JI, Liang L, Wouters J, Silva-Rosero I, Bussmann J, Gauthier C, De Bolle X, Groleau MC, Déziel E, Vincent SP. Exploring fluorinated heptose phosphate analogues as inhibitors of HldA and HldE, key enzymes in the biosynthesis of lipopolysaccharide. Bioorg Chem 2024; 153:107767. [PMID: 39241584 DOI: 10.1016/j.bioorg.2024.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The growing threat of bacterial resistance to antibiotics has led to the rise of anti-virulence strategies as a promising approach. These strategies aim to disarm bacterial pathogens and improve their clearance by the host immune system. Lipopolysaccharide, a key virulence factor in Gram-negative bacteria, has been identified as a potential target for anti-virulence agents. In this study, we focus on inhibiting HldA and HldE, bacterial enzymes from the heptose biosynthesis pathway, which plays a key role in lipopolysaccharide biosynthesis. We present the synthesis of two fluorinated non-hydrolysable heptose phosphate analogues. Additionally, the inhibitory activity of a family of eight heptose phosphate analogues against HldA and HldE was assessed. This evaluation revealed inhibitors with affinities in the low μM range, with the most potent compound showing inhibition constant values of 15.4 μM for HldA and 16.9 μM for HldE. The requirement for a phosphate group at the C-7 position was deemed essential for inhibitory activity, while the presence of a hydroxy anomeric group was found to be beneficial, a phenomenon rationalized through computational modeling. Additionally, the introduction of a single fluorine atom α to the phosphonate moiety conferred a slight advantage for inhibition. These findings suggest that mimicking the structure of d-glycero-β-d-manno-heptose 1,7-bisphosphate, the product of the phosphorylation step in heptose biosynthesis, could be a promising strategy to disrupt this biosynthetic pathway. In terms of the in vivo effects, these heptose phosphate analogues neither demonstrated significant LPS-disrupting effects nor exhibited growth inhibitory activity on their own. Additionally, they did not alter the susceptibility of bacteria to hydrophobic antibiotics. The highly charged nature of these molecules may hinder their ability to penetrate the bacterial cell wall. To overcome this limitation, alternative strategies such as incorporating protecting groups that facilitate their entry and can subsequently be cleaved within the bacterial cytoplasm could be explored.
Collapse
Affiliation(s)
- Jun Cao
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - José Ignacio Veytia-Bucheli
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Lina Liang
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS)-NARILIS, UNamur, 5000 Namur, Belgium
| | - Isabella Silva-Rosero
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS)-NARILIS, UNamur, 5000 Namur, Belgium
| | - Julie Bussmann
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), H7V 1B7 Laval, Canada; Unité Mixte de Recherche INRS-UQAC, INRS Centre AFSB, Université du Québec à Chicoutimi, G7H 2B1 Chicoutimi, Canada
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Micro-organismes (URBM)-NARILIS, UNamur, 5000 Namur, Belgium
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), H7V 1B7 Laval, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), H7V 1B7 Laval, Canada
| | - Stéphane P Vincent
- Department of Chemistry, Laboratoire de Chimie Bio-Organique (CBO)-Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
2
|
Baumann P, Jin Y. Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF 3- complexes. Commun Chem 2024; 7:19. [PMID: 38297137 PMCID: PMC10830474 DOI: 10.1038/s42004-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Tyrosine phosphorylation on Ras by Src kinase is known to uncouple Ras from upstream regulation and downstream communication. However, the mechanisms by which phosphorylation modulates these interactions have not been detailed. Here, the major mono-phosphorylation level on tyrosine64 is quantified by 31P NMR and mutagenesis. Crystal structures of unphosphorylated and tyrosine64-phosphorylated Ras in complex with a BeF3- ground state analogue reveal "closed" Ras conformations very different from those of the "open" conformations previously observed for non-hydrolysable GTP analogue structures of Ras. They deliver new mechanistic and conformational insights into intrinsic GTP hydrolysis. Phosphorylation of tyrosine64 delivers conformational changes distant from the active site, showing why phosphorylated Ras has reduced affinity to its downstream effector Raf. 19F NMR provides evidence for changes in the intrinsic GTPase and nucleotide exchange rate and identifies the concurrent presence of a major "closed" conformation alongside a minor yet functionally important "open" conformation at the ground state of Ras. This study expands the application of metal fluoride complexes in revealing major and minor conformational changes of dynamic and modified Ras proteins.
Collapse
Affiliation(s)
- Patrick Baumann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
3
|
Carroll-Poehls M, Jakeman DL. Synthesis of a novel fluorinated phosphonyl C-glycoside, (3-deoxy-3-fluoro-β-d-glucopyranosyl)methylphosphonate, a potential inhibitor of β-phosphoglucomutase. Carbohydr Res 2023; 534:108979. [PMID: 37931349 DOI: 10.1016/j.carres.2023.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
β-phosphoglucomutase (βPGM) catalyzes the conversion of β-glucose 1-phosphate (βG1P) to glucose-6-phosphate (G6P), a universal source of cellular energy, in a two-step process. Transition state analogue (TSA) complexes formed from substrate analogues and a metal fluoride (MgF3- and AlF4-) enable analysis of each of these enzymatic steps independently. Novel substrate analogues incorporating fluorine offer opportunities to interrogate the enzyme mechanism using 19F NMR spectroscopy. Herein, the synthesis of a novel fluorinated phosphonyl C-glycoside (3-deoxy-3-fluoro-β-d-glucopyranosyl)methylphosphonate (1), in 12 steps (0.85 % overall yield) is disclosed. A four-stage synthetic strategy was employed, involving: 1) fluorine addition to the monosaccharide, 2) selective anomeric deprotection, 3) phosphonylation of the anomeric centre, and 4) global deprotection. Analysis of βPGM and 1 will be reported in due course.
Collapse
Affiliation(s)
| | - David L Jakeman
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
4
|
Bilska-Markowska M, Kaźmierczak M. Synthesis of fluorinated and nonfluorinated sugar alkenylphosphonates via highly stereoselective Horner-Wadsworth-Emmons olefination. Carbohydr Res 2023; 533:108941. [PMID: 37717483 DOI: 10.1016/j.carres.2023.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
New fluorinated and nonfluorinated sugar alkenylphosphonates were obtained. In all cases 1,2;5,6-di-O-isopropylidene-α-d-glucofuranose was used as the starting material. The synthesis of alkenylphosphonates was based on Horner-Wadsworth-Emmons olefination. The process led to products with E-stereochemistry exclusively or predominately.
Collapse
Affiliation(s)
- Monika Bilska-Markowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland; Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Wang N, Kong Y, Li J, Hu Y, Li X, Jiang S, Dong C. Synthesis and application of phosphorylated saccharides in researching carbohydrate-based drugs. Bioorg Med Chem 2022; 68:116806. [PMID: 35696797 DOI: 10.1016/j.bmc.2022.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.
Collapse
Affiliation(s)
- Ning Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yuanfang Kong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Jieming Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Yulong Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Xiaofei Li
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Polysaccharide Research Center, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, Henan, China.
| |
Collapse
|
6
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
7
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
8
|
Kerner L, Kosma P. Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose. Beilstein J Org Chem 2020; 16:9-14. [PMID: 31976011 PMCID: PMC6964659 DOI: 10.3762/bjoc.16.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
The incorporation of basic substituents into the structurally conserved domains of cell wall lipopolysaccharides has been identified as a major mechanism contributing to antimicrobial resistance of Gram-negative pathogenic bacteria. Inhibition of the corresponding enzymatic steps, specifically the transfer of 4-amino-4-deoxy-ʟ-arabinose, would thus restore the activity of cationic antimicrobial peptides and several antimicrobial drugs. C-glycosidically-linked phospholipid derivatives of 4-amino-4-deoxy-ʟ-arabinose have been prepared as hydrolytically stable and chain-shortened analogues of the native undecaprenyl donor. The C-phosphonate unit was installed via a Wittig reaction of benzyl-protected 1,5-arabinonic acid lactone with the lithium salt of dimethyl methylphosphonate followed by an elimination step of the resulting hemiketal, leading to the corresponding exo- and endo-glycal derivatives. The ensuing selective monodemethylation and hydrogenolysis of the benzyl groups and reduction of the 4-azido group gave the α-ʟ-anomeric arabino- and ribo-configured methyl phosphonate esters. In addition, the monomethyl phosphonate glycal intermediates were converted into n-octyl derivatives followed by subsequent selective removal of the methyl phosphonate ester group and hydrogenation to give the octylphosphono derivatives. These intermediates will be of value for their future conversion into transition state analogues as well as for the introduction of various lipid extensions at the anomeric phosphonate moiety.
Collapse
Affiliation(s)
- Lukáš Kerner
- University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
9
|
Panigrahi K, Fei X, Kitamura M, Berkowitz DB. Rapid Entry into Biologically Relevant α,α-Difluoroalkylphosphonates Bearing Allyl Protection-Deblocking under Ru(II)/(IV)-Catalysis. Org Lett 2019; 21:9846-9851. [PMID: 31789041 DOI: 10.1021/acs.orglett.9b03707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient synthetic route to α,α-difluoroalkylphosphonates is described. Structurally diverse aldehydes are condensed with LiF2CP(O)(OCH2CH═CH2)2. The resultant alcohols are captured as the pentafluorophenyl thionocarbonates and efficiently deoxygenated with HSnBu3, BEt3, and O2, and then smoothly deblocked with CpRu(IV)(π-allyl)quinoline-2-carboxylate (1-2 mol %) in methanol as an allyl cation scavenger. These mild deprotection conditions provide access to free α,α-difluoroalkylphosphonates in nearly quantitative yield. This methodology is used to rapidly construct new bis-α,α-difluoroalkyl phosphonate inhibitors of PTPIB (protein phosphotyrosine phosphatase-1B).
Collapse
Affiliation(s)
- Kaushik Panigrahi
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Xiang Fei
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - David B Berkowitz
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
10
|
Zhu JS, Stiers KM, Winter SM, Garcia AD, Versini AF, Beamer LJ, Jakeman DL. Synthesis, Derivatization, and Structural Analysis of Phosphorylated Mono-, Di-, and Trifluorinated d-Gluco-heptuloses by Glucokinase: Tunable Phosphoglucomutase Inhibition. ACS OMEGA 2019; 4:7029-7037. [PMID: 31179410 PMCID: PMC6547622 DOI: 10.1021/acsomega.9b00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/08/2019] [Indexed: 05/16/2023]
Abstract
Glucokinase phosphorylated a series of C-1 fluorinated α-d-gluco-heptuloses. These phosphorylated products were discovered to be inhibitors of α-phosphomannomutase/phosphoglucomutase (αPMM/PGM) and β-phosphoglucomutase (βPGM). Inhibition potency with both mutases inversely correlated to the degree of fluorination. Structural analysis with αPMM demonstrated the inhibitor binding to the active site, with the phosphate in the phosphate binding site and the anomeric hydroxyl directed to the catalytic site.
Collapse
Affiliation(s)
- Jian-She Zhu
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M. Stiers
- Biochemistry
Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Sherany M. Winter
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Hogeschool Leiden (UAS Leiden), Zernikedreef 11, CK Leiden 2333, The Netherlands
| | - Anthony D. Garcia
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- École
Nationale Supérieure de Chimie de Rennes, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France
| | - Antoine F. Versini
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- École
Supérieure de Physique et de Chimie Industrielles de la Ville
de Paris, 10 rue Vauquelin, Paris 75005, France
| | - Lesa J. Beamer
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- E-mail: (L.J.B.)
| | - David L. Jakeman
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- E-mail: (D.L.J.)
| |
Collapse
|
11
|
Ahmadipour S, Beswick L, Miller GJ. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases. Carbohydr Res 2018; 469:38-47. [PMID: 30265902 DOI: 10.1016/j.carres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
12
|
Kaczmarek P, Rapp M, Koroniak H. Pyrrolidine and oxazolidine ring transformations in proline and serine derivatives of α-hydroxyphosphonates induced by deoxyfluorinating reagents. RSC Adv 2018; 8:24444-24457. [PMID: 35539185 PMCID: PMC9082089 DOI: 10.1039/c8ra05186k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 06/30/2018] [Indexed: 11/21/2022] Open
Abstract
Transformations of α-hydroxyphosphonates derived from proline or serine by treatment with different deoxyfluorinating reagents (DAST, Deoxofluor, PyFluor) are reported. Depending on the applied reagent, as well as the protecting group used (N-Cbz, N-Boc, N-Bn) different types of products are observed. The reaction of N-Cbz or N-Boc prolinols with DAST or Deoxofluor due to aziridinium intermediate participation gave fluorinated amino phosphonates such as piperidine and pyrrolidine derivatives and/or oxazolidine-2-ones. Similarly, the analogous reaction of N-Cbz or N-Boc protected serinol yielded oxazolidine-2-ones or its fluorinated analogues. As the second type of product formed by DAST-induced reaction of serine derivatives, aziridines were obtained. Only in the case of deoxyfluorination of N-benzyl prolinols were both diastereoisomers of β-fluoropiperidine-α-phosphonates formed, while the reaction of protected N-benzyl serinols gave fluorinated oxazolidines. Moreover, application of PyFluor gave sulfonate derivatives. Diastereoselective reactions of hydroxyphosphonates from proline or serine with fluorinating agents yielding piperidine-, oxazolidine-, aziridine- or sulfonate phosphonates were reported.![]()
Collapse
Affiliation(s)
- Patrycja Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| | - Magdalena Rapp
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| |
Collapse
|
13
|
Tarasenko KV, Romanenko VD, Sorochinsky AE. Condensation of diethyl fluoromethylphosphonate with esters: An alternative synthetic route to diethyl α-fluoro-β-ketophosphonates. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
1-C-phosphonomethyl- and 1-C-difluorophosphonomethyl-1,4-imino-l-arabinitols as Galf transferase inhibitors: A comparison. Carbohydr Res 2018; 461:45-50. [DOI: 10.1016/j.carres.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
15
|
Rapp M, Mrowiec P, Koroniak H. Application of DAST mediated reactions in transformations of α-hydroxyphosphonates derived from O-isopropylidene-protected carbohydrate derivatives. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Magdalena Rapp
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Patrycja Mrowiec
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
16
|
Cocaud C, Nicolas C, Poisson T, Pannecoucke X, Legault CY, Martin OR. Tunable Approach for the Stereoselective Synthesis of 1-C-Diethylphosphono(difluoromethyl) Iminosugars as Glycosyl Phosphate Mimics. J Org Chem 2017; 82:2753-2763. [DOI: 10.1021/acs.joc.6b03071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chloé Cocaud
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Cyril Nicolas
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Thomas Poisson
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Université de Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France
| | - Xavier Pannecoucke
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Université de Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France
| | - Claude Y. Legault
- Department
of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier R. Martin
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
17
|
Forget SM, Bushnell EA, Boyd RJ, Jakeman DL. The acidity of β-phosphoglucomutase monofluoromethylenephosphonate ligands probed by NMR spectroscopy and quantum mechanical methods. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described the binding of 1-β-phosphonomethylene-1-deoxy-d-glucopyranose, (S)-1-β-phosphonofluoromethylene-1-deoxy-D-glucopyranose (βG1CFSP), and (R)-1-β-phosphonofluoromethylene-1-deoxy-d-glucopyranose (βG1CFRP) to the enzyme β-phosphoglucomutase as transition state analogues of phosphoryl transfer through formation of stable MgF3− and AlF4− complexes (Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 12384). Herein, we describe in detail the five-fold difference in acidity (pKa2) for the (S)- and (R)-configured diastereomeric fluorophosphonates through a series of NMR spectroscopy experiments. The differences in acidity were corroborated using computational quantum mechanical calculations to determine structures of lowest energy conformers and provide insight into why the (S) isomer is substantially more acidic.
Collapse
Affiliation(s)
| | - Eric A.C. Bushnell
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, MB R7A 6A9, Canada
| | - Russell J. Boyd
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David L. Jakeman
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- College of Pharmacy, Dalhousie University, Halifax, NS B3H 1X7, Canada
| |
Collapse
|
18
|
Zhu JS, McCormick NE, Timmons SC, Jakeman DL. Synthesis of α-Deoxymono and Difluorohexopyranosyl 1-Phosphates and Kinetic Evaluation with Thymidylyl- and Guanidylyltransferases. J Org Chem 2016; 81:8816-8825. [DOI: 10.1021/acs.joc.6b01485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jian-She Zhu
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 3J5, Canada
| | - Nicole E. McCormick
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 3J5, Canada
| | - Shannon C. Timmons
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - David L. Jakeman
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 3J5, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
19
|
Affiliation(s)
- Liuqing Wen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kenneth Huang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yunpeng Liu
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National
Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National
Glycoengineering Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Rapp M, Margas-Musielak K, Koroniak H. Synthesis and spectral properties of fluorinated α,β-epoxyphosphonates. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Hwang CS, Kung A, Kashemirov BA, Zhang C, McKenna CE. 5'-β,γ-CHF-ATP diastereomers: synthesis and fluorine-mediated selective binding by c-Src protein kinase. Org Lett 2015; 17:1624-7. [PMID: 25781066 PMCID: PMC4892180 DOI: 10.1021/ol503765n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first preparation of the individual β,γ-CHF-ATP stereoisomers 12a and 12b is reported. Configurationally differing solely by the orientation of the C-F fluorine, 12a and 12b have discrete (31)P (202 MHz, pH 10.9, ΔδPα 6 Hz, ΔδPβ 4 Hz) and (19)F NMR (470 MHz, pH 9.8, ΔδF 25 Hz) spectral signatures and exhibit a 6-fold difference in IC50 values for c-Src kinase, attributed to a unique interaction of the (S)-fluorine of bound 12b with R388 in the active site.
Collapse
Affiliation(s)
- Candy S. Hwang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Alvin Kung
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Chao Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
22
|
Forget SM, Smithen DA, Jee A, Jakeman DL. Mechanistic evaluation of a nucleoside tetraphosphate with a thymidylyltransferase. Biochemistry 2015; 54:1703-7. [PMID: 25647009 DOI: 10.1021/bi501438p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrimidine polyphosphates were first detected in cells 5 decades ago; however, their biological significance remains only partially resolved. Such nucleoside polyphosphates are believed to be produced nonspecifically by promiscuous enzymes. Herein, synthetically prepared deoxythymidine 5'-tetraphosphate (p4dT) was evaluated with a thymidylyltransferase, Cps2L. We have identified p4dT as a substrate for Cps2L and evaluated the reaction pathway by analysis of products using high-performance liquid chromatography, liquid chromatography and tandem mass spectrometry, and 31P nuclear magnetic resonance spectroscopy. Product analysis confirmed production of dTDP-Glc and triphosphate (P3) and showed no trace of dTTP-Glc and PPi, which could arise from alternative pathways for the reaction mechanism.
Collapse
Affiliation(s)
- Stephanie M Forget
- Department of Chemistry, Dalhousie University , P.O. Box 15000, Halifax, Canada B3H 4R2
| | | | | | | |
Collapse
|
23
|
Smithen DA, Forget SM, McCormick NE, Syvitski RT, Jakeman DL. Polyphosphate-containing bisubstrate analogues as inhibitors of a bacterial cell wall thymidylyltransferase. Org Biomol Chem 2015; 13:3347-50. [DOI: 10.1039/c4ob02583k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesis and evaluation of bisubstrate analogues with a thymidylyltransferase is reported. WaterLOGSY NMR and kinetic analyses provide insight into bisubstrate analogue binding.
Collapse
Affiliation(s)
| | | | | | | | - David L. Jakeman
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- College of Pharmacy
| |
Collapse
|
24
|
Dumitrescu L, Eppe G, Tikad A, Pan W, El Bkassiny S, Gurcha SS, Ardá A, Jiménez-Barbero J, Besra GS, Vincent SP. Selectfluor and NFSI exo-glycal fluorination strategies applied to the enhancement of the binding affinity of galactofuranosyltransferase GlfT2 inhibitors. Chemistry 2014; 20:15208-15. [PMID: 25251918 DOI: 10.1002/chem.201404180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Two complementary methods for the synthesis of fluorinated exo-glycals have been developed, for which previously no general reaction had been available. First, a Selectfluor-mediated fluorination was optimized after detailed analysis of all the reaction parameters. A dramatic effect of molecular sieves on the course of the reaction was observed. The reaction was generalized with a set of biologically relevant furanosides and pyranosides. A second direct approach involving carbanionic chemistry and the use of N-fluorobenzenesulfonimide (NFSI) was performed and this method gave better diastereoselectivities. Assignment of the Z/E configuration of all the fluorinated exo-glycals was achieved based on the results of HOESY experiments. Furthermore, fluorinated exo-glycal analogues of UDP-galactofuranose were prepared and assayed against GlfT2, which is a key enzyme involved in the cell-wall biosynthesis of major pathogens. The fluorinated exo-glycals proved to be potent inhibitors as compared with a series of C-glycosidic analogues of UDP-Galf, thus demonstrating the double beneficial effect of the exocyclic enol ether functionality and the fluorine atom.
Collapse
Affiliation(s)
- Lidia Dumitrescu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61, B-5000 Namur (Belgium), Fax: (+32) 81-72-45-17
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jin Y, Bhattasali D, Pellegrini E, Forget SM, Baxter NJ, Cliff MJ, Bowler MW, Jakeman DL, Blackburn GM, Waltho JP. α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction. Proc Natl Acad Sci U S A 2014; 111:12384-9. [PMID: 25104750 PMCID: PMC4151737 DOI: 10.1073/pnas.1402850111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
β-Phosphoglucomutase (βPGM) catalyzes isomerization of β-D-glucose 1-phosphate (βG1P) into D-glucose 6-phosphate (G6P) via sequential phosphoryl transfer steps using a β-D-glucose 1,6-bisphosphate (βG16BP) intermediate. Synthetic fluoromethylenephosphonate and methylenephosphonate analogs of βG1P deliver novel step 1 transition state analog (TSA) complexes for βPGM, incorporating trifluoromagnesate and tetrafluoroaluminate surrogates of the phosphoryl group. Within an invariant protein conformation, the β-D-glucopyranose ring in the βG1P TSA complexes (step 1) is flipped over and shifted relative to the G6P TSA complexes (step 2). Its equatorial hydroxyl groups are hydrogen-bonded directly to the enzyme rather than indirectly via water molecules as in step 2. The (C)O-P bond orientation for binding the phosphate in the inert phosphate site differs by ∼ 30° between steps 1 and 2. By contrast, the orientations for the axial O-Mg-O alignment for the TSA of the phosphoryl group in the catalytic site differ by only ∼ 5°, and the atoms representing the five phosphorus-bonded oxygens in the two transition states (TSs) are virtually superimposable. The conformation of βG16BP in step 1 does not fit into the same invariant active site for step 2 by simple positional interchange of the phosphates: the TS alignment is achieved by conformational change of the hexose rather than the protein.
Collapse
Affiliation(s)
- Yi Jin
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Debabrata Bhattasali
- Department of Chemistry, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Erika Pellegrini
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Structural Biology Group, European Synchrotron Radiation Facility, 38042 Grenoble, Cedex 9, France; European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, Cedex 9, France
| | - Stephanie M Forget
- Department of Chemistry, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Nicola J Baxter
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew J Cliff
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom; and
| | - Matthew W Bowler
- Structural Biology Group, European Synchrotron Radiation Facility, 38042 Grenoble, Cedex 9, France; European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, Cedex 9, France; Unit of Virus Host Cell Interactions, University of Grenoble Alpes-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, 38042 Grenoble, Cedex 9, France
| | - David L Jakeman
- Department of Chemistry, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2;
| | - G Michael Blackburn
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom; and
| |
Collapse
|
26
|
Hwang C, Kashemirov BA, McKenna CE. On the observation of discrete fluorine NMR spectra for uridine 5'-β,γ-fluoromethylenetriphosphate diastereomers at basic pH. J Org Chem 2014; 79:5315-9. [PMID: 24819695 PMCID: PMC4059216 DOI: 10.1021/jo500452b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/28/2022]
Abstract
Jakeman et al. recently reported the inability to distinguish the diastereomers of uridine 5'-β,γ-fluoromethylenetriphosphate (β,γ-CHF-UTP, 1) by (19)F NMR under conditions we previously prescribed for the resolution of the corresponding β,γ-CHF-dGTP spectra, stating further that 1 decomposed under these basic conditions. Here we show that the (19)F NMR spectra of 1 (~1:1 diastereomer mixture prepared by coupling of UMP-morpholidate with fluoromethylenebis(phosphonic acid)) in D2O at pH 10 are indeed readily distinguishable. 1 in this solution was stable for 24 h at rt.
Collapse
Affiliation(s)
- Candy
S. Hwang
- Department of Chemistry, University of
Southern California, Los Angeles, California 90089, United States
| | - Boris A. Kashemirov
- Department of Chemistry, University of
Southern California, Los Angeles, California 90089, United States
| | - Charles E. McKenna
- Department of Chemistry, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
27
|
Korhonen HJ, Conway LP, Hodgson DRW. Phosphate analogues in the dissection of mechanism. Curr Opin Chem Biol 2014; 21:63-72. [PMID: 24879389 DOI: 10.1016/j.cbpa.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022]
Abstract
Phosphoryl group transfer is central to genetic replication, cellular signalling and many metabolic processes. Understanding the mechanisms of phosphorylation and phosphate ester and anhydride cleavage is key to efforts towards biotechnological and biomedical exploitation of phosphate-handling enzymes. Analogues of phosphate esters and anhydrides are indispensable tools, alongside protein mutagenesis and computational methods, for the dissection of phosphoryl transfer mechanisms. Hydrolysable and non-hydrolysable phosphate analogues have provided insight into the nature and sites of phosphoryl transfer processes. Kinetic isotope effects and crystallography using transition state analogues have painted more detailed pictures of transition states and how enzymes work to stabilise them.
Collapse
Affiliation(s)
- Heidi J Korhonen
- Department of Chemistry, Durham University Mountjoy Site, South Road, Durham DH1 3LE, UK; Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | - Louis P Conway
- Department of Chemistry, Durham University Mountjoy Site, South Road, Durham DH1 3LE, UK
| | - David R W Hodgson
- Department of Chemistry, Durham University Mountjoy Site, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
28
|
Beaton SA, Jiang PM, Melong JC, Loranger MW, Mohamady S, Veinot TI, Jakeman DL. The effect of bisphosphonate acidity on the activity of a thymidylyltransferase. Org Biomol Chem 2014; 11:5473-80. [PMID: 23857455 DOI: 10.1039/c3ob41017j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymidylyltransferases (thymidine diphospho pyrophosphorylases) are nucleotidylyltransferases that play key roles in the biosynthesis of carbohydrate components within bacterial cell walls and in the biosynthesis of glycosylated natural products. They catalyze the formation of sugar nucleotides concomitant with the release of pyrophosphate. Protein engineering of thymidylyltransferases has been an approach for the production of a variety of non-physiological sugar nucleotides. In this work, we have explored chemical approaches towards modifying the activity of the thymidylyltransferase (Cps2L) cloned from S. pneumoniae, through the use of chemically synthesized 'activated' nucleoside triphosphates with enhanced leaving groups, or by switching the metal ion co-factor specificity. Within a series of phosphonate-containing nucleoside triphosphate analogues, thymidylyltransferase activity is enhanced based on the acidity of the leaving group and a Brønsted-type analysis indicated that leaving group departure is rate limiting. We have also determined IC50 values for a series of bisphosphonates as inhibitors of thymidylyltransferases. No correlation between the acidity of the inhibitors (pKa) and the magnitude of enzyme inhibition was found.
Collapse
Affiliation(s)
- Stephen A Beaton
- Department of Chemistry, Dalhousie University, 1459 Oxford St., Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Loranger MW, Forget SM, McCormick NE, Syvitski RT, Jakeman DL. Synthesis and evaluation of l-rhamnose 1C-phosphonates as nucleotidylyltransferase inhibitors. J Org Chem 2013; 78:9822-33. [PMID: 24020932 DOI: 10.1021/jo401542s] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the synthesis of a series of phosphonates and ketosephosphonates possessing an L-rhamnose scaffold with varying degrees of fluorination. These compounds were evaluated as potential inhibitors of α-D-glucose 1-phosphate thymidylyltransferase (Cps2L), the first enzyme in Streptococcus pneumoniae L-rhamnose biosynthesis, and a novel antibiotic target. Enzyme-substrate and enzyme-inhibitor binding experiments were performed using water-ligand observed binding via gradient spectroscopy (WaterLOGSY) NMR for known sugar nucleotide substrates and selected phosphonate analogues. IC50 values were measured and Ki values were calculated for inhibitors. New insights were gained into the binding promiscuity of enzymes within the prokaryotic L-rhamnose biosynthetic pathway (Cps2L, RmlB-D) and into the mechanism of inhibition for the most potent inhibitor in the series, L-rhamnose 1C-phosphonate.
Collapse
Affiliation(s)
- Matthew W Loranger
- Department of Chemistry, Dalhousie University , 6274 Coberg Road, P.O. Box 15,000, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | | |
Collapse
|
30
|
Loranger MW, Beaton SA, Lines KL, Jakeman DL. Thiophosphate and thiophosphonate analogues of glucose-1-phosphate: synthesis and enzymatic activity with a thymidylyltransferase. Carbohydr Res 2013; 379:43-50. [PMID: 23872276 DOI: 10.1016/j.carres.2013.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/17/2022]
Abstract
Synthetic methods were investigated for the preparation of O and S-glucosyl thiophosphates and glucosyl 1C-thiophosphonate. Four protected glucosyl thiophosphate compounds were synthesized and characterized as precursors to glucose 1-thiophosphate. The effect of various reaction conditions and the nature of the carbohydrate and thiophosphate protecting groups and how they impact both the yields and α/β diastereoselectivity of the glucosyl thiophosphate products were explored. A novel isomerization from an O-linked to S-linked glucosyl thiophosphate was observed. α-D-Glucose-1C-thiophosphonate was synthesized and evaluated as a substrate for the thymidylyltransferase, Cps2L. Tandem mass spectrometric analysis determined the position of sulfur in the sugar nucleotide product.
Collapse
Affiliation(s)
- Matthew W Loranger
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|